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The effects of viscosity on the instability properties of the Batchelor vortex are
investigated. The characteristics of spatially amplified branches are first documented
in the convectively unstable regime for different values of the swirl parameter ¢ and
the co-flow parameter a at several Reynolds numbers Re. The absolute—convective
instability transition curves, determined by the Briggs—Bers zero-group velocity cri-
terion, are delineated in the (a, g)-parameter plane as a function of Re. The azimuthal
wavenumber m of the critical transitional mode is found to depend on the magnitude
of the swirl ¢ and on the jet (a > —0.5) or wake (a < —0.5) nature of the axial
flow. At large Reynolds numbers, the inviscid results of Olendraru et al. (1999) are
recovered. As the Reynolds number decreases, the pocket of absolute instability in the
(a, q)-plane is found to shrink gradually. At Re = 667, the critical transitional modes
for swirling jets are m = —2 or m = —3 and absolute instability prevails at moderate
swirl values even in the absence of counterflow. For higher swirl levels, the bending
mode m = —1 becomes critical. The results are in good overall agreement with those
obtained by Delbende et al. (1998) at the same Reynolds number. However, a bending
(m = +1) viscous mode is found to partake in the outer absolute—convective instability
transition for jets at very low positive levels of swirl. This asymmetric branch is the
spatial counterpart of the temporal viscous mode isolated by Khorrami (1991) and
Mayer & Powell (1992). At Re = 100, the critical transitional mode for swirling jets
is m = —2 at moderate and high swirl values and, in order to trigger an absolute
instability, a slight counterflow is always required. A bending (m = +1) viscous mode
again becomes critical at very low swirl values. For wakes (@ < —0.5) the critical
transitional mode is always found to be the bending mode m = —1, whatever the
Reynolds number. However, above ¢ = 1.5, near-neutral centre modes are found to
define a tongue of weak absolute instability in the (a, q)-plane. Such modes had been
analytically predicted by Stewartson & Brown (1985) in a strictly temporal inviscid
framework.

1. Introduction

Considerable efforts have been directed toward understanding the stability charac-
teristics of vortices with axial flow. Depending both on the amount of swirl and on
the outer uniform axial velocity, such flows may be highly sensitive to perturbations.
In many technical applications it can even result in breakdown, i.e. in sudden changes
in the structure of the vortex core. Among other examples, we should cite the slowly
evolving leading-edge vortices on a delta wing and confined vortices in pipes. To
the present day, the instability properties have been mainly investigated within the
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framework of a linear analysis (for a comprehensive review of vortex stability see Ash
& Khorrami 1995).

The present study takes as mean-velocity profile the familiar Batchelor (1964)
vortex since it both satisfactorily approximates slowly evolving trailing vortices (Faler
& Leibovich 1977; Garg & Leibovich 1979) and experimental velocity profiles for
vane-guide-generated pipe vortices (Leibovich 1983), except at very low Reynolds
numbers where wall effects become significant. Only two non-dimensional control
parameters describe this axisymmetric and parallel rotating flow: the swirl ratio ¢
which measures the relative importance of the swirl velocity with respect to the axial
velocity difference, and the axial co-flow parameter a which measures the relative
importance of the external axial velocity with respect to the axial velocity difference.

The strictly temporal (given real axial wavenumber k and unknown complex
frequency w) instability analysis of the Batchelor (a, q)-vortex has been extensively
addressed both in the inviscid and in the fully viscous cases. In these investigations,
one actually sets a = 0 (by invoking a Galilean shift which only affects w,) and
look for the temporal modes w(k;m,q, Re) at different azimuthal wavenumbers m
and Reynolds numbers Re. For each setting (k;m, g, Re) several modes may arise: the
‘primary’ mode (i.e. the most unstable eigenvalue @) and higher less-amplified modes.

In the inviscid case and at ¢ = 0, only the bending modes m = +1 are unstable, i.c.
of positive growth rate w; (Lessen & Singh 1974). The influence of strictly positive
swirl on each inviscid mode, denoted by w(k;m,q), was found to depend on its
azimuthal wavenumber in the following manner (see Lessen, Singh & Paillet 1974
for the ‘primary’ modes and Duck & Foster 1980 and Mayer & Powell 1992 for
higher modes). For m = 0 and m > 2, inviscid modes remain stable whatever the
magnitude of the swirl. For m = +1, inviscid modes become unstable within the
range 0 < ¢ < q; ~ 0.0739. For m < —1, inviscid modes are highly unstable at
moderate values of ¢ and they become damped as g approaches 1.5. Furthermore,
the growth rate of the m < —1 modes increases with —m. Finally, note that nearly
neutral so-called centre modes have been analytically predicted by Stewartson &
Brown (1985) for moderate azimuthal wavenumbers in specific ranges of swirl above
1.5. As established by Leibovich & Stewartson (1983) and later confirmed numerically
by Mayer & Powell (1992), the maximum growth rate admits a finite limit as |m| tends
to infinity and the associated eigenfunctions become strongly localized in the form
of ‘ring’ modes. Moreover, Leibovich & Stewartson (1983), Leibovich & Stewartson
(1983) and Stewartson & Capell (1985) have shown that, for large values of —m, the
‘primary’ and higher inviscid modes tend to coalesce near neutrality. This behaviour
results in numerical difficulties when computing marginally unstable modes. It is
worth mentioning that other basic swirling jet/wake profiles have been examined
recently from the point of view of their convective/absolute instability properties: the
Rankine vortex with plug flow axial velocity profile (Loiseleux, Chomaz & Huerre
1998) and the swirling jet/wake shear layer (Loiseleux, Delbende & Huerre 2000).

Viscosity effects are generally believed to have, for unconfined flows, a stabilizing
influence on ‘inviscid’ modes. For fine-scale perturbations, such as modes with large
values of —m, this is indeed the case (Mayer & Powell 1992); these modes w(k;m, q, Re)
are stable below a critical Reynolds number Re.(m) = O(m?) and they quickly
asymptote, for Re > Re.m), to the corresponding inviscid mode w(k;m,q). For
disturbances of low-to-medium azimuthal wavenumbers, the role of viscosity becomes
less intuitively obvious; Lessen & Paillet (1974) found a critical Reynolds number for
the ‘primary’ modes at m = —1,m = —2 and m = —3 but Khorrami (1992) reports
that, in a certain range of Reynolds numbers, viscosity destabilizes the bending mode
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m = —1 with mode-switching and mode-crossing phenomena involving ‘primary’
and higher bending modes m = —1. Moreover, Khorrami (1991) discovered both
axisymmetric (m = 0) and bending (m = 1) centre viscous modes with growth rates
several orders of magnitude lower than those of inviscid modes. These viscous modes
only exist within a domain of the (g, k)-plane where inviscid instabilities do not occur.
For Re < 100, Mayer & Powell (1992) also discovered higher and near-neutral viscous
bending modes m = 1 of small axial wavenumbers. At large Reynolds numbers, Duck
& Khorrami (1992) resorted to an asymptotic analysis to demonstrate that viscous
modes become neutrally stable with w; = O(Re™).

It is tempting to compare the results of temporal stability analyses with experimental
observations of the vortex breakdown phenomenon. This sudden transition between
a jet-like and a wake-like rotating flow is associated with an expansion of the
vortex core, as reviewed by Leibovich (1978, 1983) and Delery (1990). The vortex
exhibits within its viscous core a stagnation point which is followed by an intricate
structure consisting of one or several regions of reverse axial flow. The experimental
investigations of Garg & Leibovich (1979) have shown that time-averaged velocity
profiles at different stations, both upstream and downstream of this stagnation point,
were satisfactorily approximated by Batchelor vortices, respectively, with ¢ > 1.5 (i.e.
temporally stable) and g < 1.5 (i.e. temporally unstable). The downstream flow was
also found to promote bending disturbances m = +1 only. However, the strictly
temporal analysis fails to account for the occurrence of vortex breakdown. Following
Benjamin (1962), we may also attempt to consider vortex breakdown as a transition
between an incoming supercritical flow (i.e. which allows downstream propagating
perturbations only) and a subcritical outgoing flow (i.e. which allows both upstream
and downstream propagating disturbances). Originally developed for axisymmetric,
non-dispersive and low-wavenumber disturbances by Benjamin (1962), this idea has
been further extended to arbitrary temporal perturbations by Tsai & Widnall (1980).

Supercritical or subcritical concepts appear somewhat analogous to the notions of
convective or absolute instabilities, respectively. The latter distinction, which actually
requires a fully spatio-temporal analysis, has been pioneered in plasma instabilities
(Briggs 1964; Bers 1983) and more recently applied to fluid-dynamical instabilities
in parallel and weakly spatially developing open flows (Huerre & Monkewitz 1990;
Huerre & Rossi 1998; Huerre 2000). The nature of a given flow depends on the large-
time asymptotic behaviour of the linear impulse response; the flow is convectively
unstable if the amplified disturbances move away from the source and absolutely
unstable when amplified perturbations invade the entire flow.

The absolute—convective nature of the instability is determined by applying the
Briggs—Bers zero-group velocity criterion to the dispersion relation for fully com-
plex (k,w) pairs. In order to determine the transition from convective to absolute
instability, it is sufficient to detect the occurrence of so-called pinch points in the
characteristics of spatial instability waves (given complex frequency w and unknown
complex axial wavenumber k). This property motivates the present spatial instability
analysis of the Batchelor (a, q)-vortex. Contrary to the temporal setting, it is not pos-
sible to restrict spatial investigations to the case a = 0. In the inviscid case, Olendraru
et al. (1996, 1999) have employed a shooting method to determine the spatial growth
rates of the ‘primary’ helical modes m = +1, m = —2 and m = —3 as a function of the
swirl and co-flow parameters g and a. They have also located the absolute—convective
instability transition boundaries in the (a, g)-parameter plane by numerically applying
the Briggs—Bers criterion to the inviscid dispersion relation. At Re = 667, Delbende,
Chomaz & Huerre (1998) have also determined such transition curves from a nu-
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merical study of the linear impulse response. In both studies, a moderate amount
of swirl is found to enlarge the region of absolute instability. Moreover, for jets, the
azimuthal wavenumber of the convective—absolute transitional mode is found to be
highly sensitive to the swirl level. By contrast, for wakes, the transitional mode is
always m = +1. According to the finite-Reynolds-number investigations of Delbende
et al. (1998), viscous effects tend to reduce the domain of absolute instability both for
jets and wakes.

The latter study of Delbende et al. (1998) is restricted to a single Reynolds number
(Re = 667) and it is only capable of extracting, from the computed linear impulse
response, the dominant mode that exhibits a convective—absolute transition. The
objective of the present analysis is to document the effects of finite viscosity fully on
spatial branches and on the extent of the domain of absolute instability by taking into
account all amplified modes. Instead of working in physical space as in Delbende et
al. (1998), we solve the linear dispersion relation directly by resorting to a Chebyshev
spectral collocation method and subsequently tracking pinch points in the complex
k-plane as dictated by the Briggs—Bers criterion.

The paper is organized as follows. The next section presents the governing eigen-
value problem of interest for this study. The spectral method used is described
briefly in § 3. Numerical results pertaining to spatial branches are discussed in §4. The
absolute—convective instability transition curves are determined in the (a, ¢)-parameter
plane for different Reynolds numbers in § 5.

2. Eigenvalue problem

The basic flow is taken to be a vortex flow around the x-axis of typical core radius
R and angular swirl velocity Q2. The axial flow is characterized by the centreline axial
velocity U, and external axial velocity U... If we select as length scale the radius R
and as velocity scale the difference AU = U, — U,, the Batchelor (1964) (a, q)-family
of velocity profiles takes the form

Ur)y=a+ exp(—rz), V=0, W) =q[l— exp(—rz)]/r, (2.1)

where (U, V,W) designate the velocity components in the usual non-dimensional
coordinate system (x,r, ). The linear stability analysis therefore involves three non-
dimensional control parameters: the axial co-flow parameter a, the swirl parameter g
and the Reynolds number Re, respectively defined by

Uy, QR AUR
AU 1T AU Re = v (22)
where v is the kinematic viscosity.

Typical azimuthal velocity profiles W(r) are illustrated in figure 1(a) for two swirl
values g. As shown in figures 1(b)-1(d), different settings for a result in distinct axial
flow configurations: co-flowing wakes (figure 1b) when a < —1, counter-flowing jets
or wakes (figure 1¢) when —1 < a < 0 and co-flowing jets (figure 1d) when a > 0. By
convention, the (a, g)-plane is divided into two regions: the ‘jet’ side for a > —0.5 and
the ‘wake’ side for a < —0.5.

In classical fashion, the linear stability analysis consists in superimposing on the
basic flow (2.1) velocity and pressure disturbances (u',v’, w’, p’) of the form

(', 0, w',p') = Re{[H(r),iF (r), G(r), P (r)]e "0}, (2.3)

a

where H,F,G and P are the eigenfunctions, k = k, + ik; is the complex axial
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FiGURE 1. Batchelor vortex velocity profiles as a function of the swirl and co-flow parameters g and
a. (a) Azimuthal velocity profiles for ¢ = 0.5 and ¢ = 1.0. Axial velocity profiles for (b) a co-flowing
wake, a < —1; (¢) for a counter-flowing wake/jet —1 < a < 0; (d) for a co-flowing jet, a > 0.

wavenumber, m is the integer azimuthal wavenumber and w = w, +iw; is the complex
frequency. Upon substituting the modal decomposition (2.3) into the Navier—Stokes
equations linearized about the basic flow (2.1), we obtain, as in Ash & Khorrami
(1995), the linear system of ordinary differential equations

F  mG

F't—+ 2 4 kH =0, (2.4)

iliJr:;;—[w— ﬂ — kU + 1(":;;;1)} —2 { j’;e - V:/] G—P' = i’;:eF, (2.5)
(2.6)

% + % + {iw _ W kv — FTI:J H—iUF —ikpP = k;f, 2.7)

where primes denote d/dr. For the present unconfined flow case, this system is
supplemented with the far-field conditions

F(o0) = G(0) = H(0) = P(c0) =0, (2.8)
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while the requirement that all perturbations be bounded and single-valued on the
centreline imposes (see Batchelor & Gill 1962; Mayer & Powell 1992)

F(0)=GO)=H0)=P0)=0 if m>>1, (2.9)
HO0)=P(0)=0, F0)=G0)=0 if m*=1, (2.10)
F(0)=G(0)=0, H(0) and P(0) finiteif m?=0. (2.11)

For given control parameters (a,q,Re) and azimuthal wavenumber m the sys-
tem (2.4)—(2.11) constitutes an eigenvalue problem whereby a non-zero solution
(F,G,H,P) exists if and only if the complex pair (k,w) satisfies the dispersion
relation 2(k,w;m,a,q,Re) = 0. The present work focuses on the following spatial
problem: for a given complex frequency o, solutions of the dispersion relation are
sought in terms of spatial branches k(w;m,a,q, Re) and their associated eigenfunc-
tions. System (2.4)—(2.11) is readily seen to be invariant under the transformations
(a,m,q) — (a,—m,—q),(H,F,G,P) — (H, F,—G, P). Thus, without loss of general-
ity, we may restrict the investigation to positive values of the swirl parameter ¢ and
allow both positive and negative values of the azimuthal wavenumber m. This usual
restriction will be adopted in the presentation of the spatial instability characteristics.
However, in the discussion of the absolute/convective instability transition curves we
have found it advantageous to allow for negative swirl values as well, in order to
track the same azimuthal mode.

It is well established (see, for instance, Huerre & Rossi 1998) that the strictly
spatial instability analysis (w given real, k unknown complex) effectively describes
the large-time spatial response to a periodic excitation of frequency w applied at
x = 0, only if the basic flow is convectively unstable. In this context, the response
typically consists of spatial branches k*(w) and k~(w), respectively, located on the
right-(x > 0) and left-(x < 0) hand sides of the periodic source. The distinction
between k* and k™ branches is no longer tenable in an absolutely unstable basic flow
when the spatial response to a time-periodic excitation becomes ill-posed. Provided
that convective instability prevails, the k™ and k= branches are spatially amplified
away from the source at x = 0 if —k;” > 0 and k;” > 0, respectively. On the ‘jet’ side
(a > —0.5), the flow is predominantly to the right (x > 0) and the modes k~ and
k™ are the ‘upstream’ and ‘downstream’ branches, respectively. On the ‘wake’ side,
(a < —0.5), the flow is predominantly to the left-hand side (x < 0) and the k= and
k* branches switch roles, k~ becoming the downstream branch and k™ the upstream
branch.

The appearance at a specific parameter setting (m,a, q, Re) of a pinch point be-
tween kT and k~ branches for a real absolute frequency wy indicates a transition
from convective to absolute instability (see for instance Huerre & Rossi 1998). The
determination of such a pinch point which satisfies wg; = 0 is sufficient to determine
the absolute—convective instability transition curves in the (a,q)-plane for given m
and Re. The existence of a similar pinch point for a complex absolute frequency
Wy = o, + 1wy; allows a rigorous distinction between absolute (wo; > 0) and con-
vective (wy; < 0) instability. According to the Briggs—Bers criterion, the complex pair
(ko, o) 1s given by the zero-group velocity condition dw/dk(ky) = 0, wy = w(ko).
Furthermore, the only relevant complex pair (ko, o) is the one that first involves
the pinching of two k* and k™ branches that emerge from distinct upper and lower
half-k—planes as w; is decreased from large positive values.
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3. Numerical procedure

According to Khorrami, Malik & Ash (1989), the eigenvalue problem (2.4)—(2.11)
is accurately and efficiently solved by resorting to a Chebyshev collocation method, as
described in Gottlieb & Orszag (1977). This approach has been successively applied by
Khorrami (1991) and Mayer & Powell (1992) to the temporal problem (k given real,
o unknown complex). In the present context, the collocation method is implemented
for the spatial problem (w given complex, k unknown complex). See Khorrami et al.
(1989) for a detailed presentation of the numerical procedure.

In order to reduce system (2.4)—(2.11) to a linear matrix eigenvalue problem, a
generalized eigenvector X = (F,G,H,kF,kG,kH,P) is introduced and the far-field
boundary conditions (2.8) are enforced at a large but finite radius ry, > 1. The
Chebyshev collocation method is known to concentrate most collocation points in
the vicinity of r = 0 and r,,,,. In order to circumvent this difficulty, the two-parameter
tranformation of Malik, Zang & Hussaini (1985)

r=[1+n]/[1—11+2rc] (3.1)

c rmax

is introduced, which maps the Chebyshev interval —1 < # < +1 onto the physical
domain 0 < r < 1,4, Note that the parameter r. in (3.1) allows half the points in the
central shear region 0 < r < r. to be distributed. Upon rewriting system (2.4)—(2.11)
in terms of the n-variable and discretizing it, we arrive at the generalized eigenvalue
problem

AX =kBX, (3.2)

for a discretized eigenvector X = X(5). If N denotes the number of collocation points,
matrices A and B are 7N x 7N. Furthermore, since k? only appears in equations
(2.5)—(2.7), the matrix B is singular. The discretized problem is subsequently solved
by using the SCILIB routines CGEGS and CGEVS. The Schurr decomposition
algorithm implemented in the routines CGEGS and CGEVS yields the spectrum &y
of eigenvalues k for the discretized problem (3.2) and the generalized eigenvectors
X. Owing to the discretization, most elements of ¥y are found to be spurious
eigenvalues. As in the temporal investigation of Mayer & Powell (1992), the location
of the spurious modes in the complex k-plane is highly sensitive to the discretization
parameter N, in contrast to the few physical eigenvalues of the problem. Physical
modes are readily extracted by comparing spectra &y and &) for N > N. As
discussed in Huerre & Monkewitz (1985), attention is restricted to the right-hand
half-plane Re(k) > 0. Hence, k' of &’ is selected if Re(k’) > 0 and Minlk' —k| < e
for k € . All computations have been performed on a CRAY C90 computer using
64-bit precision real and 128-bit complex arithmetic with e = 1073,

The computational sensitivity of two primary spatial modes to changes in the
parameters N and r,,, is illustrated in tables 1 and 2, respectively. The selected
settings N = 80 and r,, = 100 are seen to provide the eigenvalues with a five-digit
accuracy, which is deemed to be sufficient for the present purposes. The validity of
the present Chebyshev spectral collocation approach has been checked by comparing
our spatial viscous mode results with those obtained by Khorrami (1991) within a
temporal framework. For instance, at Re = 10.000, Khorrami (1991) has obtained a
viscous bending (m = +1) mode of complex frequency w = 0.32345326 — 0.00009192i
at the real axial wavenumber k = 0.3. With the present spatial method, we detect a
viscous bending mode of complex wavenumber k = 0.29999826 4 0.00005638i at the
same complex frequency w.



378 C. Olendraru and A. Sellier

N Mode 1: w = 0.1 Mode 2: w = —0.15

60  0.669367 151 —0.181 9999741  0.367202 058 — 0.220 458 484i
70 0.669365 472 —0.181 9970571  0.367202 508 — 0.220 457 8751
80  0.669363 836 —0.181 9941071  0.367202 981 — 0.220 457 3711
100 0.669360 884 —0.181 9885831  0.367203 916 — 0.220 456 594i

TaBLE 1. Convergence behaviour of complex wavenumber k = k, +ik; for the two ‘primary’ bending
modes m = —1 as a function of the number N of Chebyshev polynomials. a =0, ¢ = 0.7, Re = 667,
re =3, Fmax = 100.

Fmax Mode 1: w =0.1 Mode 2: w = —0.15

80  0.669361 381 —0.181 9895831  0.367203 729 — 0.220 456 6781
100 0.669363 836 —0.181 9941071  0.367202 981 — 0.220 457 371i
120 0.669365 149 —0.181 9964581  0.367202 602 — 0.220 457 782i

TaBLE 2. Convergence behaviour of complex wavenumber k = k, 4 1ik; for the two ‘primary’ bending
modes m = —1 as a function of the position r,, where far-field conditions are enforced. a = 0,
q=0.7, Re =667, r. =3, N = 80.

0.28

k! 0.18

0.08

FIGURE 2. Spatial growth rate —k; of bending modes m = —1 versus real frequency w for
a=0,qg =0.6 and Re = 2000. The mode number is indicated next to each curve. The swirl is zero
on the horizontal solid line.

4. Spatial branches in a convectively unstable domain

In this section, only strictly spatial branches (w real, k complex) are considered for
zero-external flow jets (a = 0), in situations where they are convectively unstable, as
ascertained in §5. Attention is restricted to the downstream branch k™, which is the
only one to experience amplification away from the source.

The variations of the spatial growth rate —k;"(w) with real frequency w are rep-
resented in figure 2 for the bending mode m = —1 of a swirling jet at ¢ = 0.6 and
Re = 2000. Seven k*-modes are seen to be amplified, with mode 2 crossing modes 1
and 3 at specific values of w. As a result, the ‘primary’ mode, i.e. the most amplified
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FIGURE 3. Spatial growth rate —k;” of ‘primary’ bending modes 1 and 2 for different Reynolds
numbers and a = 0, ¢ = 0.6, m = —1. The mode number is indicated next to each curve. The swirl
is zero on the horizontal solid line.

Mode 1 2 3 4 5 6 7
Re, 20.9 47.6 167.4 428 861.2 1521 1931

TaBLE 3. ‘Emergence’ Reynolds number Re, pertaining to different spatially amplified and inviscid
k™ branches of azimuthal wavenumber m = —1 for a =0, ¢ = 0.6.

one, is not always the same across the entire frequency range; as w increases, it
switches from mode 3 to mode 2 to mode 1. Note that modes 1 and 2 are those
previously considered in tables 1 and 2 for ¢ = 0.7 and Re = 667.

The effect of decreasing viscosity is illustrated in figure 3. At the low-Reynolds-
number setting Re = 50, only bending modes 1 and 2 are spatially amplified. As
Re increases above 50, additional amplified modes arise beyond specific ‘emergence’
Reynolds numbers Re,. Such ‘emergence’ Reynolds numbers are given in table 3 for
different modes 1, 2, 3,. ... In the range 50 < Re < 2000, the mode hierarchy remains
the same as in figure 2, but modes 2 and 3 not displayed in figure 3 cross as Re
exceeds 1580. The unstable frequency range of mode 2 is seen to expand very rapidly
as Re increases whereas it is only slightly affected for mode 1. For the moderate
swirl value ¢ = 0.6, each curve gradually approaches the inviscid limit determined
by Olendraru et al. (1996, 1999), as the Reynolds number is increased. The same
behaviour holds for all other modes 3 to 7. It is therefore legitimate to call such
modes ‘inviscid’ since they reach their maximum amplification for vanishing viscosity.
Finally, note that additional ‘inviscid’ modes may become destabilized as Re exceeds
2000.

It should be emphasized that numerical resolution difficulties may arise in the
determination of ‘inviscid’ spatial branches at large Reynolds numbers whenever
critical layers are encountered. According to Olendraru et al. (1999), each inviscid
mode of the Batchelor vortex may exhibit zero, one or two non-zero complex critical
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FIGURE 4. Spatial growth rate —k;" of bending modes m = —1 versus the frequency  for a = 0 and
Re = 667. Mode switching takes place as ¢ changes from O, ¢ = 0.725 to ®, ¢ = 0.74. The mode
number is indicated next to each curve. The swirl is zero on the horizontal solid line.

points z. in the complex half-plane Re(z.) = 0 defined by
kU(z.) — o +mW(z.)/z. = 0. (4.1)

As a result, a so-called ‘viscous sector’ associated with the critical point may contain
part of the physical real axis 0 < r < r,,4,. In such intervals of r, the eigenfunctions
are viscous-like and therefore display large oscillations. This feature is accentuated as
Re increases and may be inadequately resolved unless additional collocation points
are introduced. In order to circumvent this resolution issue, Mayer & Powell (1992)
chose, in their investigation of the viscous temporal problem, to deform the integration
contour around the critical point(s) in the complex r-plane. Olendraru et al. (1999)
resorted to the same procedure in the inviscid spatial analysis. In the present instance,
we have chosen to stay on the real r-axis.

The effect of increasing swirl is depicted in figure 4 for Re = 667. As ¢ increases
from 0.6, the formerly denoted mode 2 becomes more amplified than mode 1 (compare
figures 2 and 4). Moreover, a switching phenomenon takes place between the ‘primary’
modes 1 and 2 as the swirl increases from g = 0.725 to g = 0.74. As a result, two
hybrid modes 2-1 and 1-2 emerge to replace the original modes 1 and 2. Observe that
the unstable frequency range of the hybrid mode 2-1 is large, which is not the case
for the hybrid mode 1-2. Mode switching has also been encountered in the temporal
case, as reported by Khorrami (1992) for the Batchelor vortex and Cotton & Salwen
(1981) for Hagen—Poiseuille flow.

For a given parameter setting (m, a, g, Re), each spatial mode may be characterized
by a maximum spatial growth rate (—k;"),.. over all real frequencies. The variations
of (—k;")pax With positive swirl g are illustrated in figure 5 for the unstable modes
1, 2, 1-2, 2-1, 3, 4 at m = +1 and Re = 667. According to table 3, modes 5, 6 and
7 are stable at Re = 667 for ¢ = 0.7. It has been checked that these modes remain
stable in the entire swirl range. Note the occurrence of an inviscid m = +1 mode
which is simply obtained from its m = —1 counterpart by reflection with respect to
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FIGURE 5. Maximum spatial growth rate (—k;"),..x of bending modes m = —1 versus swirl parameter
q for a = 0 and Re = 667. The inviscid mode number is indicated next to each solid line. The

dashed line pertains to the viscous mode appearing at negative swirl values. The swirl is zero on the

horizontal solid line. The dotted line pertaining to the m = +1 inviscid mode has been included for
completeness. It is obtained from its m = —1 counterpart by reflection with respect to the vertical
axis.
0.0130 T
L v'--“-‘ i
001051 “
4 ~
! ~
N, -
0.0080 - " \\
] N,
1 “u
(7k:'r)max 0.0055 ’l‘ \\\ 1
[)
:
] \\
0.0030 | " .
:
] SN
] \‘
0.0005 {2 T
& \\
Y
—-0.0020 . : : L :
0 0.15 0.30 0.45 0.60 0.75 0.90
q

FIGURE 6. Maximum spatial growth rate (—k; ), of viscous bending mode m = +1 versus swirl
parameter g for a = 0 and Re = 667. Zoom of viscous mode in figure 5. Note the weak amplification.
The swirl is zero on the horizontal solid line.
the vertical axis. Furthermore, a new weakly amplified branch is seen to appear also
at m = +1.

As displayed in figure 6, its maximum growth rate is an order of magnitude below

that of inviscid modes. The spatial growth rate of this mode is displayed in figure 7
as a function of frequency for various Reynolds numbers. It is readily observed
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FIGURE 7. Spatial growth rate —k;” of viscous bending mode m = +1 versus real frequency w for
different Reynolds numbers Re at a = 0, ¢ = 0.4. O, Re = 40; ®, Re = 100; *, Re = 667; X,
Re = 10000.
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FIGURE 8. Maximum spatial growth rate (—k;"),... of bending modes m = —1 (mode 3 and hybrid

mode 2-1) versus swirl parameter g for @ = 0 and Re = 2000. The inviscid mode number is
indicated next to each solid curve. The swirl is zero on the horizontal solid line.

that amplification levels uniformly decrease to zero as the Reynolds number roughly
exceeds 10000. Conversely, growth rates also decrease as viscous effects become too
large, e.g. at Re = 40. It is therefore concluded that the weakly amplified m = +1
mode at moderate Reynolds numbers is indeed of viscous nature. It has been verified
that it effectively connects at the neutral frequency to the temporal viscous mode first
identified by Khorrami (1991) and Mayer & Powell (1992). As observed in figure 5,
all of the inviscid modes are damped as g exceeds the critical value g. ~ 1.6, for
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FIGURE 9. Loci of spatial bending modes m = —1 (mode 3 and hybrid mode 2-1) in complex

k-plane as a function of real frequency w for a = 0 and Re = 2000. ®, g = 1.2; O, g = 1.6; *,
q=22.

FiGure 10. Spatial eigenfunction amplitudes |F(r)|,|G(r)|,|H(r)| and |P(r)| for co-flowing jets at
Re = 667. Parameter settings in (a) and (b) are approximately indicated by the symbol * in
figure 21. (a) Case m = —3, a = 0.002, ¢ = 04, = —0.22 and k; = (1.443,—1.481). (b) Viscous
bending mode m = +1,a =0, ¢ = 0.4, ® = 0.035 and k™ = (0.371,—0.078).

Re = 667. As the Reynolds number increases, the critical swirl value g, also increases.
For instance, according to figure 8, at the larger setting Re = 2000, mode 3 still
remains weakly amplified at gq. ~ 2.1 while mode 2-1 stays damped. The peculiar
behaviour of modes 2-1 and 3 at Re = 2000 is further illustrated in the complex
k-plane of figure 9 for three swirl values ¢ = 1.2,1.6 and 2.2 > ¢q.. As ¢ increases from
1.2 to 1.6, the hybrid mode 21 is rapidly stabilized at large k., while only minimal
variation with ¢ take place at small k..

Typical radial distributions of spatial eigenfunction amplitudes are displayed in
figures 10-12 for increasing Reynolds numbers. The normalization condition is such
that the maximum amplitude over all radial stations and all physical components
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FIGURE 11. Spatial eigenfunction amplitudes |F(r)|, |G(r)|,|H(r)| and |P(r)| of bending mode m = —1
for a zero co-flow jet at Re = 2000. (a) ¢ = 0.8, » = —0.2 and ki ; = (0.387,—0.222). (b) g = 1.6,
w = —1.05 and ki | = (0.361,—0.02). (¢) ¢ = 0.8, » = —0.2 and ki = (0.665,—0.133). (d) g = 1.6,
o = —1.05 and ki = (0.352,—0.025).

F,G,H and P is unity. An m = —3 inviscid mode and an m = +1 viscous mode are
represented in figures 10(a) and 10(b), respectively, for a co-flowing jet at Re = 667. By
anticipation, parameter settings for a and g have been chosen to lie on the convectively
unstable side of the absolute—convective transition boundary at Re = 667 as indicated
by the star symbol in figure 21. The perturbations are seen to be confined within a
cylinder of approximate radius » = 5. The m = —1 eigenfunctions pertaining to the
‘inviscid’ modes k3, and ki of figure 9 are plotted in figure 11 at two distinct swirl
parameter settings ¢ = 0.8 in figures 11(a) and 11(c) and ¢ = 1.6 in figures 11(b) and
11(d) for a zero co-flow jet (a = 0) at Re = 2000. As ¢ increases, the radial extent
of each mode shrinks while their spatial growth rate decreases. In other words, for
large ¢, such disturbances tend to become centre-modes confined in the vicinity of the
vortex axis, as in the temporal theory of Stewartson & Brown (1985). Finally, various
examples of eigenfunctions are depicted in figure 12 for the large Reynolds number
Re = 10000. By anticipation, parameter settings for a and ¢ in figure 12 have been
selected to lie on the convectively unstable side of the absolute—convective transition
boundary at Re = 10000, as indicated by the labelled star symbols in figure 24. In
figure 12(a) and 12(b), the m = —1 mode for two counterflow jets at moderate swirl
levels is displayed. In figures 12(c) and 12(d), the m = —1 mode (figure 12¢) and the
m = —2 mode (figure 12d) are represented for two co-flow wakes at large swirl levels.
Here again, modes tend to become centred as g increases.
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FIGURE 12. Spatial eigenfunction amplitudes |F(r)|,|G(r)|,|H(r)| and |P(r)| at Re = 10000. (a)
m = —1, counter-flowing jet a = —0.05, ¢ = 1.2, @ = —0.49 and k3", = (0.935,—0.177). (b) m = —1,
counter-flowing jet a = —0.2, ¢ = 141, ® = —0.84 and ki, = (0.687,—0.0283). (¢) m = —1,
co-flowing wake a = —1.17, ¢ = 3.1, ® = —3.05 and k=~ = (0.163,0.0098). (d) m = —2, co-flowing
wake a = —1.09, ¢ = 2.5, ® = —4.92 and k~ = (0.488,0.055). Parameter settings in (a)—(d) are
indicated by labelled star symbols in figure 24.

5. Transition from convective to absolute instability

In the previous section, spatial branches were determined for a zero external flow
jet (a = 0) at parameter settings giving rise to convective instability only. When a
is varied, a transition to absolute instability may occur as discussed below. At given
values of the parameters m,q and Re, the external flow parameter a is varied so as
to detect the saddle point k¢ in the complex k-plane which involves pinching of two
distinct spatial branches k™ and k~ emerging from the upper and lower half-k-plane,
respectively. In order to monitor the deformation of spatial branches, it is sufficient
to extend the previous determination of spatial branches to complex values of w.

A typical saddle point behaviour is illustrated in figure 13 for the azimuthal
wavenumber m = —3 at the absolute—convective instability transition point a =
0.0021,4 = 0.4 and Re = 667. The level contours w; = 0 of figure 14 demonstrate
the existence of a saddle point ko between two spatial branches ki and k~. Other
non-pinching less-amplified branches ki, k3 and k; are also displayed. It is indeed
verified in figure 14 that the spatial branches k; and k™ represented by different level
contours w; = const = 0 do receed into their respective upper and lower half-k-plane
as w; increases. The saddle point k, therefore signals a genuine transition to absolute
instability.

The same procedure has been implemented to generate the entire absolute—
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FIGURE 13. Saddle point k¢ in the complex k-plane for mode m = —3 at a = 0.0021, ¢ = 0.4
and Re = 667. In addition to the pinching branches ki and k—, three other inviscid amplified
k*-branches are displayed.
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FIGURE 14. Level curves o; = 0, w; = 0.01, o; = 0.1 and w; = 0.3 of ‘primary’ inviscid k; - and
k—-branches for azimuthal helical mode m = —3 in the vicinity of saddle point k, depicted in
figure 13.

convective (AI-CI) transition curve in the (a, g)-plane for different Reynolds numbers
and azimuthal wavenumbers. An example of transition curve is displayed in figure 15
for m = +1 and Re = 100. The ‘et’ side (a > —0.5) and ‘wake’ side (a < —0.5) of
the curve have been obtained by approaching them from the convectively unstable
(CI) domains in the (a, q)-plane. The closed curves define a pocket of absolute insta-
bility (AI) within which the spatial response problem associated with strictly spatial
(w real, k complex) branches is ill-posed. The flow is stable (S) outside the swirl



Viscous effects in absolute—convective instability 387

Wake Jets

[
With 1 With
counter-flow 1 co-flow

[}
¢
g
2

1.35 —r—1—
1.05-
0.75
0.45

0.15

-0.15
—0.45
—0.75

-1.05

~135 PR S S S SR PR S N SR R .
-5 -125 -1.00 -0.75 -0.50 025 0 0.25

a

FIGURE 15. Absolute-convective transition curves of inviscid bending modes m = =+1 in the
(a,q)-plane at Re = 100. Domains of stability (S), convective instability (CI) and absolute instability
(AI) are indicated. Each symbol O corresponds to a numerical computation. The dot-dashed line
pertains to the m = +1 inviscid mode and is determined by reflection of the m = —1 transition
curve with respect to the solid horizontal axis of zero swirl.

range corresponding to the two dashed horizontal lines. As expected, note that the
transition curves of the m = —1 and m = +1 modes are symmetric with respect to
the horizontal axis. This property holds for all transition curves to be considered
in the paper. Let F and C denote the points of marginal stability on the AI-CI
transition curve of the m = —1 mode. Each open circle refers to a numerical re-
sult where a saddle point kg effectively occurs for a real absolute frequency wy. A
complicated sequence of switching events between various inviscid spatial branches
takes place as we travel along the AI-CI transition boundary starting from point F.
Along the path FA, the saddle point k¢ involves pinching between the most amplified
k*-mode determined in figure 3 and a damped k~-mode. Note that the pertinent
k*-branch then coincides with the most amplified inviscid mode depicted in figure 3
for moderate swirl. A sharp jump to another distinct pinching scenario takes place
between A and B. More specifically, along the path BC the saddle point becomes
associated with a damped k™ -branch and an amplified hybrid 2-1 k*-branch. Con-
versely, along the path CD, the saddle point pertains to an amplified hybrid 2-1
k=-branch and a damped k*-branch. Another sharp jump takes place between D
and E. Finally, along the path EF, pinching involves an amplified k~-branch and a
damped k*-branch.

The effect of viscosity on the size of the AI bubble is illustrated in figure 16 for the
azimuthal mode m = —1. For clarity, only the bending mode m = —1 is considered.
Corresponding results for the m = 4+1 mode may readily be obtained by symmetry as
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FIGURE 16. Absolute—convective transition curves of inviscid bending mode m = —1 in the
(a,q)-plane at different Reynolds numbers Re. ---, transition boundary obtained by Delbende
et al. (1998) at Re = 667.

in figure 15. Decreasing the Reynolds number dramatically reduces the extent of the
Al domain but does not change the nature of the saddle point as described above
at Re = 100. For moderate swirl levels 0 < g < 0.7, the sensitivity to changes in
Re is weak on the Set’ side (¢ > —0.5) and strong on the ‘wake’ side (a < —0.5).
For ¢ > 0.7, the AI region rapidly shrinks with decreasing Re both on the ‘jet’ and
‘wake’ sides. The results of Delbende et al. (1998) at Re = 667 are represented by
a dashed curve. Excellent agreement between the two approaches is obtained for
moderate swirl levels. However, significant differences are noteworthy near neutrality,
particularly towards high swirls. This feature might be due to numerical diffusion
effects which could have enhanced the effective viscosity in the numerical simulations
of Delbende et al. (1998). Furthermore, according to the same authors, the numerical
spatial discretization error incurred in retrieving the maximum absolute growth rate
over all branches is of order 1072 Such an error is particularly damaging near
the neutral boundary, which could account for the observed differences. Finally, the
numerical estimation procedure of Delbende et al. (1998) relies on the fact that the
long-time asymptotic regime is effectively reached; a finite-time numerical integration
necessarily slightly underestimates absolute growth rates and thereby the size of the
Al region. This interpretation is consistent with the present findings: the dashed
curve in figure 16 lies within the corresponding AI-domain determined by the present
approach.

Corresponding results are displayed in figures 17 and 18 for the m = —2 and
m = —3 inviscid azimuthal modes. In contrast with the m = —1 case, the same
pinching scenario prevails all along the AI-CI transition curves; it always involves
the most amplified branch for moderate ¢ and its k= or k™ counterpart. The same
qualitative behaviour holds as for the m = —1 mode; the AI region shrinks as Re
decreases, especially on the ‘wake’ side or for large swirl. The results of Delbende et
al. (1998) at Re = 667 are also displayed as dashed curves in figures 17 and 18. Both
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FIGURE 17. Absolute—convective transition curves of inviscid bending mode m = —2 in the
(a,q)-plane at different Reynolds numbers Re. ---, transition boundary obtained by Delbende
et al. (1998) at Re = 667.
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FIGURE 18. Absolute—convective transition curves of inviscid bending mode m = —3 in the
(a,q)-plane at different Reynolds numbers Re. ---, transition boundary obtained by Delbende
et al. (1998) at Re = 667.

analyses yield comparable results. However, significant shifts appear on the ‘jet’ side
for small g. An enlarged view of this domain of parameter space is given in figure 22.
In the present investigation, AI—-CI transition arises on the ‘jet’ side for the m = —2
and m = —3 modes at Re = 667 and a slightly positive and small co-flow. A small
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FIGURE 19. Absolute—convective transition curve of viscous bending mode m = +1 in the
(a,q)-plane at Re = 667.

0.9 T T T T T T
0.6} 4
q
03} 4
\
\
Y
~.o 1
~~~~~ s
~ i}
0 N 1 T 0 C d
—0.25 —0.20 —0.15 —0.10 —0.05 0

a

FiGURE 20. Absolute—convective transition curves of viscous bending mode m = +1
at —, Re = 667; ---, Re = 100.

counterflow (a slightly negative) was found by Delbende et al. (1998) to be necessary
to promote Al.

The AI-CI transition curve pertaining to the viscous mode identified in figures 5-7
is displayed in figure 19 for the Reynolds number Re = 667. In contrast to the case of
inviscid modes, its bubble of AI entirely lies on the ‘jet’ side (a > —0.5). Its boundary
is associated with pinching of the same k*-branch with distinct k~-branches on the
segments E E, and E,E;. The effects of Reynolds number on the extent of the Al
pocket is depicted in figure 20; as Re decreases below 667 to Re = 100, the AI domain
is seen to widen and to shift further towards the co-flow jet side. An increase in Re
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FIGURE 21. Overall absolute—convective transition boundary of Batchelor vortex in the (a, g)-plane
at Re = 667. Solid lines, labelled with the associated azimuthal wavenumber m, delineate both
inviscid and viscous pockets of absolute instability pertaining to helical modes m = +1, m = +2
and m = +3. Hatched and dark grey areas indicate domains of convective instability and stability,
respectively. The bending (m = +1) viscous mode is indicated by the symbol 1v.
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FIGURE 22. Magnification, on the ‘jet’ side and for small swirl values, of the absolute—convective
transition curves in figure 21 for inviscid modes m = —2,—3,—4 and —5 and viscous mode m = +1
at Re = 667. The azimuthal wavenumber is indicated next to each curve.

above 667 would result in the collapse of the Al region, in full agreement with the
viscous nature of this mode.

Overlaying the AI-CI transition curves for various helical modes m = +1, +2, +3
leads to the determination of the overall AI-CI transition boundary in the (a, ¢)-plane
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FiGUre 23. Counterpart of figure 21 at Re = 100.

at Re = 667 as shown in figure 21. Such a state diagram constitutes the main result
of the present investigation. The hatched and dark grey areas, respectively, indicate
the CI and S regions of parameter space. The extent of the Al region (clear area) is
approximatively the same as in Delbende et al. (1998). The AI range of the external
flow parameter widens as ¢ increases from zero to moderate values (0 < g < 0.7) and
shrinks for higher levels as the stability boundary is approached. Furthermore, AI-CI
transition is triggered by distinct inviscid or viscous azimuthal modes; on the ‘wake’
side (a < —0.5), the bending mode m = —1 is always critical whereas on the ‘jet’ side
(a > —0.5) various helical modes partake in defining the transition curve, as illustrated
by the magnified plot of figure 22. For very low ¢, in the range 0 < g < 0.015, the
inviscid mode m = —2 is critical, whereas in the interval 0.015 < g < 0.044, it
is superseded by the viscous mode m = —1. For higher swirl levels, in the ranges
0.044 < g < 0.078, 0.078 < g < 0474, 0474 < q < 0.983, ¢ > 0.983, transitions
successively take place via the inviscid modes m = —4,—3,—2,—1. In contrast with
the finding of Delbende et al. (1998), the helical mode m = —5 is never critical at
Re = 667. For zero external flow jets at a = 0, absolute instability first sets in via the
helical mode m = —3 at ¢ = 0.225. A second helical mode m = —2 becomes Al as q
exceeds the value 0.467. Beyond g = 0.7, the zero external flow jet returns to CI.
The effect of increasing viscosity is illustrated by comparing the AI domains of
figures 21 and 23 at Re = 667 and Re = 100, respectively. The hierarchy of helical
modes is preserved on the ‘wake’ side provided that a < —0.86. When a > —0.86, on

the high ¢ ‘wake’ side, the critical mode switches from m = —1 to m = —2. On the
Set’ side, the hierarchy is significantly modified; the inviscid mode m = —1 is critical
in the interval 0 < g < 0.057 whereas the inviscid mode m = —2 takes over in the

disjoint intervals 0.057 < q < 0.096 and 0.096 < g < 1.2. Finally, CI-AI transition
takes place via the viscous mode m = 41 in the range 0.057 < g < 0.096. Contrary
to the case Re = 667, zero external flow jets remain CI at all swirl levels q.

The effect of vanishing viscosity is depicted in figure 24 at Re = 10000 for the
inviscid modes m = —1 and m = —2 only. The strictly inviscid results of Olendraru
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FiGURe 24. ‘Inviscid’ absolute—convective transition curves in the (a,q)-plane. Present spectral
method at Re = 10000 (O, m = —1; <&, m = —2). Shooting method at Re = oo of Olendraru et al.
(1996, 1999) (solid lines). Present spectral method at Re = 667 (dashed line m = —1). Star symbols
refer to parameter settings selected for the representation of eigenfunctions in figure 12. Note that
the scale of the figure is smaller than in other comparable figures 21 and 23.

et al. (1996, 1999) are indicated by solid curves. The inviscid results agree perfectly
with those of the present viscous analysis except along the solid segments AgH,CD
on the jet side, W;W; on the wake side and KF in the counter flow domain. On
the jet side, the viscous code fails in providing the transition curves CD for the
azimuthal wavenumber mode m = —2 and AgH for the helical mode m = —1. The
inviscid results of Olendraru et al. (1996, 1999) fill this gap. According to the inviscid
study, the critical point in this region lies close to the real r-axis and the number of
collocation points selected in the viscous spectral code is insufficient to resolve the
critical-layer structure. On the wake side, the viscous transition curve of the m = —1
mode bifurcates away from the solid curve of Olendraru et al. (1999) beyond the
point Wi. This is because the shooting method implemented in the inviscid study of
Olendraru et al. (1999) tracks the same pinching downstream k~-branch. The spectral
method used here in a viscous context reveals that another downstream k~-branch is
also involved in a pinching process which takes over beyond Wj. A bifurcation of a
different nature takes place in the vicinity of K for the m = —2 mode; this time, the
shooting method of Olendraru et al. (1996, 1999) has jumped from one k~-mode to
another, since many nearly neutral modes are observed to cluster, as in Leibovich &
Stewartson (1983). The spectral method indicates that the same k~-mode should be
tracked in order to obtain the correct absolute—convective transition boundary K L.
The boundary of the absolutely unstable region is seen to extend far above the value
q ~ 1.5 previously obtained by Delbende et al. (1998) at Re = 667. At Re = 10000,
the Batchelor vortex only becomes stable with respect to the m = —2 and m = —1
modes above g ~ 3.1 corresponding to point S in figure 24. As the Reynolds number
increases from Re = 100 (figure 23) through Re = 667 (figure 23) to Re = 10000
(figure 24). The absolutely unstable region successively extends to larger swirl values
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q = 1.2,1.6 and 3.1 beyond which the Batchelor vortex becomes linearly stable. Along
the segment W;S, the same upstream k*-branch is involved in the pinching process
but the pinching downstream k~-branch changes at discrete points as we proceed
from Wi to S. It is observed that the selected downstream k—-branch is always the
most spatially amplified. The same scenario prevails along the segment SJ, provided
that the roles of k™ and k~ are switched. Furthermore, over the entire curve W;SJ, the
spatial growth rate +Im (kq) is found to be very small so that the associated mode is
nearly neutral. As discussed below, the corresponding eigenfunctions are, in fact, the
near-neutral centre-modes first theoretically predicted by Stewartson & Brown (1985)
within a temporal inviscid framework, in specific swirl parameter ranges. This has
been checked by continuously changing the spatial branches (k complex, w real) into
their temporal counterparts (k real, w complex) (Olendraru et al. 1999). This appears
to be the first numerical evidence for the existence of such a class of near-neutral
perturbations. We may wonder whether this upper swirl value reaches a finite limit
as the Reynolds number goes to infinity. Note that, as ¢ — oo, the Batchelor vortex
reduces to a pure vortex (without axial velocity) with a strictly positive radial gradient
of axial vorticity. Under such conditions (Ash & Khorrami 1995), the basic flow is
inviscidly stable as ¢ — oo. According to this argument, it can therefore be concluded
that, as the Reynolds number tends to infinity, the absolutely unstable domain is
confined within a band of finite swirl parameters.

6. Conclusions

The present investigation has focused on the effects of viscosity on the spatial
instability properties and absolute—convective transitions in the Batchelor vortex. The
main results are outlined below.

The detailed spatial instability characteristics have been documented in a wide
range of Reynolds numbers (100 < Re < 10000) for the case of a zero co-flow
jet (a = 0). At moderate swirl levels (¢ of order unity or less), ‘inviscid’ spatial
modes quickly reach their asymptotic limit provided the Reynolds number exceeds
Re = 2000, which may be regarded as effectively infinite. At large swirl levels (g
larger than unity), the growth rates of inviscid spatial modes are weak and highly
sensitive to the magnitude of the Reynolds number, as evidenced by the rapid changes
in the absolute-transition instability boundary. These nearly neutral modes are of the
same variety as the centre-modes theoretically predicted by Stewartson & Brown
(1985). For intermediate Reynolds numbers, ‘viscous’ bending (m = +1) modes have
been identified, which are the spatial counterparts of the temporal asymmetric modes
discovered by Khorrami (1991) and further confirmed by Mayer & Powell (1992).
Note that we have also determined a viscous spatial axisymmetric mode (m = 0), as in
the previously mentioned temporal analyses, but the results have not been presented
here. Whether or not this axisymmetric viscous mode becomes critical remains an
unresolved issue. Hybrid modes have also been encountered as in the temporal case
(Khorrami 1991).

The effect of the Reynolds number on the absolute—convective instability transition
curves has been thoroughly analysed. At moderate swirl levels (¢ of order unity or
less), transition curves on the jet side are fairly insensitive to a decrease in Reynolds
number, whereas, on the wake side, the absolutely unstable domain rapidly shrinks
(figures 16 and 17) with decreasing Re. Furthermore, jets with a slight co-flow (a = 0)
may become absolutely unstable if the Reynolds number is large enough (figure 22).
At large swirl levels (g larger than unity), the transition curve becomes very sensitive
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to the Reynolds number (figures 16, 17 and 24): the absolute—convective boundary
shifts to higher swirls, far above unity, with increasing Reynolds number. Viscous
bending modes (m = +1) contribute to the determination of the overall transition
curve on the jet side (figures 21-23) for low ¢, in an intermediate range of Reynolds
numbers.

As a final word of caution, we should emphasize that no definite connection has
yet been established between the present absolute/convective local instability analysis
and the occurrence of axisymmetric vortex breakdown. By contrast, the existence of
a global axisymmetric mode has been demonstrated by Wang & Rusak (1996) and
Ruzak, Wang & Whiting (1998) for vortex flows with co-flow jets of sufficiently large
swirl. Such a mode is likely to govern the transition to axisymmetric vortex breakdown
as convincingly argued by Wang & Ruzak (1997). However, it appears plausible that
the unsteady wake structure dowstream of the vortex breakdown results from a helical
global mode induced by a transition from convective to absolute instability.
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