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Effect of the Schmidt number on the diffusion of axisymmetric pancake
vortices in a stratified fluid

Ramiro Godoy-Dianaa) and Jean-Marc Chomaz
LadHyX, CNRS-École Polytechnique, F-91128 Palaiseau Cedex, France

~Received 25 July 2002; accepted 15 January 2003; published 4 March 2003!

An asymptotic analysis of the equations for quasi-two-dimensional flow in stratified fluids is
conducted, leading to a model for the diffusion of pancake-like vortices in cyclostrophic balance.
This analysis permits one to derive formally the model for the diffusion of an axisymmetric
monopole proposed by Beckerset al. @J. Fluid Mech.433, 1 ~2001!#, and to extend their results. The
appropriate parameter for the perturbation analysis is identified as the square of the vertical Froude
numberF

v
5U/L

v
N, whereU is the horizontal velocity scale,N is the Brunt–Va¨isälä frequency,

and L
v

the vertical length scale. The physical mechanisms involved in the vortex decay are
examined under the light of the asymptotic analysis results. In particular we discuss the effects of
the Schmidt number, Sc, which measures the balance between the diffusion of momentum and the
diffusion of the stratifying agent. Remarkably, the vertical transport due to the slow cyclostrophic
adjustment is shown to slowdown the velocity decay when Sc is larger than unity whereas it
accelerates it when Sc is smaller than unity. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1558318#

I. INTRODUCTION

Vortices in strongly stratified fluids exhibit some unique
features due especially to the inhibition of vertical motions.
One of the situations that has been identified, both in theory
and experiments, is quasi-two-dimensional~Q2-D! flow for
which the main motions are given in horizontal planes@see,
e.g., Lin and Pao~1979!;1 Riley et al. ~1981!2#. A particular
type of vortical structure with a clearly larger length scale in
the horizontal direction than in the vertical one, the so-called
pancake vortices, evolves in this regime@e.g., Spedding
et al. ~1996!;3 Bonnier et al. ~2000!;4 Billant and Chomaz
~2000!5#. The dynamical evolution of these vortices is in part
determined bycyclostrophic balance, which is characterized
by the equilibrium between the centrifugal force and the
pressure gradient resulting from a deformation of the isopy-
cnals inside the vortex.

An interesting model for the decay of a cyclostrophically
balanced axisymmetric monopole has been proposed by
Beckers, Verzicco, Clercx, and van Heijst~BVCH!,6 which
provided a reference to be compared with experiments and
numerical simulations. Although their model does well in
representing the main behavior of the vortex, its heuristic
character makes it difficult to explain the cases where it fails
to reproduce all the features found in their numerical experi-
ments. In this paper we make an asymptotic analysis of the
equations for Q2-D stratified flow assuming the vertical
Froude number (F

v
) small. At the lowest order of the expan-

sion we get the model equations proposed by BVCH plus an
equation for the evolution of the density perturbation. As we
will discuss in the following, the advantage of obtaining it as
a result of an asymptotic analysis relies on the proper esti-

mations of the higher-order effects neglected in the model.
Also, features depending on the ratio of momentum to strati-
fying agent diffusivities~Schmidt or Prandtl number for salt
or temperature stratification, respectively! are analyzed,
which allow us to gain insight into the processes governing
the evolution of cyclostrophically balanced pancake vortices
in real flows. In particular, we show that the secondary mo-
tion inside the vortex is reversed depending on whether Sc is
smaller or larger than one. For Sc.1 the secondary motion is
dominated by the diffusion of momentum. Its observable ef-
fect is to slow down the decay of the horizontal velocity by
transport and stretching of potential vorticity. On the con-
trary, when Sc,1, the secondary motion is primarily driven
by the density diffusion and it accelerates the damping of the
velocity.

II. Q2-D EQUATIONS

Following Riley et al.2 and Lilly ~1983!,7 we describe
the stably stratified system in terms of the density~r̃! and
pressure (p̃) perturbation fields with respect to a linear den-
sity profile~r̄! and its corresponding hydrostatically balanced
pressure field (p̄). Thus, in a Cartesian system (e1 .e2 ,e3)
with e3 opposing gravity andx5(x,y ,z), the density and
pressure fields can be written as

r~x,t !5r01 r̄~z !1 r̃~x,t !, ~1!

p~x,t !5p01 p̄~z !1 p̃~x,t !. ~2!

Defining the velocity field asu(x,t), we can write the equa-
tions of motion for a stratified fluid in the Boussinesq ap-
proximation as

Du

Dt
52

1

r0
“ p̃2

r̃

r0
ge31n¹2u, ~3!

a!Electronic mail: ramiro@ladhyx.polytechnique.fr
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“"u50, ~4!

D r̃

Dt
5

r0N2

g
uz1k¹2r̃, ~5!

where n5m/r0 is the mean kinematic viscosity,N
5(2(g/r0)(d r̄/dz))1/2 is the Brunt–Va¨isälä frequency, and
k is the diffusivity of the stratifying agent~e.g., salt or tem-
perature!. Equation~5! for the evolution of the density per-
turbation was obtained from the transport equation of the
stratifying agent~i.e., the temperature or the salinity! assum-
ing that the density varies linearly with temperature or salin-
ity. We define the scalesU, W, Lh , andL

v
for the horizontal

and vertical components of velocityuh5(ux ,uy), uz , and
position (x,y) and z, respectively. In addition, we note the
existence of two relevant time scales:TA5Lh /U, character-
izing the evolution of horizontal advective motion, andTN

5N21, a ‘‘buoyancy’’ time scale which is related to the in-
ternal gravity waves regime. The ratio of these two time
scales defines a Froude number measuring the strength of
inertial forces with respect to buoyancy forces, which we
define as thehorizontal Froude number:

Fh5

U

LhN
. ~6!

Similarly we can define thevertical Froude number:

F
v
5

U

L
v
N

, ~7!

which measures the ratio between the vertical length scaleL
v

and thebuoyancy length scale LN5U/N. The latter can be
interpreted as the maximum vertical displacement of a fluid
parcel that converts all of its kinetic energy into potential
energy@see, e.g., Tritton~1988!8#. We note the evident rela-
tionship between these two Froude numbersFh5aF

v
,

which defines the aspect ratioa5L
v

/Lh .
Following Riley et al.,2 we now proceed to a scaling

analysis making some hypotheses on the dominant balances
in the equations of motion~3!–~5! which aim at the descrip-
tion of the Q2-D regime and the pancake vortices. To begin
with, as we are interested in motions that are far more im-
portant horizontally than vertically, we use the horizontal
advection time scaleTA5Lh /U to write the time derivatives
in nondimensional form. We find the pressure scalingP
;r0U2 by imposing the equilibrium of the pressure gradient
and the advection term in the horizontal components of the
momentum equation~3!. Furthermore, from the balance be-
tween the pressure gradient and the buoyancy term in the
vertical component of~3!, the scale for the density perturba-
tions can be written asR;r0U2/gL

v
. Finally, to find the

scale of the vertical velocity, we state that the partial time
derivative of the density perturbation in Eq.~5! is balanced
by the vertical velocity term, which rendersW;UF

v
Fh .

This is equivalent to saying that variations in density are due
to vertical displacement of fluid parcels. Using the previous
scales and introducing the indexh to denote a vector in the
horizontal plane~giving for exampleDh /Dt5]/]t1uh"“h

for the horizontal material derivative!, we obtain the follow-
ing set of nondimensional equations:

Dhuh

Dt
1F

v

2uz

]uh

]z
52“h p̃1

1

ReS ¹h
2uh1

1

a2

]2uh

]z2 D , ~8!

a2F
v

2S Dhuz

Dt
1F

v

2uz

]uz

]z D

52

] p̃

]z
2 r̃1a2

F
v

2

ReS ¹h
2uz1

1

a2

]2uz

]z2 D , ~9!

“h"uh1F
v

2 ]uz

]z
50, ~10!

Dhr̃

Dt
1F

v

2uz

]r̃

]z
5uz1

1

Re ScS ¹h
2r̃1

1

a2

]2r̃

]z2 D , ~11!

where we have used the definitions of the Reynolds Re
5ULh /n and Schmidt~or Prandtl if temperature is the strati-
fying agent! Sc5n/k numbers. Furthermore, if the vorticity
vector is scaled byU/Lh , we obtain~using Cartesian coor-
dinates to express the horizontal components!

vz5“h3uh5

]ux

]y
2

]uy

]x
, ~12!

vx5aF
v

2 ]uz

]y
2

1

a

]uy

]z
, ~13!

vy5

1

a

]ux

]z
2aF

v

2 ]uz

]x
. ~14!

The original Q2-D approximation proposed by Riley
et al.2 considers both Froude numbers small (Fh!1 and
F

v
!1), allowing one to develop all fields in powers ofF

v

and obtaining at leading order the two-dimensional Euler
equations for the horizontal components of the momentum
equation with no vertical dependence.

III. ASYMPTOTIC ANALYSIS

In this section we develop an asymptotic analysis for the
case of an axisymmetric monopole in order to formally de-
rive a model for its decay. We consider the Q2-D approxi-
mation, where the horizontal fluid motions evolve under the
advective time gaugeTA . Both Froude numbers are small
(Fh!1 andF

v
!1) and we let the Reynolds number Re be

of ordera22. This second hypothesis lets us find the terms
associated with viscous diffusion at the lowest order of a
perturbation analysis. When the condition on the vertical
Froude numberF

v
!1 is imposed, the condition on the hori-

zontal Froude numberFh!1 is satisfied even fora<1. In
many cases involving slender vortices, however, the condi-
tion on the aspect ratio can be considered asa!1 and the
diffusive terms in Eqs.~8!–~11! can be simplified by keeping
only the vertical diffusion. In the present analysis we use the
less restrictive hypothesisa<1 so that the full diffusion term
appears at leading order. With the assumptions of both hori-
zontal and vertical Froude numbers small, we are entitled to
develop all fields in powers ofF

v
. Actually, as may be

guessed from the quadratic dependence inF
v

of Eqs. ~8!–
~11!, it is convenient to consider powers ofF

v

2, such that
(uh ,uz ,p̃,r̃)5(uh0 ,uz0 ,p̃0 ,r̃0)1F

v

2(uh2 ,uz2 ,p̃2 ,r̃2)1••• .
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Using polar coordinates for the positionxh5(r,u) and the
velocity uh5(ur ,uu), and assuming axisymmetric flow~i.e.,
independence ofu, p andr on u!, the conservation of mass
~10! implies at zeroth order that

1

r

]~rur0!

]r
50, ~15!

which gives

ur050, ~16!

sinceur0 vanishes atr50 ~i.e., there is no mass source at the
vortex center!. Moreover, from Eqs.~8!, ~9!, and ~11! the
zeroth-order equations are simplified leading to the following
system:

2

uu0
2

r
52

] p̃0

]r
, ~17!

]uu0

]t
5

1

ReS ]2uu0

]r2
1

1

r

]uu0

]r
2

uu0

r2
1

1

a2

]2uu0

]z2 D , ~18!

052

] p̃0

]z
2 r̃0 , ~19!

]r̃0

]t
5uz01

1

Sc ReS ]2r̃0

]r2 1

1

r

]r̃0

]r
1

1

a2

]2r̃0

]z2 D . ~20!

The radial~17! and vertical~19! momentum equations
represent, respectively, cyclostrophic and hydrostatic bal-
ances. Together with Eq.~18!, the asymptotic expansion re-
covers the heuristic diffusion model analyzed by BVCH. The
model is extended since diffusion of density is now explicitly
taken into account by Eq.~20!, which relates density fluctua-
tions and vertical velocity. Equation~18! is a closed equation
and may be solved for any initial azimuthal velocity distri-
bution uu0(z,r). We will consider the self-similar solution
used by BVCH in order to allow direct comparison of our
results with their numerical simulations. It reads

uu05
r

2p1/2S 2a2
1

4

Re
t D

1/2

S 11

4

Re
t D

2

3expS 2

a2z2

2a2
1

4

Re
tD expS 2

r2

11

4

Re
tD . ~21!

Now, from the equations for cyclostrophic and hydro-
static balances—Eqs.~17! and ~19!, respectively—the den-
sity field at leading orderr̃0 can be calculated, leading to

r̃05

2a2z

4pS 2a2
1

4

Re
t D

2

S 11

4

Re
t D

3

3expS 2
2a2z2

2a2
1

4

Re
tD expS 2

2r2

11

4

Re
tD , ~22!

which in turn lets us calculate the leading order vertical ve-
locity uz0 , using Eq.~20!. Contour plots on the (r,z) plane
of these solutions are shown in Figs. 1~a!–1~c! for a50.3,
F

v
50.3, Re5100, and Sc5100. The vertical and radial com-

ponents of the nondimensional vorticityv also shown have
been obtained in terms of the azimuthal velocity~21! as

vz05

1

r

]~ruu0!

]r
, vr052

1

a

]uu0

]z
,

whereas the azimuthal vorticity vanishes at leading order.
In order to find the radial velocity which appears to com-

pensate the mass transported byuz0 we need to calculate the
next order of the expansion sinceur0 is zero. At orderF

v

2 the
conservation of mass gives

]~rur2!

]r
1r

]uz0

]z
50, ~23!

which lets us calculateur2 . In Fig. 1~f! the contour plot of
the initial distribution ofur2 corresponding to the case of
Figs. 1~a!–1~e! is shown. The important radial extension of
the ur2 field is a result of mass conservation. In the core of
the vortex, Eq.~23! expresses that a converging~or diverg-
ing! vertical velocity plays the role of a source~or a sink! for
the second-order radial flow. Outside of the vortex core the
vertical velocity vanishes and the radial flow extends to in-
finity, decreasing only liker21 since](rur2)/]r should be
zero. In a real case the extent of the radial flow will be
limited to a distancer;F

v

2 at which the next order domi-
nates, and a matched asymptotic expansion would be re-
quired to find the far field. This is, however, beyond the
scope of the present work.

With the expressions for the vertical and radial veloci-
ties, we can calculate also the azimuthal vorticity up to order
F

v

2 as follows:

vu5F
v

2S 1

a

]ur2

]z
2a

]uz0

]r D . ~24!

Azimuthal vorticity is an interesting quantity since it
gives a snapshot of the secondary circulation in the (r,z)
plane, positive~negative! values ofvu indicating clockwise
~counterclockwise! motion. Azimuthal vorticity is repre-
sented in Fig. 2 for two cases. From the shape of the con-
tours it can be inferred that the major contribution to its total
value comes from the]ur2 /]z term in Eq.~24!.

The effect of the secondary circulation advection on the
mean azimuthal flow can be discussed using theF

v

2 order
azimuthal momentum equation,

]uu2

]t
1ur2

]uu0

]r
1

uu0ur2

r
1uz0

]uu0

]z

5

1

ReS ]2uu2

]r2
1

1

r

]uu2

]r
2

uu2

r2
1

1

a2

]2uu2

]z2 D . ~25!

The term

ur2

]uu0

]r
1

uu0ur2

r
1uz0

]uu0

]z
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forces theuu2 field to depart from zero, while the right-hand-
side of ~25!, representing the action of viscosity, acts the
opposite way makinguu2 relax back.

IV. SCHMIDT NUMBER EFFECTS ON THE VORTEX
DECAY

We have used the evolution equation for the density per-
turbation~20! to calculate the vertical velocity at zeroth or-
der uz0 . The dominant balance of terms in this equation,
depends on the value of the Schmidt number Sc. For large
Sc, the diffusion of density is negligible anduz0 will be
dominated by the]r̃0 /]t contribution, which is driven only
by the diffusion of horizontal momentum, i.e.,

uz0;
]r̃0

]t
52

]2

]t]zE
uu0

2

r
dr.

The diffusion of momentum decreases the centrifugal force
and the deflection of the isopycnals inside the vortex relaxes
back to the horizontal. Since this relaxation may occur only

by vertical transport, the induced vertical velocity should be
positive above the vortex symmetry plane and negative be-
low @Fig. 3~a!#. On the contrary, if Sc is small, the diffusion
of density will represent the largest contribution touz0 , in
the limit case eliminating the effect of]r̃0 /]t, i.e.,

uz0;2

1

Sc ReS ]2r̃0

]r2
1

1

r

]r̃0

]r
1

1

a2

]2r̃0

]z2 D .

In this case the momentum diffusion has no or little role in
determining the vertical velocity since its contribution is
masked by the stratification diffusion, which acts on a faster
time scale. Thus, the vertical transport should compensate
the diffusion of density in order to maintain the cyclostrophic
equilibrium. The induced vertical velocity is therefore nega-
tive above the vortex and positive below@Fig. 3~b!#.

The resulting dynamics is opposite in each of these cases
since, as mentioned earlier, the secondary circulation accom-
panying the vortex decay is driven by the vertical velocity
uz0 . An illustration of the two situations can be obtained

FIG. 1. Plots of~a! uu0 , ~b! r̃0 , ~c!

vz0 , ~d! vr0 , ~e! uz0 , and~f! ur2 ob-
tained from the diffusion model with
a50.3, F

v
50.3, Re5100, and Sc

5100. The dotted contours represent
negative values of the solid contours
positive values. The positive contour
intervals and increments are
( uu0min : Duu0 : uu0max) 5 (0.02 : 0.02 :
0.26), (r̃0min : Dr̃0 : r̃0max5(0.01 :
0.01 : 0.08), (vz0min : Dvz0 : vz0max)
5(0.05 : 0.05 : 1.2 ) , (vr0min : Dvr0 :
vr0max ) 5 ( 0.015 : 0.015 : 0.15 ) ,

(uz0min : Duz0 : uz0max) 5 (0.004 : 0.004
:0.04) and (ur2min : Dur2 : ur2max)
5(0.002 : 0.003 : 0.029).
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from expression~24! for vu . In Fig. 4, plots of the maxi-
mum values of azimuthal vorticity@referred to asvumax(t)]
are shown for various values of Sc, negative values ofvumax

correspond to the cases turning counterclockwise on the up-
per (r,z) plane. ~We have kept the notation Sc of the
Schmidt number for the whole range of values, even when
for values smaller than 1 only the Prandtl number Pr could
be realistic.! Contour plots of the initial values ofvu for
Sc5700 and Sc50.7 were shown in Fig. 2. The main feature
observed in Figs. 2 and 4 is the inversion on the rotation
sense for the curves corresponding to Sc smaller than 1. We
explain this behavior as follows: for large Sc, the circulation
pattern depicted by thevu contours represents a radial flow

toward the vortex center and a vertical outward flow near the
vortex axis. Following the idea from the previous paragraph,
we remark that the vertical velocityuz0 driving this second-
ary circulation is only determined by the density distribution
r̃0 adjusting itself to the decayinguu0 . For Sc,1 the situa-
tion is reversed, since the stratifying agent diffuses faster
than momentum and therefore the vertical velocity induced
to preserve cyclostrophic balance, restoring the deformation
of the isopycnals, points toward the vortex symmetry plane.
Anticipating on the second orderuu2 computation we may
predict that the effect of the secondary circulation during the
vortex decay when Sc@1 should retard the damping, since it
will oppose the radial growth and the decay of vertical vor-

FIG. 2. Contour and extreme-value
plots of vu at t50 for a50.4, F

v

50.75, Re5100, ~a!, ~c! Sc5700, and
~b!, ~d! Sc50.7. The dotted contours
represent negative values of the solid
contours positive values. The positive
contour intervals and increments in~a!

and ~b! are (vumin : Dvu : vumax)
5(0.002 : 0.003 : 0.029).

FIG. 3. Schematic diagrams of the
secondary circulation during the vor-
tex decay for~a! Sc@1 and~b! Sc!1.
Isopycnals deflected toward the vortex
symmetry plane are represented as
solid lines. In the middle and bottom
figures for case~a! an initial time is
shown in dashed lines. The direction
of the radial and vertical velocities is
shown in the middle figures for both
cases. Stretching~a! and squeezing~b!
of vorticity is pictured schematically
in the bottom figures~see the text for
discussion!.
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ticity by the radial transport and the stretching effect of ver-
tical velocity, respectively. On the other hand, for Sc,1 the
situation is reversed, the outward flow being radial and the
vertical inflow compressing the vortex. We expect this effect
to enhance damping since the secondary circulation due to
density diffusion will transport the vorticity radially out-
wards and produce a vortex compression effect. These fea-
tures can be readily observed looking at the time evolution of
the vertical vorticityvz and the vortex radius@defined as the
value ofr5r8 which rendersvz(r8)50]. In order to do so,
we need to calculate theF

v

2-order effect on the azimuthal
velocity uu2 , which requires solving Eq.~25!. Since the
transport terms in Eq.~25! are given in terms of the known
quantitiesuu0 , uz0 , andur2 , the uu2 field can be computed
numerically by solving a forced diffusion equation. How-
ever, in order to gain a better physical understanding of the
role of the secondary circulation on the vortex evolution, we
may estimateuu2 by neglecting the diffusion at this order
and formally solving the simplified equation:

]uu2

]t
52ur2

]uu0

]r
2

uu0ur2

r
2uz0

]uu0

]z
. ~26!

This approximation is fully justified in the small Sc
number limit. In other cases theuu2 thus computed is slightly
overestimated but shows the proper trend. In Figs. 5 and 6
plots of the decaying maximum value ofvz up to second
order in F

v

2 and of the vortex radial growth are shown, re-
spectively, for two different values of Sc. The radiusr8 is
defined as the value ofr for which vz changes sign. Dashed
lines in both figures represent the zeroth-order evolution; it is
important to remember that at zeroth order azimuthal vortic-
ity is almost zero, so the vortex decays exclusively as a result
of diffusion of uu—governed by Eq.~18!. Over- and under-

damped behaviors with respect to the zeroth-order values are
clearly identified depending on the value of Sc. That is, for
the case of Sc510, theF

v

2-order vortex damping, represented
by the diminishing vertical vorticity and the growing radius,
is slower than the zeroth-order prediction, while for the case
of Sc50.7 the vortex decays faster due to the diffusion of the
stratifying agent. For even smaller Sc, the diffusion is faster
and occurs not on the viscous time scaleTnv

5L
v

2/n but on
Tnv

Sc. This super-damping effect may be relevant in astro-

FIG. 4. Plots ofvumax(t) for a50.4,F
v
50.75, Re5100. Asymptotic model

results are shown in dashed and solid lines for~from bottom to top curve!
Sc50.7, 0.8, 0.9, 1, 10, 100, and 700. In dotted curves the results of the
BVCH numerical simulations~see the text! for Sc51, 10, and 100~from
bottom to top curve!.

FIG. 5. Decay ofvzmax(t). Zeroth order in dashed line and two cases ofF
v

2

order in solid lines.

FIG. 6. Growth ofr8(t). Zeroth order in dashed line and two cases ofF
v

2

order in solid lines.
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physical situations where, for example, a metallic liquid is
thermally stratified~as eventually in the Jovian core!.

V. COMPARISON WITH THE RESULTS OF BVCH

In this section we compare the results of the asymptotic
model with the numerical simulations of BVCH. We address
again the decay of the secondary circulation on the (r,z)
plane represented byvumax ~Fig. 4!. The numerical results of
BVCH are plotted in dotted lines fora50.4, F

v
50.75, Re

5100, and~from bottom to top! Sc51, 10, 100. The reason
for the difference in the initial values is that, as detailed by
BVCH, their numerical simulations start with cyclostrophi-
cally balanced azimuthal velocity and density distribution,
but with zero azimuthal vorticity. The first stage of the evo-
lution shown is thus the increase of azimuthal vorticity to
achieve the cyclostrophically balanced value. This stage cor-
responds to what has been referred to as cyclostrophic ad-
justment ~see Ref. 6! and, as we can see in Fig. 4, it is
superposed to the vortex decay fort<2. The picture is rather
different for the results of our asymptotic model: since the
internal circulation corresponding to cyclostrophic balance is
intrinsically included on the initial conditions, a nonzero ini-
tial value for vumax is observed and there is no need for
adjustment. In the later stages of the vortex evolution, the
results of the asymptotic model are qualitatively consistent
with the numerical simulations of BVCH, and even in rather
good quantitative agreement for the case of Sc51. It is note-
worthy that the vertical Froude number value in the numeri-
cal simulations of BVCH reported here is 0.75, which is out
of the scope of the present asymptotic analysis valid forF

v

!1. It is striking, however, that the asymptotic calculus suc-
ceeds in capturing the order of magnitude and the main trend
of the vortex evolution, validating the physical interpreta-
tions about the diffusion process.

VI. CONCLUSIONS

The diffusion of vortices in a stratified fluid has been
discussed using an asymptotic expansion of the Q2-D equa-
tions of motion. The appropriate parameter for the expansion
has first been identified as the squared vertical Froude num-
berF

v

2. The zeroth-order equations yield an extended version
of the diffusion model proposed by BVCH in Ref. 6 and at
first order inF

v

2 the terms governing the departure from this
model have been calculated. Of particular interest are two
opposite effects associated with cyclostrophic balance which
depend on the ratio of the diffusivities of momentum and

stratifying agent, the Schmidt or Prandtl number, which has
been referred to univocally as Sc. For high values of Sc, the
stretching process resulting from cyclostrophic balance has
been shown to slow down the vortex decay, acting against
diffusive damping. A process of this kind may be invoked to
explain the existence of long-lived vortical structures in na-
ture ~e.g., themeddies, see Ref. 9!. Also, pancake vortices in
laboratory experiments~where the usual setups are based on
salt-stratified water tanks and Sc>700! certainly evolve un-
der these effects. The opposite picture is found for Sc smaller
than 1~and in particular for Sc50.7!, where the density dif-
fuses faster than momentum and the secondary circulation
driven by cyclostrophic balance induces a compression of
the vortex, enhancing its diffusion. This over-damped situa-
tion occurs in atmospheric flows where Sc50.7 and it may
explain why pancake turbulence is difficult to observe in
thermally stratified gas experiments. The predictions of the
asymptotic model are compared with the numerical simula-
tions of BVCH and, even when the cases suitable for com-
parison are well beyond theF

v
!1 limit imposed by the

asymptotic expansion, the main behavior of the vortex is
successfully described.
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