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Three-dimensional instability of isolated vortices
F. Gallaire and J.-M. Chomaz
Laboratoire d’Hydrodynamique (LadHyX), CNRS, E´cole Polytechnique, 91128 Palaiseau Cedex, France

~Received 31 January 2003; accepted 17 April 2003; published 12 June 2003!

We study the three-dimensional stability of the family of vortices introduced by Carton and
McWilliams @Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence, edited by
Nikhoul and Jamart~Elsevier, New York, 1989!# describing isolated vortices. For these vortices, the
circulation vanishes outside their core over a distance depending on a single parameter, the
steepnessa. We proceed to the direct numerical simulation of the linear impulse response to obtain
both temporal and spatio-temporal instability results. In the temporal instability framework, growth
rates are calculated as a function of the axial wavenumberk and the azimuthal wavenumberm. The
stability analysis is performed at a Reynolds number of Re5667. It is shown that the most unstable
mode is the axisymmetric modem50, regardless of the steepness parameter in the investigated
range. When the steepnessa is increased the band of unstable azimuthal modes widens, i.e., larger
m are destabilized. The study of the spatio-temporal spreading of the wave packet shows that the
m52 mode is always the fastest traveling mode, for all studied values of the steepness parameter.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1580481#
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I. INTRODUCTION

The structure and stability of columnar vortices have
ceived considerable attention in the past few years since
govern geophysical flow dynamics and may also struct
three-dimensional turbulent flows. In geophysical flows,
planetary rotation tends to two-dimensionalize the flow a
consequence of the Taylor–Proudman theorem. The vort
then inherit a strong vertical coherence and evolve tow
columnar structures like Taylor columns. Considering o
two-dimensional perturbations, Carton and McWilliam1

showed that an axisymmetric vortex is unstable when
core is surrounded by an annulus of opposite vorticity. In t
case, the vortex is said to beisolated, in contrast to un-
shielded monotonic vortices with one-signed vorticity. Th
pure two-dimensional instability, sometimes referred to
barotropic instability, is not the only active mechanism, fo
is known since Rayleigh2 that vortices with circulation de
creasing away from the core are centrifugally unstable
three-dimensional axisymmetric perturbations. The scop
the present study is to determine which mechanism betw
azimuthal shear and centrifugal instability dominates throu
a fully three-dimensional instability analysis, thereby tryi
to answer the questions raised by Hopfinger and van He3

and Orlandi and Carnevale.4 What are the combined effect
of barotropic and centrifugal instabilities?

The rotating laboratory experiments of Kloosterziel a
van Heijst,5 Kloosterziel and van Heijst,6 van Heijst, Kloost-
erziel, and Williams,7 and Carnevale and Kloosterziel8 have
provided many interesting examples of instabilities lead
to the formation of stable multipolar vortices like tripole
and quadrupoles. When these multipolar structures were
stable, they were seen to break up into pairs of dipoles.
pure 2D stability analyses of Carton and McWilliams1

Carnevale and Kloosterziel,8 and Orlandi and Carnevale,4 in
combination with 2D numerical simulations have satisfac
2111070-6631/2003/15(8)/2113/14/$20.00
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rily reproduced the evolution and nonlinear saturation of i
lated vortices into tripoles, quadrupoles, as well as their p
sible breakup into two dipoles. It was shown that the orde
the obtained multipole was determined by the ‘‘steepness
the base-flow profile, i.e., the typical scale of the vortic
annulus surrounding the core of the vortex, a result alre
demonstrated by Flierl,9 using piecewise constant vorticit
profiles. The azimuthal shear is therefore the mechanism
leads the multipolar formation~see Chomaz, Rabaud, an
Couder10!.

Nevertheless, these pure two-dimensional stabi
analyses failed to account in essence for the observed di
ences between cyclones and anticyclones. It was indeed
ported in the aforementioned literature that tripoles co
easily be generated from cyclones but not from anticyclo
which would instead preferentially break up into two dipole
In these rotating flows Rayleigh’s criterion for centrifug
instability has to be generalized according to Kloosterz
and van Heijst5 through inclusion of the background rotatio
Kloosterziel and van Heijst5 suggested further that cyclone
are centrifugally stable, whereas anticyclones are centr
gally unstable, thereby ‘‘preventing in some way the flo
from achieving the right conditions for tripole formation.
The use of the generalized Rayleigh’s criterion accounts
the rapid bursting of anticyclones and not of cyclones, if o
follows the latter authors and admits that the centrifugal
stability ~due to the combined action of background rotati
and the vortex’s own vorticity!, when present, develop
faster and stronger than the azimuthal shear instability.
present study will confirm this view, through an extension
the two-dimensional linear instability results1,4,8 to three-
dimensional perturbations of an isolated vortex in the
sence of background rotation. It is believed that the m
characteristics of the centrifugal instability may be und
stood in the absence of background rotation. In contras
3 © 2003 American Institute of Physics
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the work of Gent and McWilliams,11 who evaluated growth
rates in the f-plane quasigeostrophic limit, our study does
take into account the background rotation and should ap
to vortices at high Rossby number. Smyth and McWilliam12

recently considered the nonrotating nonstratified case in
first part of their paper but treated only one relatively smo
isolated vortex. In our study the steepness parameter wi
varied from smooth isolated vortices to sharp ones.

Our study might also apply to vortex columns in hom
geneous fluid as might be encountered in homogene
turbulence.13 Vortex tubes, so-called ‘‘worms,’’ have bee
seen to undergo violent helical instabilities. The bursting
worms has been proposed as a strong mechanism a
transfer energy from large scale to small scale. The m
relevant model for the locally columnar vortex is n
straightforward, since experimental configurations are in
cate; the vortices are often neither homogeneous,
‘‘lonesome’’14 but in interaction with other vortices and wit
boundaries that may affect the whole dynamics throu
boundary effects as Eckman pumping. On the one han
was proposed that the bursting would be a manifestation
an instability due to external strain normal to the vortex a
~Saffman,15 Tsai and Widnall,16 or Eloy17!. It was also sug-
gested by Cadotet al.,13 on the other hand, that these worm
could experience vortex breakdown as usual swirling
with weak axial flow. In none of these experiments or n
merical simulations is the presence of azimuthal shear m
tioned, but in their recent model experiment concerning
bursting of vortices produced by sucking the boundary la
of a channel flow, Bottausci and Petitjean18 measure a radi-
ally decreasing circulation pointing to an isolated vorte
Since this flow is highly nonhomogeneous, its dynamics w
be controlled not only by the local temporal instability b
also affected by the way perturbations propagate along
vortex axis.

A spatio-temporal study is therefore performed as
Delbendeet al.19 in order to determine the fastest and slo
est propagating modes. The spatio-temporal selected m
are relevant in experiments where perturbations are local
due to the interaction with another coherent structure in
bulence or due to the inlet condition if the flow is ope
~Huerre and Rossi20!. By contrast, if perturbations are homo
geneous in space, the dynamics is governed by the temp
instability. The paper, which is restricted to the study o
single columnar vortex with decreasing circulation outs
the core, is organized as follows. The one-parameter fam
of isolated vortices introduced by Carton and McWilliam1

used as basic flow is defined in Sec. II together with
identification of the physical mechanisms for instability a
associated classical stability criteria. The numerical met
and the diagnostic tools are outlined in Sec. III. In Sec.
temporal stability results are presented, whereas the sp
temporal evolution of the wave packet is described in Sec
A more detailed study of the wave packet is postponed
Sec. VI, before the main results are summarized and
cussed in the final section~Sec. VII!.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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II. BASE FLOW AND PHYSICAL INSTABILITY
MECHANISMS

The description of monopolar vortices is made eas
through the introduction of a polar coordinate syste
r5(x,r ,u), with thex axis parallel to the rotation axis. Th
corresponding velocity componentsu are denoted accord
ingly (ux ,ur ,uu). The vortex consists of a purely azimuth
flow about thex axis and is supposed to be spatially invaria
in the x direction so that the velocity field can be writte
u5(0,0,uu(r )). We use the family of profiles introduced b
Carton and McWilliams1 defined by the steepness par
metera

uu
15U

r 1

R
exp~2~r 1/R!a!, ~1!

where the symbol1 denotes dimensional quantities,R andU
are characteristic length and velocity scales, serving to fo
the Reynolds number

Re5
UR

n
, ~2!

where n is the kinematic viscosity. Introducing the dimen
sionless variablesr 5r 1/R and uu5uu

1/U, the base flow
becomes

uu5re2r a
. ~3!

Whatever the positive value ofa considered, these vor
tices are fully screened since the circulation vanishes at
finity. In the casea52 it is called a Gaussian vortex. Th
stability of the Gaussian vortex was first studied on t
f-plane by Gent and McWilliams11 and more recently by
Smyth and McWilliams.12 Flor and van Heijst21 have shown
that it fits their experimental vortices.

Azimuthal velocity profiles are plotted for different pa
rameter valuesa in Fig. 1~a!. The maximal azimuthal veloc
ity uu

max increases witha together with its radial location
r max. As seen in Fig. 1~b!, which displays the correspondin
axial vorticity vx5(r 21d(ruu)/dr), the annulus of opposite
vorticity narrows and intensifies asa is increased and it can
be shown that its amplitude is asymptotically proportion
to a.

A precise examination of both the aximuthal veloci
and the axial vorticity profiles allows us to determine t
stability of a vortex depending on the axial and azimuth
wavenumberk and m from well-known criteria. Let us re-
view them briefly.

~i! The two-dimensional (k50) inflectional Rayleigh
theorem forazimuthal shearstates that a necessa
condition for the axisymmetric flow to be unstable
azimuthal Kelvin–Helmholtz shear waves is

dvx

dr
50. ~4!

The corresponding point is depicted by a full circle
the casea54 in Fig. 1~b!. This criterion is the gener-
alization of Rayleigh’s inflection point theorem to ci
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 1. ~a! Dimensionless azimuthal velocity profilesuu(r ) for variousa52, 4, and 6;~b! dimensionless axial vorticity profilesvx(r ) for the same values of
a. For a54, the filled circle corresponds to the locus of a minimum in axial vorticity signaling an eventual azimuthal shear instability and the ope
corresponds to the radius where the axial vorticity becomes negative and Rayleigh’s criterion applies.
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cular geometry.22 The physical mechanism underlyin
this instability is the well-known Kelvin–Helmholtz
mechanism.

~ii ! The axisymmetric (m50) Rayleigh2 centrifugal cri-
terion states that a sufficient and necessary~as dem-
onstrated by Synge23! condition for axisymmetric in-
stability is that the square of the circulation b
decreasing
d

dr
~ruu!

2,0, ~5!

which is equivalent to
uuvx,0, ~6!

wherevx is the axial vorticity. The physical origin o
the centrifugal instability is an unstable stratificatio
in angular momentum. The corresponding point to
right of which the flow is centrifugally unstable i
depicted by a hollow circle in the casea54 in Fig.
1~b!.

~iii ! Finally, the sufficient condition of Leibovich an
Stewartson24 and the necessary condition o
Ludwieg25 for helical perturbations (mÞ0, kÞ0 in
general! to be unstable, both applying in general
vortices with axial flow, extrapolate as

uu

d

dr
~ruu!,0. ~7!

This condition is identical to the Rayleigh centrifug
criterion ~5!, which therefore finally represents a ne
essary and sufficient condition for helical as well
axisymmetric instability.

These four inviscid criteria are fulfilled by the base flo
for all positive values ofa. Therefore, when viscosity is
neglected, the vortices considered in the present pape
unstable with respect to axisymmetric (m50) centrifugal
modes and fully three-dimensional, helical (mÞ0 and/ork
Þ0) centrifugal and shear modes, and possibly also to t
dimensional (k50, mÞ0) shear modes. However, none
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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these criteria predicts which mode will dominate: our aim
precisely to understand the temporally and spatio-tempor
selected wavenumber pairs (k,m). Previous studies of this
model ~except Smyth and McWilliams in the casea52! are
restricted to the two-dimensional case, (k50). Figure 2 il-
lustrates the structure of some instabilities with vario
wavenumbersk andm. The vortex rotates in the direct sens
according to the orientation of thex axis and the right-hand
rule. The structure in~a! is an axisymmetric instability like in
Taylor–Couette flow, the azimuthal deformation in~b! cor-
responds to a two-dimensional instability, whereas the hel
structure depicted in~c! is an m52 positive helical mode.
The sense of winding of a helix will be said to be positi
~respectively, negative! when the productk3m is positive
~respectively, negative!. For a positive helical mode, the he
lix is screwed in such a way that when traveling up in t
positive x direction, the helix winds itself in the clockwis
direction, i.e., in the negative sense of rotation.

III. GOVERNING EQUATIONS AND NUMERICAL
METHOD

This section outlines the numerical method used to
tain both the temporal instability curves and the spat
temporal results concerning the evolution of the wave pac
through a single simulation.

One first expands the perturbation into normal fo
ei (kx1mu2vmt), where the axial and azimuthal wavenumbe
k and m are assumed to be real, whereas the frequenc
complex vm5vm,r1 ivm,i . For each wavenumber pa
(k,m), the temporal stability study of the flow consists
determining the selected pulsationvm,r and growth ratevm,i

at a given Reynolds number. This determination of the d
persion relation is usually done by solving the Or
Sommerfeld equation. In complement to this so-called te
poral instability study, the analysis of the impulse respon
through the examination of the spreading of the wave pac
constitutes the so-called spatio-temporal stability analy
leading to the distinction between absolute and convec
instabilities20 when one is dealing with open flows. The usu
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 2. Different types of instabilities:~a! axisymmet-
ric centrifugal instability (m50, k51); ~b! azimuthal
two-dimensional instability (m54, k50); ~c! full
three-dimensional instability (m512, k51); note
that, according to the orientation of thex axis in ~a!, the
helical mode considered in~c! is a positive helical
mode.
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the
way to determine the impulse response with help of the O
Sommerfeld equation goes through the exhaustive trac
procedure of saddle points between adequate sp
branches.

The strategy adopted in this paper is to perform a dir
numerical simulation of the linearized impulse response
the vortex. This method was introduced by Brancher a
Chomaz26 and applied by Delbendeet al.19 to compute the
instabilities of the Batchelor vortex. The main characteris
of the method is that it gives access only to the most am
fied mode, but the use of the symmetries of the probl
~here, the azimuthal Fourier decomposition! considerably in-
creases the amount of retrieved informations. Furtherm
to extract more modes, Krylov methods as those used
cently by Edwardset al.27 or Julienet al.28 may allow one to
recover as many leading amplified modes as one wishe
the present study the leading mode will provide enough
formation and the sophistication of the Krylov method is n
compulsory.

A. Numerical implementation

We consider the evolution of infinitesimal disturbanc
superimposed on the basic flow profiles and governed by
linearized incompressible Navier–Stokes equations. The
cous diffusion term acting on the basic flow has been
glected. The Reynolds number as defined in~2! is Re5667.

We use the code described by Brancher and Chom26

and Delbendeet al.,19 adapted from the original code of Vin
cent and Meneguzzi.29 The linearized Navier–Stokes equ
tions are projected onto 72031283128 Fourier modes along
three Cartesian directions (Ox is along the axis of the vortex
Oy and Oz are two perpendicular arbitrary directions!. In
physical space, this corresponds to a parallelepipedic m
with resolutiondy5dz50.05 anddx50.1 in a domain of
lengthsLy5Lz56.4 andLx572. Fine resolutions in they-
andz directions are necessary owing to the small scales
duced by the intensity of the shear layer which increases w
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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a. Such a resolution has become possible recently thank
the NEC SX5 at IDRIS. We explored the range of steepn
parameter froma51 to a58. Ly5Lz are chosen large
enough so that the confinement due to the periodicity iy
andz is weak. Transformed into the Fourier space, the la
size of the box in the axial direction,Lx, guarantees a high
resolutiondk for the axial wavenumberk, whereas the fine
resolutiondx gives a large cutoff wavenumberkc . These
resolutions have been found to be sufficient to characte
both the temporal and the spatio-temporal instabilities of
flow properly. In particular, the convergence has be
checked by performing a simulation with resolution 14
31963196, anddy5dz50.033 anddx50.05 in the steep-
est casea58 and by checking that all the quantities report
in the following vary by less than 5% in the worst case. T
time step is chosen in order to verify a CFL-type numeri
stability condition,dt50.01 whendx50.1.

In order to mimic a delta-function forcing in space an
time, the initial conditions are chosen as in Delbendeet al.19

and satisfactorily represent a divergence-free localized
pulse of characteristic velocity perturbation amplitude 0
contained within a sphere of radius 0.5 and located
x05Lx/2 ~the middle of the box!, r 051 andu515° in order
to feed energy initially to all azimuthal wavenumbers.
should be noticed that the size of the initial impulse is
tradeoff between having a compact perturbation yielding
well-defined localization and therefore a good approximat
of a Dirac function and a large, smooth enough perturbat
so as to avoid the Gibbs phenomenon arising from the tr
cation in the Fourier space and to keep initial perturbatio
strictly equal to the computer round-off away from the im
pulse location.

At a given time, the integration of the linearized Navie
Stokes equations provides us with the full velocity and v
ticity field associated with the evolution of the wave pack
We choose to characterize the wave packet solely by
perturbation in the axial velocity, and define
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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a~x,y,z,t ![ux~x,y,z,t !.

Such an assumption gives access to the asymptotic tem
and spatio-temporal growth rate but restricts access onl
the axial velocity component of the eigenfunctions. The u
of the three components of the velocity field is possible a
does not affect the procedure, but the gain is limited to
knowledge of the two extra eigenfunctions in azimuthal a
radial velocity and is not worth the CPU consumption. T
amplitudea is transformed through a change of coordina
system intoa(x,r ,u,t), where the cylindrical grid has 40
points in the radial direction betweenr 50 and r 5Rmax

5Ly(5Lz) and 32 points in the azimuthal direction. Th
restricts, therefore, the analyzed azimuthal wavenum
range toumu,16, but we have systematically checked th
no aliasing errors are introduced by this cutoff since in
simulations, modes withumu.16 were always found to be
stable.

B. Temporal instabilities

Since the spectrum of the initial perturbation is broad,
the azimuthal and axial wavenumbers are initially excit
The temporal evolution of each individual azimuthal a
axial wavenumber may be followed through an axial a
azimuthal double-Fourier transform that leads fro

a(x,r ,u,t) to ẫ(k,r ,m,t). This complex signal is integrate
betweenr 50 andr 5Rmax

Âm~k,t !5S E
0

Rmax
u ẫ~k,r ,m,t !u2rdr D 1/2

. ~8!

The temporal growth rate betweent1 andt2 is then given by

v̂m,i~k,t1 ,t2![
ln~Âm~k,t2!/Âm~k,t1!!

t22t1
. ~9!

Whent1 andt2 are large enough, the evolution of the flow
dominated for eachk and m by a single mode~the most
unstable mode! growing exponentially. Thus

lim
t1 ,t2→`

v̂m,i~k,t1 ,t2!5v̂m,i~k!, ~10!

wherev̂m,i(k) is the growth rate of the leading eigenmod
As noticed by Delbendeet al.,19 the time increment

t22t1 has to be large enough in order to circumvent lo
frequency oscillations due to mode interaction. In our cal
lations t2523t1 and t1 is chosen in order forÂm(k,t1) and
Âm(k,t2) to be both at least three orders of magnitudes lar
than the initial amplitudeÂm(k,t50). This is done in order
to avoid spurious growth rates due to round-off errors of
Fourier transforms. This also guarantees that the trans
regime has been left. In addition we check th
v̂m,i(k,t1,1.53t1), v̂m,i(k,t1,23t1), and v̂m,i(k,1.53t1,2
3t1) are closer than 1% in order to ensure convergen
When these conditions are not met, we consider that
method fails in determiningv̂m,i(k). This will be seen in the
next section to be the case only form51 at smallk.

The associated phasef̂m(k,t) is measured at the loca
tion r 0 of the radial impulse
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f̂m~k,t !5arg~ ẫ~k,r 0 ,m,t !!, with 0<f̂m~k,t !,2p.
~11!

The real part of the pulsation is given by

v̂m,r~k!;2
f̂m~k,t3!2f̂m~k,t2!

t32t2
, ~12!

as soon ast3 andt2 are sufficiently large to quit the transien
regime. As explained in Delbendeet al.,19 the time interval
t32t2 is selected to be short enough to circumvent the di
culties due to the discontinuous nature of the phase func
f̂m(k,t) whenever it reaches 0 or 2p.

It is important to note that the real nature of the cons
ered signala(x,r ,u,t) induces strong symmetries. Denotin
by v̂m(k) the complex pulsation, the following symmetr
holds:

v̂2m~2k!52v̂1m* ~k!. ~13!

In other words, there are onlytwo and not four different
perturbations of wavenumbersuku andumu in absolute value,
singled out by the sign of the productk3m. We recover the
difference between positive and negative helical modes
discussed in Sec. II. This demonstrates that it is sufficien
describe the temporal instabilities in half of the parame
spacek2m. Our choice, which is a common one in th
literature, is to prescribek>0 and letm be a signed quantity
Within that convention, since the sense of winding is giv
by the sign of the productm3k, modes with positivem will
be effectively positive helical modes@like the one in Fig.
2~c!#, whereas modes with negativem will effectively corre-
spond to negative helical modes.

C. Spatio-temporal instabilities

In the spatio-temporal formulation, we consider the d
velopment of the wave packet along rays of given veloc
x/t5vg . In order to define the amplitude of the wave pack
unambiguously, it is convenient, as in Huerre a
Monkewitz30 or Delbendeet al.,19 to introduce the analytica
complex field variable

ā~x,r ,m,t !5Fd~x!1
i

pxG* ã~x,r ,m,t !, ~14!

where ã(x,r ,m,t) is the azimuthal Fourier transform o
a(x,r ,u,t), d is the Dirac function, and the symbol* desig-
nates the convolution operator with respect tox. This convo-
lution is processed in spectral space through the so-ca
Hilbert transform

â̄~k,r ,m,t !52H~k! ẫ~k,r ,m,t !, ~15!

whereH(k) denotes the Heaviside function. In other word
the Fourier transform of the analytical field is obtained
setting to zero all the Fourier modes of negative streamw
wavenumber. The analytical fieldā(x,r ,m,t) is then ob-
tained by an inverse axial Fourier transform fro

â̄(k,r ,m,t). The cancellation of the negativek plane is a
consistent choice with the convention to considerk positive
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

7 Jul 2014 13:08:17



ed
t

a

ra

-

g

fo
te

ve

th

de
th

ke

ve
des
g

al

la-
ep
. It

ans-
in-

epa-
te.
real

is

of
the

ns-
tion
il-
ical

on,

to

2118 Phys. Fluids, Vol. 15, No. 8, August 2003 F. Gallaire and J.-M. Chomaz

 This a
andm signed in temporal theory instability theory as outlin
above. In particular, positive helical modes correspond
m.0 and negative helical modes tom,0.

As in the temporal analysis, the integration of the an
lytical field ā(x,r ,m,t) yields the amplitudeĀ defined by

Ām~x,t !5S E
0

Rmax
uā~x,r ,m,t !u2r dr D 1/2

. ~16!

According to steepest-descent arguments,31 the long-time be-
havior of the wave packet along each spatio-temporal
x/t5vg is

Ām~x,t !}t21/2e~ k̄m~vg!~x2x0!2v̄m~vg!t ! t→`, ~17!

wherek̄m(vg) andv̄m(vg) represent the complex wavenum
ber and frequency traveling at the group velocityvg , respec-
tively. In ~17!, the real part of the exponential

s̄m~vg!5v̄m,i~vg!2vg3 k̄m,i~vg!, ~18!

denotes the temporal growth rate observed while travelin
the group velocityvg , and it can be evaluated for larget
directly from ~17! as

s̄m~vg!}
]

]t
ln~ t1/2Ām~vgt1x0 ,t !!. ~19!

As done previously in Eqs.~9!–~10!, Eq. ~19! is temporally
discretized into

s̄m~vg ,t1 ,t2![
ln~Ām~vgt21x0 ,t2!/Ām~vgt11x0 ,t1!!

t22t1

1
ln~ t22t1!

2~ t22t1!
. ~20!

The instantst1 and t2 are chosen in the same manner as
the determination of temporal growth rates. The associa
phase distribution is measured at the radial locationr 0

f̄m~x,t !5arg~ ā~x,r 0 ,m,t !!, with 0<f̄m~k,t !,2p,
~21!

and allows us to retrieve the real parts of the complex wa
number and pulsation,k̄m,r(vg) and v̄m,r(vg), according to

k̄m,r~vg!;
f̄m~vgt21x01dx,t2!2f̄m~vgt21x0 ,t2!

dx
,

~22!

and

v̄m,r~vg!;2
f̄m~vgt21x0 ,t3!2f̄m~vgt21x0 ,t2!

t32t2
.

~23!

Frequencies are evaluated over time increments shorter
the period of the oscillation. Note finally thatv̄m,i(vg) as
well as k̄m,i(vg) might also be computed if necessary.19

Unfortunately, as already noticed by Delbendeet al.,19

according to signal processing theory, Hilbert transforms
grade the wave packet’s localization considerably when
corresponding spectrum does not vanish atk50. This results
in the appearance of ‘‘tails’’ which apodize the wave pac
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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outside of its main peak! In such cases, tails of the wa
packet that determine the spreading velocity of the mo
will still be accessible, but with less precision, by makin
use of the azimuthal Fourier transformã(x,r ,m,t) of the
signala(x,r ,u,t) in place of the associated analytical sign
ā(x,r ,m,t) in steps~16! to ~21! with the symbol̃ replacing
the symbol̄ on all quantities of interest.

This choice has strong implications since the demodu
tion is not done and all above-defined quantities will ke
oscillating in time and space due to the phase variations
also must be understood that in cases where the Hilbert tr
form cannot be used and the Fourier transform is used
stead, positive and negative helical modes cannot be s
rated and the one with the largest growth rate will domina
This can be seen for instance in the fact that, due to the
nature ofa(x,r ,u,t)

ã~x,r ,m,t !5ã* ~x,r ,2m,t !, ~24!

where the symbol* denotes the complex conjugate. Th
implies the following relations:

Ã2m~vg!5Ã1m~vg!, ~25a!

s̃2m~vg!5s̃1m~vg!, ~25b!

k̃2m,r~vg!52 k̃1m,r~vg!, ~25c!

ṽ2m,r~vg!52ṽ1m,r~vg!. ~25d!

Equation~25b! demonstrates that, within the framework
Fourier transforms, there is no distinction between
growth rate of a1m mode and of its opposite2m. This
allows us to define an overall growth rates̃ umu

s̃ umu~vg![
def

s̃1m~vg!, ~26!

pertaining to both modes of helical orderumu and opposite
winding directions. As a consequence, when Fourier tra
forms are used there is a strong contrast with the conven
adopted previously in temporal stability theory or when H
bert transforms are used: the sign of the winding of a hel
mode on a given rayx/t5vg is not given by the sign ofm
but by the sign of the product,m3 k̃m,r . One can easily
verify that Eq.~24! implies thatk̃2m,r(vg)52 k̃m,r(vg), so
that m3 k̃m,r52m3 k̃2m,r .

D. Symmetry considerations

Since there is no advection in the streamwise directi
the problem is invariant under the transformation

~x,m,k,v!↔~2x,m,2k,v!, ~27!

or by virtue of the real nature of the signala(x,r ,u,t) @see
Eq. ~13!#, to

~x,m,k,v!↔~2x,2m,k* ,2v* !, ~28!

where the symbol* denotes the complex conjugate. Whenk
is real, as in the temporal stability framework, this leads

v̂2m~k!52v̂1m* ~k!. ~29!
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FIG. 3. ~a! Temporal growth ratev̂m,i(k) as a function of the axial wavenumberk for a54 and various values ofm @m50 ~full line!, m561 ~dotted-dashed!,
m562 ~dashed! andm563 ~dotted!#; full symbols on thek50 axis correspond to the results of Carnevale and Kloosterziel~Ref. 8! for m52 ~triangle! and
m53 ~square!. ~b! Angular frequencyv̂m,r(k) as a function ofk for the same settings.
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In terms of spatio-temporal quantities, when the analyti
signal is considered, one is led to the following symmetri

Ā2m~2vg!5Ā1m~1vg!, ~30a!

s̄2m~2vg!5s̄1m~1vg!, ~30b!

k̄2m,r~2vg!5 k̄1m,r~1vg!, ~30c!

v̄2m,r~2vg!52v̄1m,r~1vg!. ~30d!

When the properties of the wave packet are evaluated
means of the Fourier transforms, and the trivial symmet
~25! are also invoked, one ends up with the following re
tions:

Ãm~2vg!5Ãm~1vg!, ~31a!

s̃m~2vg!5s̃m~1vg!, ~31b!

k̃m,r~2vg!52 k̃m,r~1vg!, ~31c!

ṽm,r~2vg!5ṽm,r~1vg!. ~31d!

IV. TEMPORAL INSTABILITY

This section deals with temporal instability. As specifi
above,k is taken positive without loss of generality. In Fi
3, the growth ratev̂m,i(k) obtained by formula~9! is plotted
as a function of the axial wavenumberk for different values
of the azimuthal wavenumberm and for a steepness param
etera54.

Sincev̂2m,i(k)5v̂1m,i(k) @see Eq.~29!#, only positive
m are reported. In the two-dimensional limit (k50), it is
seen that the only unstable modes fora54 are m52 and
m53, m54 and larger~not shown! being stable. As sug
gested by Flierl,9 this shows the existence of a cutoff wav
numberma , above which all wavenumbers are entirely s
bilized at k50. For direct comparison, the inviscid resu
obtained by Carton and McWilliams,1 Carnevale and
Kloosterziel,8 and Orlandi and Carnevale4 are represented in
Fig. 3~a! by full symbols. Our growth rates are slightl
smaller than their inviscid growth rates because of the
cosity. In the 2D case, Orlandi and Carnevale4 have also
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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demonstrated that the vortex is unstable only above
threshold steepness parameter ofa51.85. Even if condition
~4! is fulfilled as soon asa>0, the threshold value ofac

51.85 is consistent with~4! since it is only a necessar
condition for 2D instability. We have observed that the vo
tex is stable atk50 whena51 and unstable whena52, in
agreement with the inviscid instability thresholdac51.85,
even in the presence of viscous effects.

For a54, whenk increases,m50 andm51 modes be-
come unstable and reach a maximum growth rate atk0

;6.8 andk1;6.7. By contrast, the growth rate of them
53 mode continuously decreases with increasingk. The na-
ture of modem52 is more complex, the curve of Fig.
presenting two local maxima atk;2.3 andk;5.5. For k
*2, the most unstable mode becomesm50. It is noteworthy
to remark that for allm, the axial wavenumbersk larger than
a cutoff wavenumberkm

c are quenched, in contrast with th
results reported by Smyth and McWilliams12 for the modes
m50, 1, and 2 anda52 when the flow is inviscid. In that
case, the growth rate asymptotes to a finite value whek
goes to infinity. In our study, this behavior is not observ
because of the stabilizing effect of viscosity at largek.

Figure 3~b! displays the frequencyv̂m,r of the instability
waves as a function ofk. First, note that them50 mode is
stationary, as imposed by symmetry~29!. The absolute value
of the frequency of the modes increases withm, and it can be
shown that the phase velocityv r /m only weakly depends on
m. Positive helical modes (m.0) have positive frequencie
and negative helical modes (m,0) have negative frequen
cies, so that, in a transverse plane, at a givenx station, both
rotate in time in the same direction as the vortex, sin
v̂m,r3m is positive. This symmetry between positive an
negativem results from~29!. The fact that both positive and
negative helical modes rotate at the same speed and in
same direction as the vortex is in agreement with the res
of Smyth and McWilliams12 for a Gaussian~a52! vortex
~note that the vorticity is taken negative in the core of t
vortex in their study, whereas the core vorticity is positi
herein!.
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FIG. 4. ~a! Eigenfunction atk56.8, m50; ~b! eigen-
function at k50, m52; ~c! eigenfunction atk56.7,
m51; ~d! eigenfunction atk55.5, m52; a54; the
ordinate scale is arbitrary; the vertical line represen
the critical radiusr c ; the dashed line with full circle
represents the radius of minimum axial vorticity and th
dotted-dashed line with hollow circle the radius abo
which the Rayleigh criterion for centrifugal instability
is verified.
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In the casea54, in complement to Fig. 3, Fig. 4 dis
plays the axial velocity profile of four eigenfunctions asso
ated with four different relevant wavenumber pairs. Figu
4~a! depicts the eigenfunction for the axisymmetric mo
(m50) for k0

max56.7, where the growth rate is maximum
which shows two peaks. The axisymmetric mode (m50) is
only sensitive to the centrifugal instability, which sets
when Rayleigh’s criterion~5! is valid, i.e., to the right
dashed-dotted line in Fig. 4~a! @the hollow circle in Fig. 1~b!
and Fig. 4~a!#. Figure 4~a! shows that the eigenfunction pre
sents a peak in the vicinity of the radius where the Rayle
criterion first applies and vanishes close to the vortex ce
where the flow is centrifugally stable. A second peak is o
served wheredvx /dr50. Figure 4~b! depicts the eigenfunc
tion related to a pure 2D mode withk50 andm52. This
type of instability is known to be entirely due to azimuth
shear via the Kelvin–Helmholtz mechanism. Note that
peak is now located in the vicinity of the point whe
dvx /dr50, i.e., the point designated by a dashed verti
line and a full circle@see also Fig. 1~b!#.

This peak is also close to the critical radiusr c marked by
a solid vertical line and defined formÞ0 such that the azi-
muthal phase velocity is equal to the angular velocity of
basic flow

v r ,m

m
5

Uu~r c!

r c
. ~32!

This is consistent with the results of Smyth a
McWilliams,12 who have noticed a strong link between t
critical radius and the location of the maximum of the eige
function, in the casea52. Figures 4~c! and~d! depict eigen-
functions of helical instabilities, respectively, them51
bending mode at its most unstable wavenumberk1

max56.7
and them52 mode fork2

max55.5. The eigenfunctions ar
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seen to be peaked in the region of shear denoted by
dashed vertical line, remarkably correlated to the location
the critical radius@Eq. ~32!#.

Let us briefly consider the effects of the Reynolds nu
ber in the case ofa55 by considering in addition to Re5667
also Re5333 and Re51333. Results are displayed in Fig.
for the modem52. We observe that the cutoff wavenumb
k2

c increases with the Reynolds number like the maxim
growth ratev̂2,i

max, the two-dimensional growth rate atk50
gets closer to the inviscid value obtained by Carnevale
Kloosterziel8 ~marked by a cross in Fig. 5! when the Rey-
nolds number is increased.

FIG. 5. Growth rateṽ2,i of the m52 mode as a function ofk for a55 and
different Reynolds numbers: Re51333 ~continuous line!, Re5667 ~dashed
line!, and Re5333 ~dashed-dotted line!.
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FIG. 6. Temporal growth rate~a! and angular frequency~b! as a function of the axial wavenumber k fora57 and various values ofm.
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Note that the Reynolds number based on the shear l
thickness is about 500 for Re51333~Re being based on th
radius!, so that it is not surprising that viscous effects a
quite large on the growth rate atk50. The fact that the cutoff
wavenumber increases with the Reynolds number~Fig. 5! is
in agreement with the ultraviolet catastrophe behavior sho
by Smyth and McWilliams.12 The centrifugal instability
would destabilize high wavenumbers if the fluid were inv
cid, with a growth rate approaching a constant valuesm

` ,
whenk goes to infinity. When viscous effects are taken in
account, a cutoff wavenumber is introduced that scales
Asm

` Re. This scaling is indeed in good agreement with F
5 since (k2

c)2/Re is approximately constant, varying fro
0.44 for Re5333 to 0.49 for Re5667, and to 0.54 for Re
51333.

Figure 6 is similar to Fig. 3 except that the steepn
parameter is higher and equalsa57. Modesm52, 3, 4, 5 are
now unstable atk50; this illustrates the fact that the az
muthal cutoff wavenumberma is increasing witha. This
becomes particularly clear in Fig. 7~b!, which depicts the
growth rate of each azimuthal mode atk50, (v̂m,i

0 [v̂m,i(k
50)) as a function ofa. As the value of the steepness p
rametera is increased, higher and higher azimuthal mod
become unstable. This result is entirely consistent with p
vious studies.8,9 Flierl found that, the smaller the relativ
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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width of the outer annulus of opposite vorticity, the larger t
number of unstable azimuthal modes. This might be und
stood by drawing an analogy with plane shear layers. T
cutoff wavenumberma is then determined by the perimete
divided by the shear thickness, which is itself inversely p
portional toa, implying thatma grows likea. Moreover, in
this two-dimensional limit, the steeper the velocity profi
the higher the wavenumber of the fastest growing mode
the 2D limit (k50), stability results of Carton and
McWilliams,1 Carnevale and Kloosterziel,8 and Orlandi and
Carnevale4 are confirmed when viscosity is added@Fig. 7~a!#.
The increase in the steepnessa is associated to an increase
the highest wave unstable atk50, ma . For a slightly above
6, the most unstable mode switches fromm52 to m53.

When k increases, the same trends as fora54 ~Fig. 3!
are observed in Fig. 6 fora57. Modesm50 and m51,
which are stable atk50, are the most unstable modes, t
maximum being reached atk close tok;8, a value larger
than fora54 @see also Figs. 7~b! and 7~c!#. The axisymmet-
ric modem50 reaches the overall highest growth rate as
a54. As seen in Fig. 7, the most unstable mode contin
being m50, for all a tested and is closely followed bym
51, m52, and so on. The maximal growth ratev̂m,i

max is a
monotonically decreasing function ofm and a monotonically
increasing function ofa. Mode m52 presents two loca
FIG. 7. Effects of the steepness parametera. ~a! Growth ratev̂m,i
0 at k50 for m>2; ~b! maximal growth ratev̂m,i

max versus the steepness parametera for
various values ofm; ~c! km

max when nonzero.
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FIG. 8. ~a! Demodulated amplitudeĀ0(vg ,t) of them50 wave-packet component with respect to group-velocityx/t on a semilog plot fora54 at different
times fromt515, t518, t521, t524, t527, andt530 with Hilbert transform; the trailing~respectively, leading! edge of the wave packet are denoted byv0

2

~respectively,v0
1). ~b! Associated growth rates̄0(x/t). Note that the maximum spatio-temporal amplification rates̄0

max is nearly equal to its tempora
counterpartv̂0,i

max.
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maxima ink52.5 andk57.7, but the global maximum is th
second peak in contrast to Fig. 3~a!. Accordingly, in Fig.
7~c!, k2

max(a) presents a discontinuity ina55 associated with
a shift of the absolute maximum from the first peak to t
second peak. Modesm53, m54, andm55, which are un-
stable atk50, achieve their maximum growth rate precise
at k50.

In conclusion, from the temporal stability point of view
the most intense instability is therefore the pure axisymm
ric instability, for which the instability reduces to centrifug
instability.

V. SPATIO-TEMPORAL EVOLUTION OF THE WAVE
PACKET

This section describes the spatio-temporal spreadin
the wave packet generated by a localized impulse. As a t
cal example, Fig. 8~a! displays the demodulated amplitude
the wave packetĀ0(vg ,t) corresponding to the axisymme
ric mode (m50) on a semilog plot as a function of the grou
velocity vg5x/t at different times.

It is seen that the wave packet only grows in a reg
@v0

2 ;v0
1#, wherev0

2 andv0
1 are, respectively, the group ve

locity of the trailing and leading edges of them50 wave
packet. Note thatv0

252v0
1 because of the symmetry prop

erty ~30b!. The corresponding spatio-temporal growth ra
s̄0(vg) evaluated through relation~19! is depicted in Fig.
8~b!. More generally, the curves̄m(vg) contains all the in-
formation characterizing the spatio-temporal growth of
wave packet. Its extent is in fact delimited by the rays mo
ing at the trailing and leading edge velocities,vm

2 and vm
1 ,

along which neutral waves are observed. Formally, th
might be defined by the conditionss̄m(vm

2)50 and
s̄m(vm

1)50, with vm
2,vm

1 . In the present case (m50), only
one connected region of unstable group velocities@s̄m(vg)
.0# is observed and the velocitiesv0

2 and v0
1 are unam-

biguously defined. Letvm
max denote the spatio-temporal ra

along which the largest temporal growth rates̄m
max is ob-

served. According to Delbendeet al.19
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s̄m
max5v̂m,i

max, ~33!

i.e., the maximum temporal amplification rate coincides w
its maximum spatio-temporal counterpart, which is attain
for a real wavenumberkm

max. This most amplified wave
propagates at the real group velocity

vm
max5

dv̂m,r

dk
~km

max!. ~34!

Both cross checks~33! and ~34! are verified in Fig. 8~b! for
m50 since the maximums̄0 is attained inv0

max50 for
s̄0

max50.4260.01, a value particular close to the tempo
maximal growth ratev̂0,i

max50.4160.01.
As another illustrative example, Fig. 9~a! displays the

logarithm of the demodulated amplitude of them512 and
m522 modes,Ā12(vg ,t) and Ā22(vg ,t) as a function of
the ray velocityvg5x/t at different timest for a54. In the
middle of the wave packet the Hilbert transform allows us
discriminate between amplitude and phase and to prop
extract the wave-packet envelope. However, in Fig. 9~a!, the
drawback of the application of the Hilbert transform is al
seen since ‘‘tails’’ develop~due to the convolution with 1/x)
which prevent us from observing the edges of the wa
packet and therefore from measuring their speed. Neither
trailing-edge velocitiesv22

2 and v12
2 nor the leading edge

velocitiesv22
1 andv12

1 can be evaluated with precision. Th
symmetry Ā22(2vg)5Ā12(1vg) @see Eq.~30a!# is veri-
fied, inducingv22

2 52v12
1 and v12

2 52v22
1 . Despite the

apodization of the wave packets, it can be expected
v22

2 ,v12
2 ,0 and by symmetry 0,v22

1 ,v12
1 .

In order to measure the edge velocities with accura
we have to resort to the wave packet amplitude defined fr
the initial signal without applying the demodulation with th
Hilbert transform, i.e., to the amplitudeÃu2u , as defined in

~26!. As explained in Sec. III, the use ofÃu2u hinders the
separation of contributions of positive helical mode~usual
conventionm512) and negative helical modes~convention
m522), this separation being left for a later section wh
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 9. Evolution in time of the wave packet forumu52. ~a! Demodulated amplitudesĀ12(vg ,t) ~continuous line! and Ā22(vg ,t) ~dotted line! of the m
52 wave-packet component with respect to group-velocityx/t on a semilog plot fora54 at different times fromt515, t518, t521, t524, t527 to t

530. ~b! Same for the amplitudeÃu2u ~without demodulation!.
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the local phase will be computed and its variations follow
in time. Figure 9~b! shows the amplitudeÃu2u(vg) as a func-
tion of vg for different times. The apodization suffered by th
demodulated amplitudeĀ2 does not hold forÃu2u , and Ãu2u
reaches for instancee210 at x/t560.4, whereas the Hilber
transform has artificially raised the amplitude at the sa
group velocity in Fig. 9~a! to e25, preventing us from ob-
serving properly the edges of the wave packet. Oscillatio
particularly visible in the center of the wave packet, cor
spond to spatial variations of the local phase since no
modulation has been applied. Despite this phase jitter,
wave packet seems localized between well-defined ed
outside of which the amplitude decreases with time. The
termination of the edge group velocities is subjected to ph
jitter due to the absence of separation of amplitude
phase, although it is less marked than in the middle of
wave packet where the signal oscillates strongly. It must
understood that the Fourier transform oscillates in regi
where both the positive and the negative helical mode
unstable and therefore ‘‘mixed.’’ By contrast, in regio
where only one sense of winding is unstable and the o
quenched, as for instance in the interval@v22

2 ;v12
2 #, the

Fourier transform amplitude stops oscillating and the ph
jitter is negligible. Although a better determination would
achieved by a longer time integration, necessitating in tur
longer box, the accuracy in the estimation of the edge vel
ties v u2u

2 andv u2u
1 of the overallumu52 wave packet is satis

factory. The sign of the actual winding on each edge is
termined according to continuity arguments. A comparison
Figs. 9~a! and 9~b! leads us to expect thatv u2u

2 might be
attributed to a negativem522 helical mode andv u2u

1 to its
positive counterpart. The edge velocitiesv22

1 and its oppo-
site v12

2 may only be roughly estimated from the demod
lated amplitudes in Fig. 9~a! suffering apodization, since
these edges are overwhelmed by the growing part of
umu52 wave packet when the two positive and negative
lical modes are mixed through the Fourier transform in F
9~b!.

The edge velocities defined with Hilbert transforms f
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the m50 and m561 modes and with Fourier transform
for umu>2 have been systematically evaluated for variousa
in the rangeaP@2;8# with a precision generally better tha
1% and at most 5%. Overall results are displayed in Fig.
which compares the spreading velocities of the different a
muthalm components as a function of the steepness par
etera. For each1m/2m azimuthal wavenumber pair, onl
the outermost edge velocity has been reported. It is seen
the mode spreading out the fastest isumu52 in the whole
range ofaP@2;8# presently studied. Though the most amp
fied mode ism50 in the center of the wave packet, th
edges of the wave packet are formed by helical structu
with umu52, no matter how intense the azimuthal shear. I
plications of this physical picture are discussed in the fi
section.

VI. DETAILED STUDY OF THE WAVE PACKET

It was seen in the preceding section that, except
modesm50 andumu51, the evaluation ofsm(x/t) is diffi-

FIG. 10. Group velocities of the downstream and the upstream edges o
wave packet as a function ofa for different m.
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FIG. 11. Detailed study of the wave-packetumu52 component fora54. ~a! Hilbert-transformed amplitudesĀ12 ~dotted-dashed!, Ā22 ~dashed!, and
Fourier-transformed amplitudeÃu2u ~full line! as function ofvg5x/t at t518. ~b! Corresponding growth ratess̄12 , s̄22 and s̃ u2u ; in each flow direction,
upstream and, respectively, downstream,s̄12 and s̃ u2u ~respectively,s̄22 and s̃ u2u) overlap on a ray interval contained between the hollow circle~vertical
dotted line! and the full circle; the horizontal and vertical dashed lines correspond, respectively, to the predicted values from temporal theory of the m
growth rate and of its corresponding opposite group velocities.~c! and ~d! Associated composite wavenumberk2,r and frequencyv2,r .
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cult, since in the middle of the wave packet it should
extracted out of the Hilbert transformed amplitudes, wher
on the edges it should be extracted out of the Fourier am
tudes. Such an effort has been made in Fig. 11 for the s
parameter settings as in Fig. 9.

Figure 11~a! reproduces the Hilbert- and Fourie
transformed amplitudesĀ12 ~dotted-dashed line!, Ā22

~dashed line!, and Ãu2u ~full line! taken from Figs. 9~a! and
9~b! at time t518. Please note the apodization of the wa
packet when the Hilbert transform is used. The precise cu
value of the group velocityvg for which the analytical signa
amplitudes become irrelevant is difficult to establish on
graph at a single time. It is, however, more easily determi
when the growth rate is evaluated and convergence requ
Figure 11~b! depicts the growth rates calculated att518
through either Hilbert transforms̄12 and s̄22 or Fourier
transformÃu2u . For each growth rate, the convergence cri
rion ~described in Sec. III B! is only verified in a range of
group velocities. The Hilbert-transformed growth rates co
verge, respectively, up- and downstream in a range betw
the hollow circle atvg560.18 and the hollow circle on the
zero group velocity ray, whereas the Fourier-transform
growth rates converge outside the range between by the
dark circles atvg560.13. There are two symmetric region
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

129.104.29.1 On: Thu, 1
s
li-

e

e
ff

e
d
d.

-

-
en

d
o

of overlap where the two determinations coincide. A ‘‘co
struction rule’’ for the composite growth rate is then defin
as follows. The wave packet is made of four parts fro
downstream to upstream:~a! an m522 trailing edges̃ u2u ;
~b! the ‘‘heart’’ of them522 wave packets̄22 ~when con-
verged!; ~c! the ‘‘heart’’ of the m512 wave packets̄12

~when converged!; and ~d! an m52 leading edges̃ u2u . The
wave packet splits into two parts symmetric with respect
thevg50 axis with opposite group velocitiesv12

max52v22
max at

their equal maximal growth rates and opposite edge vel
tiesv12

1 52v22
2 : one part is mostly propagating in the pos

tive direction~them512 mode! and the other one mostly in
the negative direction~the m522 mode!. In Fig. 11~b!, the
maxima of the wave packetsm512 ~respectively,
m522) and their corresponding group velocitiesv22

max ~re-
spectively,v12

max) obtained through temporal stability theor
are depicted by dashed lines. It is seen that the cross ch
of ~33! and ~34! are verified in a good approximation.

In Figs. 11~a! and 11~b!, the edges have been labele
m522 at the trailing edge andm512 at the leading edge
according to continuity arguments. To determine the spa
winding, the local wavenumberk̃m,r has to be computed
Figure 11~c! presents the composite local wavenumberk2,r

corresponding to the wave packet shown in Fig. 11~b!. With
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the preceding ‘‘construction rule’’ of the wave packet, o
can see thatk2,r is again composed of four parts in cascad
k̃22,r , k̄22,r , k̄12,r , and k̃12,r . Since the direction of wind-
ing is given by the sign ofm in the inner parts of the wave
packet when the Hilbert transform is performed~we hereby
verify that k̄m,r is positive, as implicitly forced by the Hilber
transform! and by the sign of the productk̃m,r3m in the
outer parts when the Fourier transform is performed, F
11~c! shows that the winding of the wave is positive forvg

.0 and negative forvg,0. It follows in particular that the
helix is screwed negatively at the trailing edge and positiv
at the leading edge. Figure 11~d! presents the composite fre
quencyv2,r , which is again the combination of four expre
sions respecting the same construction rule. In the do
stream part of the wave packet, the frequency is negative~as
well as m!, whereas in the upstream part the frequency

FIG. 12. Structure of the wave packet;sm(x/t) for a54 and differentm.
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positive~as well asm!, showing that on both edges the stru
ture rotates in the same direction as the vortex.

The composite growth ratessm(vg) corresponding to
different values ofm have been computed and may be co
bined for a54 to produce the wave-packet envelope as
ported in Fig. 12. The full wave packet has a stratified sh
with the most unstable temporal modem50 dominating in
the inner part of the wave packet. Further away from the
with zero group velocity in the positive directionvg.0 ~re-
spectively, negative directionvg,0), the modem512 ~re-
spectively, m522) takes over in a small ray interva
quickly followed by modem511 ~respectively,m521)
possessing the largest growth rate until the edges are le
the m512 ~respectively,m522) mode. We have verified
that the conclusions presented in Fig. 11 forumu52 still hold
for all umu.0; thevg,0 part of the wave packet is made o
negative helical modes rotating in time in the same direct
as the vortex, whereas thevg.0 part of the wave packet is
made of positive helical modes rotating in time in the sa
direction as the vortex. A three-dimensional representatio
the wave packet can be found in Fig. 13. On the downstre
boundary of the wave packet, opposite ISO-surfaces of
vorticity reveal anm522 mode with negative winding. In
the middle of the wave packet, them50 mode is taking
over, as evidenced by the rings in the middle of the wa
packet.

VII. DISCUSSION AND CONCLUSIONS

This study aimed at understanding the instability a
wavenumber selection mechanisms of an isolated vortex
the interplay of the centrifugal and azimuthal shear instab
ties. From a temporal point of view, the centrifugal instab
ity has been shown to dominate over the azimuthal sh
FIG. 13. ~Color! ISO-surfaces of the
vorticity at time t515 for a54. In
blue vx50.5vmax, in yellow vx

520.5vmax.
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instability since the axisymmetric (m50) mode, which is
only sensitive to the centrifugal instability, is the most te
porally amplified for all the steepness parameter conside
This result strongly supports the interpretation of Kloost
ziel and van Heijst5 that, in the presence of background r
tation, the centrifugal instability acting on anticyclones c
quench the azimuthal instability and prevent the flow fro
developing into a tripole.

As far as the spreading of a wave packet along a colu
nar vortex is concerned, we have shown that them512
mode is traveling the fastest in the positivex direction,
whereasm522 is symmetrically the fastest in thex,0
direction. The response of an isolated vortex to a locali
perturbation in space and time is therefore dominated on
edges of the perturbation by double helices twisting the v
tex and propagating away from the initial location of t
perturbation.

As mentioned in the Introduction, the stability o
‘‘worms’’ is still an open issue. Cadotet al.13 suggested tha
the axial jet could be responsible for their explosion throu
a vortex breakdown phenomenon that would most likely
an axisymmetric bursting. Eloy17 focused on the role of a
strain field in sustaining the elliptic instability and predict
that a single helix is the most amplified mode. Figure
reveals a structure of the unstable vortex which compa
favorably with flow visualizations of Cadotet al.13 They ob-
served that worms were bursting through double-helical
tortions resembling the helicalm52 structures propagatin
the fastest on our vortex. Nevertheless, it remains to be
sessed if a worm could be considered as an isolated vo
In a less turbulent flow, Bottausci and Petitjean18 have re-
cently reported the bursting of vortices produced by suck
the boundary layer of a channel flow. Velocity measureme
show that the circulation of the vortex decreases away fr
the core, thereby pointing to an isolated vortex. Flow visu
izations moreover indicate that destabilization and transi
occur through multiple helices. This behavior is consist
with the present prediction, but a more definite statem
would require the analysis of more realistic profiles since
Bottausci and Petitjeans’18 experiment the decrease of th
circulation is very slow away from the vortex center. A
analysis is in progress, which combines isolated azimu
and axial velocity profiles characteristic of swirling jets u
ing the same methodology as presented here.
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