C. L. Asbury, J. W. Ruberti, E. I. Bluth, and R. A. Peattie, Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms, Annals of Biomedical Engineering, vol.3, issue.Suppl. 2, pp.23-39, 1995.
DOI : 10.1007/BF02368298

H. Bengtsson, B. Sonesson, and D. Bergqvist, Incidence and Prevalence of Abdominal Aortic Aneurysms, Estimated by Necropsy Studies and Population Screening by Ultrasound, The Abdominal Aortic Aneurysm NY Academy of Sciences, 1996.
DOI : 10.1016/S0741-5214(95)70059-5

B. Es-t, V. A. P-r-i-c-e, J. F. &f-o-w-k-es, and F. G. , Persistent increase in the incidence of abdominal aortic aneurysm in Scotland, Br. J. Surg, vol.90, pp.1510-1515, 1981.

D. Bluestein, L. Niu, R. T. Schoephoerster, and M. K. &dew-anjee, Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition, Journal of Biomechanical Engineering, vol.118, issue.3, pp.280-286, 1996.
DOI : 10.1115/1.2796008

R. Budwig, D. Elger, H. Hooper, and J. Slippy, Steady Flow in Abdominal Aortic Aneurysm Models, Journal of Biomechanical Engineering, vol.115, issue.4A, pp.418-423, 1993.
DOI : 10.1115/1.2895506

D. C. Chappell, S. E. Varner, R. M. Nerem, R. M. Medford, and R. W. Alexander, Oscillatory Shear Stress Stimulates Adhesion Molecule Expression in Cultured Human Endothelium, Circulation Research, vol.82, issue.5, pp.532-539, 1998.
DOI : 10.1161/01.RES.82.5.532

K. D. Chen, Y. S. Li, M. Im, S. Li, S. Y-u-a-n et al., Mechanotransduction in Response to Shear Stress: ROLES OF RECEPTOR TYROSINE KINASES, INTEGRINS, AND Shc, Journal of Biological Chemistry, vol.274, issue.26, pp.393-411, 1999.
DOI : 10.1074/jbc.274.26.18393

C. P. Cheng, D. Parker, and C. A. Taylor, Quantification of Wall Shear Stress in Large Blood Vessels Using Lagrangian Interpolation Functions with Cine Phase-Contrast Magnetic Resonance Imaging, Annals of Biomedical Engineering, vol.30, issue.8, pp.1020-1032, 2002.
DOI : 10.1114/1.1511239

S. Chien, S. Li, and Y. Y. Shyy, Effects of Mechanical Forces on Signal Transduction and Gene Expression in Endothelial Cells, Hypertension, vol.31, issue.1, pp.162-169, 1998.
DOI : 10.1161/01.HYP.31.1.162

R. C. Darling, Ruptured arteriosclerotic abdominal aortic aneurysms, The American Journal of Surgery, vol.119, issue.4, pp.397-401, 1970.
DOI : 10.1016/0002-9610(70)90140-6

D. A-v-i-e-s, P. F. M-u-n-d-e-l, and T. , &B a r b e e ,K .A .1995 A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro, J. Biomech, vol.28, pp.1553-1560

N. Depaola, M. Gimbrone, P. Davies, and C. Dewey, Vascular endothelium responds to fluid shear stress gradients [published erratum appears in Arterioscler Thromb 1993 Mar;13(3):465], Arteriosclerosis, Thrombosis, and Vascular Biology, vol.12, issue.11, pp.1254-1257, 1992.
DOI : 10.1161/01.ATV.12.11.1254

C. Dewey, S. Bussolari, M. Gimbrone, and P. Davies, The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress, Journal of Biomechanical Engineering, vol.103, issue.3, pp.177-185, 1981.
DOI : 10.1115/1.3138276

D. Martino, E. Mantero, S. Inzoli, F. Melissano, G. Astore et al., Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: Experimental characterisation and structural static computational analysis, European Journal of Vascular and Endovascular Surgery, vol.15, issue.4, 1998.
DOI : 10.1016/S1078-5884(98)80031-2

D. D. Duncan, C. B. Bargeron, S. E. Borchardt, O. J. Deters, S. A. Gearhart et al., The Effect of Compliance on Wall Shear in Casts of a Human Aortic Bifurcation, Journal of Biomechanical Engineering, vol.112, issue.2, pp.183-188, 1990.
DOI : 10.1115/1.2891170

F. H. El-khatib and E. R. Damiano, Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube, Biorheology, vol.40, pp.503-522, 2003.

E. M-e-r-s-o-n, M. M-o-m-i, S. B-e-r-t-i, and P. F. , P a g e ,C .&G r e s e l e ,P .1999 Endogenous nitric oxide acts as a natural antithrombotic agent in vivo by inhibiting platelet aggregation in the pulmonary vasculature, Thromb. Haemost, vol.81, pp.961-966

R. Englund, P. Hudson, K. Hanel, and A. Stanton, EXPANSION RATES OF SMALL ABDOMINAL AORTIC ANEURYSMS, ANZ Journal of Surgery, vol.15, issue.1, pp.21-24, 1998.
DOI : 10.1016/S0950-821X(05)80675-9

E. A. Finol and C. H. Amon, Blood Flow in Abdominal Aortic Aneurysms: Pulsatile Flow Hemodynamics, Journal of Biomechanical Engineering, vol.123, issue.5, pp.474-484, 2001.
DOI : 10.1115/1.1395573

E. A. Finol and C. H. Amon, Flow-induced Wall Shear Stress in Abdominal Aortic Aneurysms: Part I - Steady Flow Hemodynamics, Computer Methods in Biomechanics and Biomedical Engineering, vol.23, issue.4, pp.309-318, 2002.
DOI : 10.1080/1025584021000009742

E. A. Finol and C. H. Amon, Flow-induced Wall Shear Stress in Abdominal Aortic Aneurysms: Part II - Pulsatile Flow Hemodynamics, Computer Methods in Biomechanics and Biomedical Engineering, vol.23, issue.4, pp.319-328, 2002.
DOI : 10.1080/1025584021000009751

E. A. Finol and C. H. Amon, Flow dynamics in abdominal aortic aneurysms, Acta Cient. Venez, vol.54, pp.43-49, 2003.

J. A. Fox and A. E. Hugh, Localization of atheroma: a theory based on boundary layer separation., Heart, vol.28, issue.3, pp.388-399, 1966.
DOI : 10.1136/hrt.28.3.388

D. L. Fry, Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients, Circulation Research, vol.22, issue.2, pp.165-197, 1968.
DOI : 10.1161/01.RES.22.2.165

T. Fukushima, T. Matsuzawa, and T. Homma, Visualization and finite element analysis of pulsatile flow in models of the abdominal aortic aneurysm, Biorheology, vol.26, pp.109-130, 1989.

M. Gharib, E. Rambod, and K. Shariff, A universal time scale for vortex ring formation, Journal of Fluid Mechanics, vol.360, pp.121-140, 1998.
DOI : 10.1017/S0022112097008410

S. Gl-a-g-o-v, C. K. Ns, D. G. Gid-d-e-ns, and D. N. &k-u, Haemodynamics and atherosclerosis, insights and perspectives gained from studies of human arteries, Arch. Pathol. Lab. Med, vol.112, pp.1018-1031, 1988.

H. Ar-ter, L. P. Gross, B. H. , P. W. &b-ar-th, and R. A. , Ultrasonic evaluation of abdominal aortic thrombus, J Ultrasound Med, vol.1, pp.315-318, 1982.

E. P. Helpes and D. A. Mcdonald, Arterial blood flow calculated from pressure gradients, J. Physiol, vol.124, pp.30-31, 1954.

K. , D. N. Giddens, D. P. , C. K. &gla-go-v, and S. , Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, vol.5, pp.293-302, 1985.

S. Q. Liu, D. Tang, C. Tieche, and P. K. Alkema, Pattern formation of vascular smooth muscle cells subject to nonuniform fluid shear stress: mediation by gradient of cell density, American Journal of Physiology - Heart and Circulatory Physiology, vol.285, issue.3, 2003.
DOI : 10.1152/ajpheart.01009.2002

M. A-i-e-r, S. E. M-e-i-e-r, and D. , B o e s i n g e r ,P . ,M o s e r ,U .T .&V i e l i ,A .1989 Human abdominal aorta: comparative measurements of blood flow with MR imaging and multigated Doppler US, Radiology, vol.171, pp.487-492

J. E. Moore, K. D. Ku, C. K. Zarins, and S. Glagov, Pulsatile Flow Visualization in the Abdominal Aorta Under Differing Physiologic Conditions: Implications for Increased Susceptibility to Atherosclerosis, Journal of Biomechanical Engineering, vol.114, issue.3, pp.391-397, 1992.
DOI : 10.1115/1.2891400

T. Nagel, N. Resnick, C. F. Dewey, and M. A. Gimbrone, Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.19, issue.8, pp.1825-1834, 1999.
DOI : 10.1161/01.ATV.19.8.1825

W. W. Nichols and M. F. O-'rourke, McDonald's blood flow in arteries: theoretic, experimental and clinical principles, 1990.

S. Oyre, E. M. Pedersen, S. Ringgaard, P. Boesiger, and W. P. Paaske, In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta, European Journal of Vascular and Endovascular Surgery, vol.13, issue.3, pp.263-271, 1997.
DOI : 10.1016/S1078-5884(97)80097-4

P. E-a-t-t-i-e, R. A. S-c-h-r-a-d-e-r, T. U-t-h, and E. I. , &C o m s t o c k ,C .E .1994 Development of turbulence in steady flow through models of abdominal aortic aneurysms, J. Ultrasound Med, vol.13, pp.467-472

E. M. Pedersen, M. Agerbaek, and I. B. K-ristensen, Wall shear stress and early atherosclerotic lesions in the abdominal aorta in young adults, European Journal of Vascular and Endovascular Surgery, vol.13, issue.5, pp.443-451
DOI : 10.1016/S1078-5884(97)80171-2

T. J. Pedley, The Fluid Mechanics of Large Blood Vessels, 1979.
DOI : 10.1017/CBO9780511896996

L. M. Prisant and J. S. Mondy, Abdominal Aortic Aneurysm, The Journal of Clinical Hypertension, vol.18, issue.2, pp.85-89, 2004.
DOI : 10.1056/NEJMoa013527

Y. Qiu and J. M. Tarbell, Interaction between Wall Shear Stress and Circumferential Strain Affects Endothelial Cell Biochemical Production, Journal of Vascular Research, vol.37, issue.3, pp.147-157, 2000.
DOI : 10.1159/000025726

R. E-i-l-l-y, J. M. &t-i-l-s-o-n, and M. D. , Incidence and aetiology of abdominal aortic aneurysms, Surg. Clin. North Am, vol.69, pp.705-711, 1989.

E. G. Richardson and W. Tyler, The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established, Proc. Phys. Soc. Lond, pp.1-15, 1929.
DOI : 10.1088/0959-5309/42/1/302

S. , S. R. Ho-m-a-z, J. &l-asher-as, and J. C. , Effects of the loss of symmetry on the wall shear stresses in abdominal aortic aneurysm, J. Fluid Mech, 2006.

D. G. Sc-ho-w-al-ter, C. W. Asher-as, and J. C. , 1994 A study of streamwise vortex structure in a stratified shear layer, J. Fluid Mech, vol.281, pp.247-291

T. Schrader, R. A. Peattie, E. I. Bluth, and C. E. Comstock, A Qualitative Investigation of Turbulence in Flow Through a Model Abdominal Aortic Aneurysm, Investigative Radiology, vol.27, issue.7, pp.515-519
DOI : 10.1097/00004424-199207000-00008

S. Teiger, H. J. Poll, A. Liepsc-h, D. &r-eulen, and H. J. , Haemodynamic stress in lateral saccular aneurysms, Acta Neurochirurgica, vol.20, issue.3-4, pp.98-105, 1987.
DOI : 10.1007/BF01402292

A. V. Sterpetti, A. Cucina, L. S. Angelo, B. Cardillo, and A. Cavallaro, Shear stress modulates the proliferation rate, protein synthesis, an mitogenic activity of arterial smooth muscle cells, Surgery, vol.113, pp.691-699, 1993.

M. M. Stringfellow, P. F. Lawrence, and R. G. Stringfellow, The influence of aorta-aneurysm geometry upon stress in the aneurysm wall, Journal of Surgical Research, vol.42, issue.4, pp.425-433, 1987.
DOI : 10.1016/0022-4804(87)90178-8

J. S. Stroud, S. A. Berger, and D. Saloner, Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture, Journal of Biomechanics, vol.33, issue.4, pp.443-455, 2000.
DOI : 10.1016/S0021-9290(99)00207-9

D. E. Szilagyi, Clinical diagnosis of intact and ruptured abdominal aortic aneurysms, In Aneurysms: Diagnosis and Treatment. J. J. Bergan & J. S. Yao), pp.205-215, 1982.

Y. Tardy, N. Resnick, T. Nagel, M. Gimbrone, and C. Dewey, Shear Stress Gradients Remodel Endothelial Monolayers in Vitro via a Cell Proliferation-Migration-Loss Cycle, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.11, pp.3102-3106, 1997.
DOI : 10.1161/01.ATV.17.11.3102

T. W. Taylor and T. Yamaguchi, Three-Dimensional Simulation of Blood Flow in an Abdominal Aortic Aneurysm???Steady and Unsteady Flow Cases, Journal of Biomechanical Engineering, vol.116, issue.1, pp.89-97, 1994.
DOI : 10.1115/1.2895709

O. Traub and B. C. Berk, Laminar Shear Stress : Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.18, issue.5, pp.677-685, 1998.
DOI : 10.1161/01.ATV.18.5.677

E. Tzima, D. Pozo, M. A. Kiosses, W. B. Mohamed, S. A. Li et al., Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression, The EMBO Journal, vol.21, issue.24, pp.6791-6800, 2002.
DOI : 10.1093/emboj/cdf688

N. Viswanath, C. M. Rodkiewicz, and S. Zajac, On the abdominal aortic aneurysms: pulsatile state considerations, On the abdominal aortic aneurysms: pulsatile state considerations, pp.343-351, 1997.
DOI : 10.1016/S1350-4533(96)00064-1

J. R. Womersley, Flow in the larger arteries and its relation to the oscillating pressure, J. Physiol, vol.124, pp.31-33, 1954.

T. H. Yip and S. C. Yu, Cyclic transition to turbulence in rigid abdominal aortic aneurysm models, Fluid Dynamics Research, vol.29, issue.2, pp.81-113, 2001.
DOI : 10.1016/S0169-5983(01)00018-1

T. H. Yip and S. C. Yu, Oscillatory flows in straight tubes with an axisymmetric bulge, Experimental Thermal and Fluid Science, vol.26, issue.8, pp.947-961, 2002.
DOI : 10.1016/S0894-1777(02)00214-5

Y. , S. C. C-h-a-n, W. K. N-g, B. T. &c-h-u-a, and L. P. , A numerical investigation on the steady and pulsatile flow characteristics in axi-symmetric abdominal aortic aneurysm models with some experimental evaluation, J. Med. Engng Tech, vol.23, pp.228-239, 1999.

Y. , S. C. &z-h-a-o, and J. B. , A particle image velocimetry study on the pulsatile flow characteristics in straight tubes with an asymmetric bulge, Proc. Inst. Mech. Engng C, vol.214, pp.655-671, 2000.

Y. Zhao, B. P. Chen, H. Miao, S. Yuan, Y. S. Li et al., Improved significance test for DNA microarray data: temporal effects of shear stress on endothelial genes, Physiological Genomics, vol.12, issue.1, pp.1-11, 2002.
DOI : 10.1152/physiolgenomics.00024.2002