Non-linear optimal perturbations in subcritical instabilities

Abstract : Non-linear optimal perturbations are defined here as those of minimum energy leading to subcritical instability. We show that a necessary condition for an initial perturbation to be a non-linear optimal is that the initial perturbation energy growth is zero. The fulfillment of this condition does not depend on the disturbance amplitude but only on the linearized operator as long as the non-linearity conserves energy. Saddle point solutions and linear optimal perturbations leading to maximum transient growth both satisfy the non-linear optimality condition. We discuss these issues on low-dimensional models of subcritical transition for which non-linear optimals and the minimum threshold energy are computed. © 2005 Springer.
Type de document :
Chapitre d'ouvrage
Tom Mullin, Rich Kerswell. IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions, 77 (-), Springer, pp.251-266, 2005, Fluid Mechanics and its Applications, 978-1-4020-4048-1. 〈10.1007/1-4020-4049-0_14〉
Liste complète des métadonnées

https://hal-polytechnique.archives-ouvertes.fr/hal-01024964
Contributeur : Denis Roura <>
Soumis le : jeudi 17 juillet 2014 - 10:17:51
Dernière modification le : jeudi 10 mai 2018 - 02:03:14

Lien texte intégral

Identifiants

Collections

Citation

Carlo Cossu. Non-linear optimal perturbations in subcritical instabilities. Tom Mullin, Rich Kerswell. IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions, 77 (-), Springer, pp.251-266, 2005, Fluid Mechanics and its Applications, 978-1-4020-4048-1. 〈10.1007/1-4020-4049-0_14〉. 〈hal-01024964〉

Partager

Métriques

Consultations de la notice

161