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The optimal growth of perturbations to transiently growing streaks is studied in Poiseuille flow.

Basic flows are generated by direct numerical simulation giving “primary” optimal spanwise

periodic vortices of finite amplitude as the initial condition. They evolve into finite amplitude

primary transiently growing streaks. Linear “secondary” optimal energy growth supported by these

primary flows are computed using an adjoint technique which takes into full account the

unsteadiness of the basic flows. Qualitative differences between primary and secondary optimal

growths are found only when the primary streaks are locally unstable. For locally stable primary

streaks, the secondary optimal growth has the same scalings with Reynolds number R as the primary

optimal growth and the maximum growth is attained by streamwise uniform vortices, suggesting

that the primary and secondary optimal growth are based on the same physical mechanisms. When

the primary streaks are locally unstable the secondary optimal growth of unstable wavenumbers

scale differently with R and the maximum growth is attained for streamwise nonuniform sinuous

perturbations, indicating the prevalence of the inflectional instability mechanism. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2736678�

The flow in a plane channel is observed to be turbulent

when the Reynolds number R roughly exceeds 1000, a value

which is well below the critical Reynolds number at which

the Poiseuille solution becomes linearly unstable. The

Navier-Stokes operator linearized about the Poiseuille lami-

nar solution is highly non-normal and can sustain large tran-

sient growth of the perturbation energy even when the basic

flow is linearly stable. Upon optimization it is found that the

initial perturbations leading to the largest transient growth

consist of spanwise periodic pairs of counter-rotating vorti-

ces uniform in the streamwise direction
1,2

that induce span-

wise periodic and streamwise uniform regions of excess and

deficit of streamwise velocity, called streamwise streaks. The

amplification of energy during this process is algebraic and

can be very large, being of O�R2�. In the presence of streaks

the streamwise velocity profiles are inflectional and are sub-

ject to strong inflectional instabilities when their amplitude

exceeds a critical threshold.
3,4

This sequence of an algebraic

primary growth followed by an exponential secondary insta-

bility is the core of the so-called “streamwise vortices” �SV�
transition scenario. This subcritical transition to turbulence is

triggered by initial conditions with energy much lower than

the ones required in the scenarios based on subcritical finite

amplitude TS waves.
3

Claiming that the secondary instability

of the streaks is not always required for the streaks to break

down, Schoppa and Hussain
5

proposed a transition scenario

based on secondary transient �see also Ref. 6� algebraic

growth �STG� of x-dependent perturbations on top of the

primary streaks. This scenario, that allows transition even for

low amplitude streaks, stable to modal secondary �exponen-

tial� instabilities, has been validated on streaks extracted

from turbulent channel flow simulations. Secondary optimal

growth of energy riding on primary streaks profiles has been

computed in the Blasius boundary layer,
7

where it is found

that very large transient growth can be supported by these

streaks. In both these studies, the initial condition leading to

transient growth is given on streaks of already large ampli-

tude frozen or allowed to slowly decay by viscous diffusion.

However, in the transition process the streak amplitude

grows from roughly zero at t=0 to its maximum value,

reached at a large time tmax, when generated from streamwise

vortices given as initial conditions. One may argue that, in

the standard initial value problem, also the secondary initial

perturbations should be given at t=0 and not at tmax. The

goal of the present study is to determine if large linear tran-

sient growth can survive on growing-decaying streaks. For

this purpose we compute the secondary optimal linear

growth supported by optimal growing-decaying streaky basic

flows.
8

We consider the flow at constant volume flux Q per unit

spanwise length of an incompressible viscous fluid of density

� and kinematic viscosity � in a channel delimited by two

plane parallel walls respectively situated at distance ±h from

the channel center plane. This motion of the fluid is governed

by the Navier-Stokes equations that, in dimensionless form

depend on the Reynolds number R=3Q /4�. No-slip bound-

ary conditions are enforced at the walls and the initial con-

dition u�x ,y ,z ,0�=u0�x ,y ,z� are enforced at t=0, where we

denote by u the velocity made dimensionless with the dimen-

sionless velocity U=3Q /4h and by x, y, and z, respectively
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the streamwise, wall normal, and spanwise coordinates made

dimensionless with h.

If a generally unsteady solution of the Navier-Stokes

equations U�x ,y ,z , t� is taken as the basic flow, the generic

solution u is decomposed into the sum of the basic flow and

its perturbation u=U+up. The optimal �temporal� growth

G�t ,R� of the perturbations between the times t=0 and t is

defined as the ratio of the norm of the perturbation field at t
to the norm of the initial perturbation up0

, optimized over all

allowed initial perturbations, G�t ,R�=supup0

�up� / �up0
�. The

standard energy norm of the perturbations used is �up�
= ��1/V��Vup ·updV�1/2 and the perturbations are computed

from the Navier-Stokes equations linearized in the neighbor-

hood of U. The maximum optimal growth is defined as

Gmax�R�=supt G�t ,R�. We denote by up
�opt�

the optimal initial

perturbation which realizes the maximum optimal growth

Gmax. We will refer to primary optimals when the Poiseuille

solution is taken as basic flow and to secondary optimals

when a streaky finite amplitude unsteady flow is assumed as

basic flow. In the linear framework the perturbation at time t
is related to the initial perturbation by a linear operator P�t,0�,

called the propagator of the system, up=P�t,0�up0
. As the

norm of the perturbation is defined in terms of the inner

product �up�= �up ,up�1/2, then G�t ,R�= �P�0,t�
†

P�t,0��
1/2, where

the operator P�0,t�
† is the adjoint of the propagator and corre-

sponds to the backward in time integration of the adjoint

linearized Navier-Stokes equations from t to t=0. As

P�0,t�
†

P�t,0� is self-adjoint, all its eigenvalues are real and its

norm is its largest eigenvalue and can therefore be computed

using the standard power iterations method.
10

Each iteration

is composed of a direct integration of the linearized equa-

tions followed by a backward in time integration of the ad-

joint equations. The unsteady nature of the primary basic

flow is taken into full account by this procedure.

The Navier-Stokes equations are numerically solved

both to compute the basic flows and to compute the optimal

perturbations with the code described e.g., in Ref. 11, to

which we refer the reader for further details. The three-

dimensional, time dependent, incompressible Navier-Stokes

equations are solved using a Fourier representation in the

streamwise and spanwise directions and Chebyshev polyno-

mials in the wall-normal direction, together with a pseu-

dospectral treatment of the nonlinear terms. The time inte-

gration is based on a four-step low-storage third-order

Runge-Kutta method for the nonlinear terms and a second-

order Crank-Nicolson method for the linear terms. This code

has been recast in perturbation form to integrate the linear-

ized equations and it includes the possibility of integrating

backward in time the adjoint equations.
12

The direct and the

backward adjoint integrations are used in the power method

to compute the optimal growth. Less than 10−4 relative error

is required on G�t�, which is typically attained in 10–15

power iterations for the considered cases.

We first consider the already well studied Poiseuille so-

FIG. 1. �a� Temporal evolution of the amplitude �UI−UP� of the departure

of the primary basic flows from the Poiseuille flow. �b� Corresponding local

maximum modal temporal growth rate �i,max of the fundamental sinuous

perturbations.

FIG. 2. Secondary optimal growths ĜII�t� with constrained streamwise

wavenumbers �=0 �solid line� and �=0.1,0.2, . . . ,0.6 for the basic flows

�a� A, �b� C, �c� D, �d� E ��=2, R=1500�.
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lution UP�y�= 	1−y2 ,0 ,0
. The optimal perturbations uI
�opt�

of this basic flow are streamwise uniform, spanwise periodic

vortices inducing a maximum growth GImax, at the time tImax,

of streamwise uniform, spanwise periodic streaks. For suffi-

ciently large Reynolds numbers the optimal streamwise ���
and spanwise ��� wavenumbers are roughly ��=0,�=2� and

both GImax and tImax scale proportionally to the Reynolds

number.
1,2,13

Following the same rationale used in previous studies on

the stability of streaks,
3,7,14–16

finite amplitude streaky basic

flows are computed using as initial condition the Poiseuille

flow plus the primary optimal perturbations with finite am-

plitude UI0�y ,z�=UP�y�+AIuI
�opt��y ,z�, with �uI

�opt��=1. We

have considered the case �=2 at R=1500 and the amplitudes

AI=0 �case A, corresponding to Poiseuille flow�, AI

=0.0025 �case B�,…, AI=0.01 �case E�. The nonlinear

Navier-Stokes equations are numerically integrated provid-

ing a family of basic flows UI�y ,z , t ,R ,AI� parametrized by

AI. These basic flows represent temporally growing and de-

caying nonlinear streaks uniform in the streamwise direction;

their amplitudes are reported in Fig. 1�a�. The modal stability

properties of these basic flows are then investigated using an

already validated code.
16

The maximum temporal growth

rate �i,max is computed under the hypothesis that the basic

flow is steady. For sufficiently large amplitudes of the streaks

�cases D and E� the appearance of a local sinuous fundamen-

tal instability of the streaks is observed �see Fig. 1�b��, in

accordance with previous work,
3

with most amplified wave-

numbers near �=1.6. Secondary perturbations uII are defined

as the deviation from the primary basic flow, u=UI+uII. The

optimal, GII�t ,R ,AI�, and maximum, GIImax�R ,AI�, growth of

secondary perturbations depend on the parameter AI identi-

fying the basic flow under consideration. Only fundamental

perturbations, having the same spanwise basic periodicity of

the basic flow, are considered. As the primary basic flows are

homogeneous in the streamwise direction, it is possible to

compute the optimal growths ĜII�R ,AI ,�� restricted to per-

turbations of a given streamwise wavenumber �. GII�t ,R ,AI�
is the envelope of these restricted optimal curves. As men-

tioned, the power iterations method is used to compute

ĜII�R ,AI ,��. For the direct and adjoint temporal integrations

performed at each iteration, a box of length Lx=2� /� has

been used. The number of points Nx used in the streamwise

direction has been chosen to always keep �x=Lx /Nx�1

which is sufficient for ensuring converged results. We have

therefore used Nx=16 for �=0.4, 0.5, and 0.6, Nx=32 for

�=0.2 and 0.3 and Nx=64 for �=0.1. The case �=0 has

been computed taking into account only the streamwise uni-

form part of the solution with Nx=4. In all the simulations

Lz=�, corresponding to �=2 and Ny =64 and Nz=16 points

have been used in, respectively, the wall normal and span-

wise directions. Doubling the number of points Nz in the

spanwise direction does not affect the results in any notice-

able way. The ĜII�R ,AI ,�� curves are reported in Fig. 2. For

cases B �not shown� and C the secondary optimal growth

curves are similar to the primary optimal growth �case A� but

with slightly larger magnitude; the perturbations realizing the

maximum optimal growth GIImax are streamwise uniform

��IImax=0�. For the locally unstable case D, however, the

most amplified wavenumber is not zero ��IImax=0.1� mean-

ing that the most amplified secondary perturbations are now

the sinuous ones. For case E all the considered wavenumbers

�=0.1 to 0.6 are more amplified than �=0. These most am-

plified wavenumbers optimally conciliate the non-normal

initial growth, larger for low wavenumbers, with the late

growth due to local instability, which is larger for larger

wavenumbers.

The three velocity components of the optimal secondary

perturbations of the primary basic flow E are reported in Fig.

3 in the bottom half of the channel �the top half is symmetric

with respect to the center-channel plane�. Their streamwise

wavenumber is �IImax=0.4 �see Fig. 2�c��. From the spanwise

symmetry of the spanwise velocity components and the an-

tisymmetry of the streamwise and wall-normal velocity com-

ponents the sinuous nature of the secondary optimal is easily

recognized. At t=0 the three velocity components of the sec-

ondary optimal perturbations are tilted upstream. At the time

of maximum secondary amplification tIImax, the secondary

optimal perturbations are tilted in the downstream direction,

with the shear, except the wall normal velocity component

that is oriented roughly normal to the wall. The same

upstream/downstream tilting has been observed in the case

of the Blasius boundary layer
7

and attributed to a modified

Orr mechanism. Further calculations showed that with in-

creasing amplitude AI of the primary vortices �and of the

induced streaks�, the secondary optimal perturbations de-

FIG. 3. �Color online� Streamwise �top�, wall-normal �middle�, and span-

wise �bottom� velocity optimal perturbations of the E primary basic flow at

t=0 �left column� and at the time of maximum amplification tIImax
�right

column�. The isosurfaces of ±20% of the maximum of the three velocity

components are visualized in dark and light gray �blue and yellow online�.
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crease their streamwise wavelength and tend to concentrate

near the regions of maximum spanwise shear of the streaks.

Since the secondary optimal growths look very similar to

the primary growths, we investigate if they obey the same

scalings with R that apply to the primary optimals. The sec-

ondary optimal growths have been recomputed at two addi-

tional Reynolds numbers R=750 and R=3000 on the res-

caled basic flows having the same AIR. In Fig. 4 the rescaled

optimal secondary growth kĜII / ��R� is plotted versus the

rescaled time t /R for corresponding rescaled wavenumbers

�R and k= ��2+�2�1/2. The rescaled growths coincide, ex-

cept for the locally unstable D and E basic flows where the

growth increases more with R for the locally unstable

streamwise wavenumbers. In the absence of local sinuous

inflectional instability, this indicates that secondary growth is

likely to be due to the same physical mechanisms as the

primary ones, i.e., the so-called lift-up effect.

We have found that the optimal growth of secondary

perturbations riding on the streaks can survive the growth

phase of the primary streaks. As long as the primary streaks

are locally stable, the secondary optimal growth is very simi-

lar to primary growth observed in the absence of streaks, it

also scales with R just as the primary optimal growth and the

optimal perturbations are streamwise uniform. The fact that

streamwise nonuniform perturbations can be strongly ampli-

fied in this regime is not surprising because the same type of

amplification already exists in the absence of streaks �com-

pare, for instance, Figs. 2�a� and 2�b��. For streaks of larger

amplitude that are locally unstable to streamwise dependent

perturbations, the optimal perturbations realizing the maxi-

mum growth GIImax
are streamwise dependent and the opti-

mal growth do not scale any more with R as the primary

growth leading to much larger growths.
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