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This paper investigates the three-dimensional stability of a Lamb{Chaplygin colum-
nar vertical vortex pair as a function of the vertical wavenumberk,, horizontal
Froude number F,,, Reynolds numberRe and Schmidt number Sc The horizontal
Froude number F, (F, = U=NR, where U is the dipole travelling velocity, R the
dipole radius and N the Brunt{V aisala frequency) is varied in the range [®331 [
and three set of Reynolds-Schmidt numbers are investigateilRe= 10000; Sc=1g,
fRe=1000;Sc=1g, fRe= 200;Sc=637g. In the whole range of F, and Re the
dominant mode is always antisymmetric with respect to the middle plane between the
vortices but its physical nature and properties change whehR;, is varied. An elliptic
instability prevails for F,, > 0:25, independently of the Reynolds number. It manifests
itself by the bending of each vortex core in the opposite direction to the vortex periph-
ery. The growth rate of the elliptic instability is reduced by strati cation e ects but
its spatial structure is almost una ected. In the range @ < Fy < 0:25, a continuous
transition occurs from the elliptic instability to a di erent instability called zigzag
instability. The transitional range F. = 0:2{0:25 is in good agreement with the value
Fn = 0:22 at which the elliptic instability of an in nite uniform vortex is suppressed by
the strati cation. The zigzag instability dominates for F, 6 0:2 and corresponds to a
vertically modulated bending and twisting of the whole vortex pair. The experimental
evidence for this zigzag instability in a strongly strati ed uid reported in the rst
part of this study (Billant & Chomaz 2000a) are therefore con rmed and extended.
The numerically calculated wavelength and growth rate for low Reynolds number
compare well with experimental measurements.

The present numerical stability analysis fully agrees with the inviscid asymptotic
analysis carried out in the second part of this investigation (Billant & Chomaz 2006)
for small Froude number F, and long wavelength. This con rms that the zigzag
instability is related to the breaking of translational and rotational invariances. As
predicted, the growth rate of the zigzag instability is observed to be self-similar with
respect to the variableF,k,, implying that the maximum growth rate is independent
of F, while the most amplied dimensional wavenumber varies withN=U. The
numerically computed eigenmode and dispersion relation are in striking agreement
with the analytical results.

y Present address: Mteo{France CNRM Toulouse, 42 avenue Coriolis, F{31057 Toulouse,
France.
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1. Introduction

In the present paper, we analyse numerically the three-dimensional linear stability
of a vertical columnar vortex pair in a stably stratied uid mainly as a function of
the vertical wavenumber and the horizontal Froude number.

This investigation is motivated by recent experimental observations of a zigzag
instability operating on a vertical columnar vortex pair in a strongly strati ed uid
(Billant & Chomaz 2000a, referred to hereinafter as part 1). From an initial vertically
coherent state, the zigzag instability bends and twists the vortex pair as a whole,
leading ultimately to the formation of decoupled horizontal layers in which the ow
is still a dipole. The layered structure exhibits a well-de ned vertical scale which is
dynamically determined and not initially imposed. Since this instability is distinct from
the Crow and elliptic instabilities observed to destabilize vortex pairs in homogeneous
uids, the zigzag mode represents a new class of instability which has no counterpart
in the homogeneous problem.

Such a type of instability is of major interest since it could be generic and operate
on any vertically uniform strongly stratied ow. This instability limits the vertical
coherence of the ow and therefore may explain and predict the vertical size of
pancake structures widely observed in strongly stratied ows (Lin & Pao 1979;
Riley, Metcalfe & Weissman 1981; Hop nger 1987; Herring & Metais 1989; Metais
& Herring 1989; Browand, Guyomar & Yoon 1987; Lin et al. 1992; Chomazet al.
1993; Flor & van Heijst 1996; Fincham, Maxworthy & Spedding 1996; Spedding,
Browand & Fincham 1996; Kimura & Herring 1996; Spedding 1997; Bonnier, Ei
& Bonneton 2000).

In the light of the experimental observations of the zigzag instability, we have
developed a general theoretical approach to account for this instability (Billant &
Chomaz 200®, hereinafter referred to as part 2). By means of an asymptotic inviscid
analysis for small horizontal Froude number,F, = U=(NR), where U is the dipole
propagating velocity, N the Brunt{V aisala frequency andR the dipole radius, we
have demonstrated the existence of a long-wavelength instability that originates from
the breaking of translational and rotational invariances. The unstable perturbations,
which are sinusoidally modulated along the vertical, involve both a lateral slide and a
rotation of the whole vortex pair. This instability thus bends and twists the columnar
vortex pair as a whole as indeed is observed in the experiments.

An important theoretical prediction is that maximum growth will be achieved
for a dimensional vertical wavelength proportional to U=N in the inviscid limit.
Unfortunately, it has not been possible to con rm this vertical scaling in the laboratory
experiment (part 1) because the low Froude numbers where the zigzag instability is
observed are dominated by viscous e ects. Indeed, in laboratory experiments, low
Froude numbers may be achieved only by lowering the characteristic velocity since,
in practice, the Brunt{Vaisala frequency and the dipole size are bounded. The low
Froude number regime is therefore always associated with low Reynolds numbers. In
contrast, such a limitation is not encountered in a numerical stability analysis since the
Froude and Reynolds numbers can easily be varied independently over a wide range.

The goal of the present study is three-fold:

(i) General study of the in uence of a stable strati cation on the three-dimensional
stability of columnar vertical vortices for arbitrary horizontal Froude numbers. A
similar stability analysis of columnar vertical vortex arrays has been recently carried
out by Potylitsin & Peltier (1998). Strati cation e ects were found to be stabilizing
but only weak strati cations were considered.
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(i) Validation and extension of the asymptotic analysis (part 2) to nite Froude
numbers and wavenumbers.

(iii) Comparison with the experimental results (part 1).

The paper is organized as follows. Inx2, we outline the Lamb{Chaplygin basic
state and the linearized perturbation equations. The numerical method used to solve
the stability equations is described irx3. In x4, the most unstable normal mode of the
Lamb{Chaplygin vortex pair is determined as a function of the vertical wavenumber
k, for Froude numbers in the range [00331[ and for three Reynolds{Schmidt
number sets:fRe=10000; Sc=1g, fRe= 1000; Sc= 1g and fRe= 200; Sc= 637g.
The symmetry of the eigenmodes is rst discussed ix4.1. Growth rates are presented
in x4.2 as a function of the vertical wavenumbek,, Froude number F, and Reynolds
number Re Eigenmodes of the elliptic and zigzag instabilities are described ¥x4.3
and 4.4. The transition from the elliptic to the zigzag instability when the Froude
number is varied is characterized ix4.5. Section 5 is devoted to a full comparison with
the theoretical results, growth ratesX5.1) and spatial eigenmodesx6.2), obtained in
part 2. Finally, a comparison between numerical and experimental results is provided
in X6.

2. Problem formulation

In the following, we use either Cartesian coordinatesx{y;z) or cylindrical co-
ordinates (; ;z) with x = rcos and y = rsin and z pointing in the vertical
direction.

The governing equations are the Navier{Stokes equation within the Boussinesq
approximation

Du 1 0
Dl —Or P g—oeZ + U (2.18)
together with the incompressibility condition
r u=0; (2.1b)
and the density equation
DO @ a
— 4+ —- = .
Dt U, @2 D 7 (2.1c)

whereu = (uy; U; U;) is the velocity vector in Cartesian coordinatesP the pressureg
the gravity, e, the unit vector in the positive z-direction, the kinematic viscosity, and
D the molecular di usivity of the stratifying agent. The total density is expressed
as the sum of a constant reference density,, a linear mean density pro le (z) and
a perturbation density qx;t)

= o+ @+ Axt): (2.2)

As in part 2, the Lamb{Chaplygin dipole (Lamb 1932; Batchelor 1967; Meleshko
& van Heijst 1994) is used as a basic state. This exact solution of the two-dimensional
Euler equations describes a pair of counter-rotating vortices. The streamfunctiong
and vertical vorticity ! , = o of this solution expressed in a co-moving frame of
reference are

2UR r

—J — sin; | =
Jo( 1)t 2

ofr; ) = R (r6 R); (2.39)

2
1
Rz ©°



68 P. Billant and J.-M. Chomaz
2
off; )= Ur 1 F:—Z sin ; I =0 (r>R): (2.3)
where U and R are the propagating velocity and the radius of the dipole,J, and J;
are the zero and rst-order Bessel functions and ; = 3:8317 is the rst zero of J;.
The associated horizontal velocity is given byio = r  ( o€,). The vertical velocity
U, and density perturbation § of the basic state are identically zero.

In what follows, R is taken as the length unit and the advective timescalg=U is
taken as the time unit. The pressure is rescaled byU? and the density by (U?=(gR).
For simplicity, the same notation is kept for the dimensionless variables.

The two-dimensional basic state (2.3) is subjected to in nitesimal three-dimensional
perturbations governed by the non-dimensional linearized equations for the pertur-

bation velocity &, vorticity '~=r &, pressurep and density ~°
@ 1
@t+ l 08 b+l Ug= r(p+up ) -~ + Re & (2.4
r w=0; (2.5)
@° o 1 1
h ro~0 —g = -~ 2.6
@t ot Fﬁuz ScRe (2.6)
wherer iﬁ the horizontal component ofr, Re= UR=, Sc= =D, F, = U=RN
and N = (g= o)@=@z The viscous diusion of the basic state is omitted as

classically done in stability analysis (Drazin & Reid 1981). This reasonably describes
the dynamics of a real ow if the growth rate of three-dimensional instabilities is
large compared to viscous damping of the basic ow.

Since the basic state is uniform along the-axis, the perturbation may be expressed
by a normal mode

[~ P0Gy zs ) =[u ! e 9(xy;t) e’ +cc; (2.7)

wherek; is the vertical wavenumber and c.c. denotes the complex conjugate. In this
case, (2.4){(2.6) become

@ . 1
@{* l08, U+! Up= rp(P+up U) [ik{p+ue W+ e+ Rie( U k2U);
(2.8)
N u+iku,=0; (2.9)
@’ o 1 1 0 L2
= 4 0= — k ; 2.10
@t Upo Ih Fﬁuz SCRe( h v4 () ( )

where u, is the horizontal component ofu and | the horizontal Laplacian.

3. Numerical method

In order to study the three-dimensional stability of the vortex pair, we shall not
explicitly determine the matrix operator deriving from (2.8){(2.10) and compute all
its eigenmodes as, for instance, in the pioneering work of Pierrehumbert & Widnall
(1982) on three-dimensional instabilities of a mixing layer. Instead, we shall determine
only the eigenmode with the largest growth rate by integrating numerically (2.8){(2.10)
for each k, value. The perturbation velocity u(x;y;t = 0) is rst initialized with a
divergence-free white noise while the perturbation density eld {x;y;t=0) is left to



Three-dimensional stability of a vertical vortex pair in a stratied uid 69

zero. Then, by integrating the linear equations (2.8){(2.10) for a su ciently long time,
the leading eigenmode emerges after a transient (Goldhirsch, Orszag & Maulik 1987;
Edwards et al. 1994; Mamun & Tuckerman 1995). Therefore, for a given vertical
wavenumberk;, the velocity and density perturbation evolve asymptotically for large
times as

lim[u; 90y = [U;Dl(xy)e'; (3.1)

where is the eigenvalue of the leading eigenmod#) (x; y) the velocity eigenfunction
with Kkinetic energy normalized to unity and D(x;y) the associated density eigen-
function. Implementation of a more sophisticated method involving the use of a
higher-dimensional Krylov space (Edwardset al. 1994) is not necessary here since we
are only interested in the leading eigenmode.

To integrate numerically the system (2.8){(2.10) for a givek,, a pseudo-spectral
scheme has been implemented in Cartesian coordinates with periodic boundary con-
ditions. A three-dimensional code has been adapted to linear stability analyses by
Brancher (1996) and successfully validated in the case of instabilities in jets (Brancher,
Chomaz & Huerre 1996; Delbende, Chomaz & Huerre 1998) and Stuart's vortices
(Brancher 1996). In the present investigation, the code has been modied to take
into account a density eld and the associated buoyancy force. The main steps of the
numerical method are outlined below.

Variables in (2.8){(2.10) are expressed in Fourier space by application of the two-
dimensional Fourier transform, forzezxample,

Ok kit = u(xy;t)e Y dxdy; (3.2)

where k, and k, are the horizontal components of the total wavenumberk =
(ke; ks k2). In spectral space, the governing equations (2.8){(2.10) are replaced by

@ _ .\ 1 k?

—— = ikl %+ W ——n° 3.4

@t Ko F2 ScRe (3.4)
The tensorP(k) with Cartesian componentsP;; i Kikj =k designates the projection

operator on the space of solenoidal elds so as to enforce the divergence equation
@ k=0 Theterms U ! 6+ Ug !) in (3) and uy °in (3.4) are evalu-
ated in the physical space. The classical 2/3 truncation rule is used for de-aliasing
in Fourier space. The time integration is performed with the second-order nite-
di erence Adams{Bashforth numerical scheme. The dissipative terms are integrated
exactly. In most simulations, the periodic square box of sizé& =9 is made up of
256 256 collocation points equally spaced on a Cartesian mesh witk = y =0:035.
For large Froude number valuesF;, > 0:1, the time increment ist = 0:0019. For
Fn=0:05andF,=0:033, t is lowered to t =0:001 and t = 0:00075, respectively.
In some cases, the number of collocation points has been increased to 51312 to
check the convergence.

Purely real growth rate is retrieved by the formula

m 1dinE.
o1 2 dt

whereE = u2+ u§+ u? is the kinetic energy perturbation, the overbar denoting spatial

(3.5)
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L=6 L=9 L=12
L L L
X 6 12 X 9 18 X 12 24
0.023 0.625 0.60G 0.035 0.608 0.593 0.047 0.572 0.567
0.012 0.625 0.018 0.607 0.023 0.608

Table 1. Growth rates for a typical case:F, =0:1, k, =4 and fRe=10000; Sc= 19 as a function
of the box sizeL and mesh sizex . The superscript indicates the number of collocation points:
1. 256 256,%:512 512.

integration over the square computational domain. To reach an asymptote in this
formula and achieve an accuracy for of at least three signi cant gures, a typical
integration time of 15 time units (turn over time) is necessary. This integration time
is increased when the leading eigenvalue is not well separated from the others. The
spatial structure of the corresponding eigenmode is obtained after normalizing the
velocity and density elds of the last time-step by its kinetic energy.

In practice, once an eigenmode has been determined for a particular set of values
fFh; Re; Sc;Jg, the parameter space can be explored by continuation to speed up the
convergence toward the most unstable normal mode. Speci cally, instead of using
white noise, a simulation can be initialized by the eigenmode obtained from a previous
simulation for slightly di erent parameters fFy; Re; Sc;lg.

Before turning to the results, it is necessary to give the reasons for the choice
of the numerical parameters and the accuracy of the present method. The box and
mesh sizes chosen are, in fact, a compromise leading to an optimal convergence and
accuracy of the growth rate values for the reasonable 256256 spectral discretization.
The rst constraint is that the box size should be large so as to minimize the e ect of
the periodic boundary conditions. However, for a xed number of collocation points,
increasing the box size decreases the resolution. Thus, there exists a compromise
between the two opposing requirements: large box size and ne resolution. Three
computational domain sizes have been tested =6, L =9 and L = 12 for a typical
case. The computed growth rates for each domain size are given in table 1. The
respective in uences of the periodic boundary conditions and of the resolution have
been checked by doubling the box size, the resolution being xed and, conversely, by
doubling the resolution and keeping the box size constant (in each case, the number
of collocation points is increased four times). As seen in table 1, the box site= 9
is the best compromise since both tests lead to a relative variation of the growth rate
value of less than 1.7%. In contrast, the box size = 6 is too small because doubling
the box size leads to a relative variation of the growth rate value of 4%. Similarly,
the large box L = 12 together with 256 256 collocation points does not provide
a su cient resolution because halving the mesh size leads to a 5% variation of the
growth rate.

The convergence of the growth rates with the numerical parameters is, in fact,
especially slow at low Froude numbersK, < 0:25). In this regime, the vorticity of the
numerically computed eigenmode exhibits a sharp variation at the dipole boundary
r =1 as predicted from the asymptotic theory (part 2). Accordingly, a high resolution
is needed to sample these regions satisfactorily. In addition, the velocity elds of the
neutral modes from which the instability derives for small Froude numbers and small
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L=9
L
X 9 18
0.035 1.220663 1.220666
0.018 1.22147%

Table 2. Same as table 1 for the case?, = 1, Re= 10000 and k, = 4. Only the box sizeL =9
has been tested in this case.

wavenumbers decrease only algebraically fast asl 1 : the translational mode in
the y-direction decreases as=%, while the rotational mode decreases as=1? (part 2).
Therefore, a large box is required for the con nement to have a negligible in uence
on the instability. These are the reasons why a high discretization (256256) and
large box (L = 9) leads to only a 1.7% accuracy at low Froude numbers. In contrast,
for higher Froude numbers F, > 0:25), the vorticity of the leading eigenmode is
spatially smooth and its velocity is localized so that a far better accuracy is achieved.
As seen in table 2, forF, = 1, there is a relative variation of 0.07% of the growth
rate when the mesh size is halved and 0.0002% when the box size= 9 is doubled.

In this case, a smaller box and a coarser grid could have been used but the same sizes
have been kept throughout the study for coherence.

Finally, we should remark that more di culties have been encountered during the
computations at small Froude numbers E, 6 0:25) than at large Froude numbers
(Fn > 0:33). At low Froude numbers, weak small-scale distortions are sometimes
apparent in the computed eigenmodes, especially in the vorticity and vertical velocity
elds. When this happens, we have systematically checked that these distortions are
smoothed out when a higher resolution (512 512) is employed. However, since
the growth rate varies typically only by 2% between the 256 256 and 512 512
resolutions, the convergence of the 256 256 computations has been judged to be
su cient and all the results presented in this paper have been obtained with this
resolution.

4. Three-dimensional instabilities of the columnar vortex pair
4.1. Symmetry of the eigenmodes

The normal modes separate into two classes with distinct symmetries in the
direction: symmetric modes whose velocity and density elds verify the following
symmetries

[uc Wi q06y) =[uG wius A% y); (4.1)
and antisymmetric modes with the inverse symmetries
Uit A06Y) =1 Uaws s 906 y): (4.2)

This decoupling between normal modes arises because the basic state (2.3) has the
symmetries (4.1). More physically, antisymmetric and symmetric modes correspond
to antisymmetric and symmetric distortions of the two vortex axes with respect to the
middle planey = 0.

In the homogeneous caseH, = 1), a detailed characterization of the three-
dimensional instabilities of the Lamb{Chaplygin vortex pair has been given by



72 P. Billant and J.-M. Chomaz

Billant, Brancher & Chomaz (1999). In this study, both the symmetric and antisym-
metric modes have been systematically determined by enforcing the symmetry on the
perturbation in two separate sets of numerical simulations. This study recovered the
well-known long wavelength Crow instability, which is symmetric, and the antisym-
metric elliptic instability recently observed experimentally by Leweke & Williamson
(1998). In addition, a symmetric elliptic instability as well as oscillatory bulging insta-
bilities with symmetric and antisymmetric con gurations have been found. Among all
these instability branches, the antisymmetric elliptic instability possesses the largest
growth rate. In the present study, no attempt has been made to systematically de-
scribe all the instability branches as done for, = 1. More speci cally, only the
dominant branch will be presented, i.e. no symmetry will be imposed on the pertur-
bation and, furthermore, for each group of dimensionless numbertFy; Re; Sg, only
the branch possessing the largest growth rate over all vertical wavenumbégs will

be studied. The latter mode is of major interest since it is expected to dominate the
evolution in a real experiment. ForF, = 1, this dominant mode is the antisymmetric
elliptic mode, but, even if no symmetry has been enforced to the perturbations, all
the simulations carried out exhibit a dominant antisymmetric mode independently
of fFn; Re; Sg However, its structure and its physical mechanism changes wifh,.
The symmetric Crow instability, bulging oscillatory instabilities and symmetric elliptic
instability, which exist for F, = 1, turn out to be subdominants for all the fFy,; Re; Sg
investigated. Strati cation e ects on these instabilities will therefore not be discussed
in the present paper.

4.2. Growth rate

In gures 1(a) and 1({), we plot the growth rates of the leading eigenmode as a
function of the vertical wavenumber k, for fRe = 10000; Sc= 1g and for Froude
numbers in the range M33< Fy < 0:2 (gure 1a) and 02<F, < 1 (gure 1b). At
this high Reynolds number, the ow may be considered as inviscid in the range of
vertical wavenumber investigated. These results will thus allow us to test the inviscid
and non-di usive theory of part 2. Note that the coordinate scales are not the same
for the two plots. For ease of comparison, the curve for, = 0:2 has been included
in both gures.

In the homogeneous casel, = 1 (gure 1a), the growth rate does not decrease
at large wavenumber but asymptotes to an approximately constant value. Two maxi-
mums, with almost the same growth rate value, are noticeable on this curve ( gure
1a). At low wavenumber, Billant et al. (1999) have shown the existence of an anti-
symmetric oscillatory bulging instability for F, = 1. As discussed in the previous
section, its maximum growth rate is always lower than the antisymmetric elliptic
instability, even when the Froude number is decreased. Thus, this oscillatory instability
branch is not represented in gure 14) and will not be considered further. Decreasing
the Froude number to F, = 1 barely alters the growth rate curve ( gure 1a). However,
as the Froude number is further decreased td-, = 0:33 and then to F, = 0:25,
the maximum growth rate and the associated wavenumber markedly decrease by
a factor of two. Strati cation e ects are thus stabilizing, i.e. the growth rate of
three-dimensional instabilities observed in homogeneous uid is reduced. Such a
stabilizing e ect has been also reported by Potylitsin & Peltier (1998) in their study
of weak strati cation e ects on columnar vortex arrays. This is in agreement with
the intuitive idea that strati cation e ects stabilize two-dimensional ows against
three-dimensional disturbances by inhibiting vertical motions. Yet, when the Froude
number is further decreased below 0.2 ( gure l), the stabilizing trend is halted and
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Figure 1. Growth rates as a function of vertical wavenumberk, for fRe= 10000; Sc=1g.
(2 026 F,6 1. (b) 0:0336 F,6 0:2.

even reversed. Indeed, it can be seen that the growth rate curves f§y = 0:2 and

Frn = 0:25 are almost superposed, except at low and high wavenumbers. When the
Froude number is decreased fronF, = 0:2 to Fy = 0:033 passing by 0.15, 0.1 and
0.05, the maximum growth rate rst slightly re-increases and then remains constant.
It is also particularly noteworthy that the stability curves are shifted to higher and
higher wavenumbers ad-, is decreased. Physically, this means that the timescale of
the instability remains constant while the preferred vertical scale becomes smaller and
smaller whenF,, is decreased.

For small wavenumbers, these instability branches could not be followed because of
the presence of a subdominant oscillatory instability. Therefore, the small wavenumber
region is masked, but for comparison with the theory X5), the growth rate forF, 6 0:2
has been extrapolated linearly to zero ag, ! 0 as shown by dashed lines in gure
1(b). In contrast, for F, > 0:25 ( gure 1a), a low-wavenumber instability cuto seems
to occur for a non-zero wavenumber if the instability branches are extrapolated down
to zero growth rate.

The existence of two distinct regimes is clearly demonstrated in gures &(and
2(b). In these gures, the maximum growth rate . and the associated wavenumber
k; max determined from gure 1 are presented as a function of the inverse Froude
number for this set of Reynolds{Schmidt numbers together with the two other
sets,fRe = 1000;Sc= 1g, and fRe = 200; Sc = 637g, which will be discussed
below. Focusing our attention on the open circle data points that correspond to
fRe=10000; Sc= 1g, the initial decrease of ..« and k, max Clearly identies a rst
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Figure 2. (a) Wavenumberk, nax and (b) growth rate . Of the fastest growing perturbation as
a function of the inverse Froude number. , fRe= 10000;Sc= 1g; , fRe= 1000;Sc= 1g;

,fRe=200; Sc= 637g. In (a), the error bars indicate the indeterminacy on the estimation ok, max
resulting from the discretization ofk,. The regimes labelled Elliptic and Zigzag indicate the regions
where the instability is of elliptic type and of zigzag type, respectively.

regime associated by continuity to the elliptic instability forF, = 1, and a second
regime where the instability is of zigzag type as will be shown ir5. In this second
regime, K; max is growing with 1=F, and .« is almost constant.

Weak dissipation e ects have been treated by performing a similar set of compu-
tations for Re= 1000, the Schmidt number being the same as befor8c=1 (gure
3). As in gure 1, only the dominant instability branches are shown in gure 3. The
growth rate curves exhibit essentially the same trend and pro le as in gure 1. How-
ever, because viscosity has a higher stabilizing e ect on large wavenumbers than on
small wavenumbers, these growth rate curves are unevenly lowered when compared
to the Re= 10000 case. For Froude numberd, > 0:1, for which the wavenumber
of maximum ampli cation is lower than 6, the growth rate is only slightly lowered
by viscous e ect. In contrast, for lower Froude numbers EF, 6 0:05), the growth rate
attenuation is more and more pronounced ag-, decreases, owing to the shift of the
growth rate curves towards large wavenumbers. These trends are better seen in gures
2(a) and 2(0). max and k; max follow the same evolution as in the nearly inviscid case
discussed previously, the only di erences being the viscous damping of the growth
rate together with a decrease ok, max at small Fy, (large k; max).

A third set of parametersfRe= 200; Sc= 637g, which are typical of the laboratory
conditions (part 1), have been investigated to compare the numerical results with
experimental measurements. In constrast with the two other cases, the Schmidt
number has been set to the valu&c= 637, characteristic of salt-strati ed water. The
growth rate curves are not shown for the latter set of Reynolds{Schmidt numbers
but their main characteristics, i.e. the maximum growth rate ,,ox and the associated
wavenumberk, nox as a function of the inverse Froude number, are also summarized
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Figure 3. As in gure 1, exceptRe= 1000.

in gures 2(a) and 2(b). Once again, two distinct regimest, 6 0:2 and F, > 0:25, can
be identi ed on the low Re curve. The viscous damping is now clearly noticeable on
the curve of maximal growth rate for every Froude number (gure ). This e ect
increases dramatically ad-, decreases, SinC&; max increases with £F,. ,max €ven
drops to negative value forF, smaller than approximately 0.06{0.07. However, the
most ampli ed wavenumber is almost una ected by di usion.

In summary, it is obvious from gures 1, 2 and 3 that strati cation has di erent
e ects above and belowF;,. = 0:2{0.25. This transitional regime is independent of the
Reynolds and Schmidt numbers investigated. For Reynolds and Schmidt numbers
approaching the inviscid limitfRe= 10 000; Sc= 1 gand whenF, 6 0:2, the maximum
growth rate remains constant ask, is decreased and the wavenumber of maximum
ampli cation increases in inverse proportion to the Froude number. This striking
behaviour is not observed forF, > 0:25, for which strati cation tends to stabilize
the dominant three-dimensional instability observed in the homogeneous problem.
We shall see now that this transition corresponds to a change of the destabilizing
mechanism associated with a modi cation of the spatial structure of the unstable
mode from elliptic to zigzag type.

4.3. Eigenmode in the elliptic instability region

The structure of the mode in the elliptic region forF, = 1 > F, and Re= 1000 is
shown in gure 4 in terms of its spatial distribution of vertical vorticity and velocity
components in the horizontal plane. Only the central region of the computational
domain has been represented since the perturbation is localized. The wavenumber
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Figure 4. Elliptic instability: ( @) contours of real vertical vorticity ! ;, (b) real velocitiesu, and

(c) u, and (d) imaginary vertical velocity u, in the horizontal plane for F, = 1, k, = 4:75 and
Re=1000. Only a domain of size 3 3 is shown while the original computational domain is 9 9.
The same contour interval has been used for each velocity component. The contour interval for
I, is 10 times larger than the one for velocity components. Shaded areas are regions of negative
values. The dashed circle indicates the boundary= 1 of the dipole and the dashed line represents
the middle plane between the two vortices of the pair. At in nity, the basic ow is from left to right.

k, = 4:75 corresponds to the rst growth rate maximum for F, = 1 in gure 3(a).
Without loss of generality and since the instability is not oscillatory, the horizontal
components of velocity (i;u,) and the vertical vorticity ! , of the eigenmode have
been made purely real by multiplication with an appropriate phase factor. With this
choice for the phase, the vertical velocity, is purely imaginary. Since this instability
in the homogeneous case has been studied in detail by Billaat al. (1999), we shall
keep our remarks as brief as possible and only recall its main characteristics. The
perturbation velocity eld (gure 4 b;d) veries the symmetry (4.2), meaning that
this mode is antisymmetric. The vertical vorticity contour map consists of a dipole
perturbation nested in each vortex core of the pair ( gure 4). Note that the vertical
vorticity ! , is zero outside the circler = 1 because the basic state (2.3) is potential
for r > and perturbations should remain potential there in the inviscid limit. Such a
structure corresponds to azimuthal wavenumbem= 1 with one radial node within
each vortex core. If this perturbation were superposed with a nite amplitude to the
basic state, it would be seen that this instability distorts the inner part of each vortex
of the pair: the inner core of the upper vortex being shifted up and to the left while
the lower one is shifted up and to the right. The outer vortex parts are moving in the
opposite directions. This instability manifests itself, therefore, by an antisymmetric
bending of the vortex cores of the pair. As rst shown experimentally by Thomas &
Auerbach (1994) and Leweke & Williamson (1998), this instability is characteristic of
an elliptic instability (Widnall, Bliss & Tsai 1974; Moore & Sa man 1975; Tsai &
Widnall 1976; Pierrehumbert 1986; Baily 1986; Wale e 1989) of each vortex of the
pair. In the present case of the Lamb{Chaplygin vortex pair, Billantet al. (1999) have
given further evidence demonstrating its relation to the elliptic instability. Moreover,
a similar mode but with the opposite symmetry is also unstable (Billanet al. 1999).
However, its growth rate is always lower than the antisymmetric one explaining why
it does not appear in the present computations where no symmetry has been imposed
on the perturbation. In Billant et al. (1999), it has been shown also that the second
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Figure 5. As in gure 4 except F, = 0:05,k;, = 12 and fRe= 1000;Sc= 1g. As in gure 4, the
same contour interval has been used for each velocity component. The contour interval fbr, is 10
times larger than the one for the velocity components.

maximum in the growth rate curve for F, = 1 (gures la and 3a) is related to
the apparition of a second elliptic eigenmode still made of azimuthal wavenumbers
m= 1 but with two radial node lines inside each vortex of the pair instead of one.
This increase in the complexity of the radial structure a%, increases is typical of the
elliptic instability of con ned vortex (Moore & Sa man 1975; Tsai & Widnall 1976;
Robinson & Sa man 1984).

4.4. Eigenmode in the zigzag instability region

The spatial structure of the mode in the zigzag region for, = 0:05 and fRe =
1000 Sc= 1g at the most amplied wavenumber k, = K;max = 12 (gure 3b), is
displayed in gure 5. This mode is again antisymmetric since its velocity eld veri es
the symmetry (4.2). However, its spatial structure diers from the elliptic mode
(gure 4). The vertical vorticity ! , (gure 5a) consists of an oblong central negative
perturbation slightly shifted towards the front of the dipole and accompanied with
two regions of positive vertical vorticity on each side. If this perturbation were added
to the basic ow, it would be seen that this instability translates the whole vortex pair
in the negativey-direction and slightly rotates it anticlockwise. Conversely, if the sign
of the perturbation is reversed (i.e. half a wavelength away in the vertical direction),
the vortex pair is translated in the positivey-direction and rotated clockwise. Unlike
the elliptic mode, this instability mode hardly distorts the internal structure of the
two-dimensional dipole. Therefore, in contrast with the elliptic instability which bends
each inner vortex core in the opposite direction to its outer part, the zigzag instability
bends and twists the vortex pair as a whole. This behaviour agrees qualitatively with
the experimental observations of the zigzag instability (part 1).

A further striking di erence with gure 4 is that the magnitude of the vertical
velocity (gure 5d) is very small compared to those of the horizontal velocity compo-
nents ( gures % and 5¢). In order to highlight this feature, the same contour interval
has been used for each velocity component in both gures 4 and 5. IR5, it will
be shown that the characteristics of the zigzag mode correspond precisely to the
analytical predictions of part 2.
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(a) F,=0.033 (b)o.1 (c)0.15

(d)o.2 (e)0.25 (f)o.33

Figure 6. Transition from zigzag to elliptic instability at the vertical wavenumber of maximum
growth k; max for increasing Froude numbers forfRe= 1000; Sc= 1g contours of vertical vorticity
in the horizontal plane. @) Fn, = 0:033,k; max = 15; (b) F, = 0:1, Ky max = 6:5; () Fr = 0:15,k; max = 4;
(d) Fn =0:2, kzmax = 3; (€ Fn = 0:25,Kymax = 3; (f) Fr, = 0:33, kz;max = 3:75. For other details see
the legend of gure 4.

4.5. Transition from the elliptic to the zigzag instability a$, is varied

We next turn our attention to the evolution of the most unstable mode when the
Froude number is varied in order to characterize the transition between the two
di erent eigenmodes described previously. For brevity, only the spatial distribution
of the vertical vorticity component will be presented and discussed. Figure 6 shows
the vertical vorticity at the wavenumber of maximum ampli cation for increasing
Froude numbers in the range [@033 0:33]. At low Froude numbers, F, 6 0:2 (gure
6a; 0, these contour maps are all very similar to gure 54) where the zigzag mode
for F, = 0:05 was presented. However, aBy, is increased, a dipole perturbation
gradually forms on each side of the oblong central perturbation. Betweek,, = 0:2
and F, = 0:25 (gure 6d; 8, these dipoles abruptly strengthen. Then, foF, = 0:33
(gure 6f), the oblong central perturbation is considerably weakened. At this Froude
number the eigenmode has almost attained the spatial distribution observed for
Fn=1 (gure 4a).
Besides these topological modi cations, the main change when the Froude number

is varied concerns the magnitude of the perturbation vertical velocity, and density

° This is illustrated in gure 7 where the ratios (=(uZ + u3))* and ( ®=(uZ + ug))**
of the fastest growing disturbance have been plotted as a function of the inverse of
the Froude number for all the sets of Reynolds{Schmidt numbers investigated. For
Fn 6 0:2, the main feature is that the vertical velocity vanishes linearly a6, ! 0
(a t by the function 2(1=F,) ! is shown by a solid line in gure 7a) whereas the
density perturbation is approximately proportional to the inverse of the Froude
number (a t by 0:44=F, is indicated by a solid line in gure 7b). Di erences between
the three sets of Reynolds{Schmidt numbers are hardly distinguishable even for the
lowest Reynolds number. Only the rightmost point forfRe = 1000; Sc= 1g diers
signi cantly in gure 7( b). This di erence in the density perturbation amplitude for
Fn = 0:033 is entirely attributable to the fact that the most ampli ed wavenumber
k; max = 15 for Re= 1000 is lower than in the nearly inviscid caséRe= 10000 where
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Figure 7. (a) Ratios of root-mean-square perturbation vertical velocity to root-mean-square
perturbation horizontal velocity (uZ=(u + uZ))'™ and (b) root-mean-square density perturbation
to root-mean-square perturbation horizontal velocity ( ®=(u; + u7))** as a function of the in-
verse Froude number for the wavenumber corresponding to the fastest growing disturbance.,
fRe=10000;Sc=1g ,fRe=1000;Sc=1g, ,fRe=200;Sc=637g The solid lines t the
points for fRe=10000;Sc=1gand F, 6 0:25. The tting functiorbsiare 2F, in (a) and 044=F, in
(b). The horizontal dashed line in &) marks the isotropy value = 2. The dashed curve inlf) ts
the points for fRe=10000; Sc= 1gand F, > 0:33. The tting function is 0:19F, 2.

kzmax = 21 (gure 2 a). Indeed, if the density perturbation for Re = 1000 is taken
at the wavenumberk, nax = 21, the dierence between theRe = 1000 and Re =
10000 curves forF, = 0:033 is suppressed. Ix5.2, we shall show that the scalings
(W=(uZ + W)/ Fyand (( ®=(uf + u7))*?/ 1=F, for F, 6 0:2 are fully consistent
with the asymptotic analysis of part 2. ForF, > 0:2, the two preceding scaling laws
break down. An abrupt transition occurs nearF, = 0:25 when approximate isotropy
between the vertical compgnent of velocity and the horizontal ones is achieved,
(W= + w3))*= 07 1= 2 (this value is indicated by a dashed dotted line in
gure 7a). When Fy, is increased above 0.25, the latter ratio remains close to the
isotropy value whereas the density perturbation goes to zero lik&,? as shown by
the dashed curve in gure 70).

A striking feature is that the transition between the two instability modes occurs
continuously as seen by the gradual change of the eigenmode ( gure 6). In addition,
the wavenumber of maximum ampli cation varies continuously, without any jump
(gure 2a). There is therefore a short range of Froude numberg, 0:2{0:25 where
the instability is of mixed type. In this transition scenario, it is worth pointing out that
there is no coexistence and competition between two types of instability, one being
most unstable for low Froude numbers and the other one for high Froude numbers.
It is rather a complete metamorphosis of the nature of a single instability when the
Froude number is varied. A feature con rming this view is that two extrema are not
seen in the growth rate curves near the transition foF,. = 0:2{0:25 (gure 1a, b),
as one would expect if two instabilities with distinct preferred vertical wavenumbers
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Figure 8. Transition from zigzag to elliptic instability at low vertical wavenumbers having the
same growth rate = 0:417 0:021 for fRe = 1000; Sc= 1g contours of real vertical vorticity
in the horizontal plane: (@) F, = 0:15,k, = 2:33; (b) Fn, = 0:2, k, = 1:75; (¢) F, = 0:25,k, = 1.5;
(d) Fn, = 0:33, k, = 2. Like in gure 6, a transition from the zigzag mode at F, = 0:15 (@) to the
elliptic mode at F, = 0:33 (d) can be seen. For other details, refer to the legend of gure 4.

were competing. This idea is also strongly reinforced by the fact that all wavenumbers
seem to be a ected by the change in spatial topology of the eigenmode around the
same Froude number valued-,. = 0:2{0:25, as demonstrated by gure 8. Like gure
6, this gure shows the vertical vorticity contour maps as a function ofFy, around
the critical value but now at wavenumbers lower thark, max and corresponding to the
same growth rate (  0:42). We see that the vertical vorticity forF, = 0:33 (gure
8d) and higher (not shown) are of the elliptic type whereas for, = 0:15 ( gure
8a) and lower (not shown), the instability mode is of the zigzag type. The modes
for F, = 0:2 (gure 8b) and F, = 0:25 (gure 8c) are mixed modes corresponding
to the continuous transition between the zigzag and elliptic instabilities. A transition
around F. = 0:2{0:25 could be identi ed also by looking at the eigenmodes at high
wavenumbers (not shown).

As shown in part 1, this transitional rangeF,. = 0:2{0:25 for the disappearance of
the elliptic instability can be accounted for by the study of Miyazaki & Fukumoto
(1992) on the inuence of strati cation on the elliptic instability. For an in nite
vortex with uniform vorticity, these authors have shown that the elliptic instability is
suppressed by the strati cation whenN > (2 2)1¥ where 2 is the vorticity and

the strain rate. The physical explanation of Miyazaki & Fukumoto (1992) for this
criterion is summarized in part 1. Although the vortices of the Lamb{Chaplygin dipole
are of nite size and have non-uniform vorticity, this criterion can be crudely applied
by estimating the local vorticity and strain rate at the vortex centres. An expansion
of the basic streamfunction (2.3) near one vortex centre yields = 5:06U=R and

= 2:28U=R (part 1). Thus, the thresholdN = ( 2  ?)¥*? becomes, in terms of the
horizontal Froude number, F, = 0:22. This value is within the Froude number range at
which the transition from elliptic to zigzag instabilities occurs herein, @ < F,, < 0:25.
Furthermore, the critical value F,, = 0:22 is a non-di usive threshold and therefore
independent of the Reynolds and Schmidt numbers. This explains why the transition
occurs at the same Froude numbers for the three sets of Reynolds{Schmidt numbers
since they are all relatively large.

At this stage, we have drawn a global picture of the instability characteristics
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of the vortex pair as the Froude number is varied. Two distinct instability modes,
both antisymmetric, prevail above and below the transitional Froude number range
Frnc = 0:2{0:25. For F, > 0:25, the instability is related to the elliptic instability and
consists of an antisymmetric bending of the inner vortex cores which distort the
horizontal structure of the basic state. ForF, 6 0:2, on the other hand, the instability
produces almost no deformation of the horizontal structure of the dipole. Rather, the
vortex pair as a whole is bent and twisted periodically along the vertical direction.
The perturbation vertical velocity is small and scales approximately a$y, while
the density perturbation scales as #AR,. A prominent feature of this instability is
that the most ampli ed wavenumber is inversely proportional to the Froude number
whereas the maximal growth rate remains constant for large Reynolds number. In the
next section, we shall show that this instability corresponds to the zigzag instability
uncovered in parts 1 and 2.

5. Comparison with theoretical results

The goal of this section is to compare the present numerical computations to the
asymptotic calculations of part 2.

In part 2, we have demonstrated for small Froude numbers and in the inviscid
limit the existence of a long-wavelength phase instability related to the breaking of
translational and rotational invariances. A key assumption of this analysis is that
the horizontal dipole structure is only weakly perturbed so that one can describe
the vortex pair by “macroscopic' or phase variables such as location and orientation
of the dipole in the horizontal plane. In the case of the zigzag instability, it turns
out that the relevant phase variables are, the y-coordinate of the dipole along the
axis perpendicular to the initial travelling direction and , the angle of propagation.
Considering further that and vary slowly with the vertical coordinate and with

time, and that ; 1, we found by a multiple-scale perturbation analysis for small
Froude number and small wavenumber that and are related by
@ _ .
@t (5.1)
@ 2 2@ 4@
- = + - + = .
gt (P + FraoRi s + il oy (5.2)

up to the fourth order in F, and @=@Zhe coecients D = 367,01 = 564, ¢ =

161 have been exactly calculated from solvability conditions using the Lamb{
Chaplygin dipole as the basic state. When and are independent of the vertical
coordinate z, the structure of the equations (5.1){(5.2) is an immediate consequence
of the invariance group. If the dipole propagation direction is turned by an angle
from the x-axis, then, to rst order in , the dipole moves along they-axis at the
speed (the propagating velocity of the dipole is normalized to one). The phase

thus increases linearly with time. In contrast, the phase remains constant by
virtue of momentum conservation. The vertical derivative terms in (5.2) describe
weak three-dimensional e ects. Inserting three-dimensional disturbances of the form
(; )/ exp(t +ik,z) yields the dispersion relation

?= DRk + @Rk, iFiks; (53)

which is an expansion for small Froude number and small wavenumber of the exact
dispersion relation. This dispersion relation indicates that small wavenumbers are
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Figure 9. Growth rate as a function of Fnk, for fRe=10000;Sc=1g , F,=0:033;
+ F,=005;, ,F=01; ,F,=0:15; ,F,=0:2.

always unstable sincéd and g; are negative. At large wavenumbers, the second term
in the right-hand side of (5.3) is stabilizing because, is negative. The rst two
terms in the right-hand side of (5.3) are of the form [.k,)™ indicating that the most
ampli ed wavenumber scales approximately a¥k;max/ 1=F, since the third term is
negligible for Fy 1. Although this wavenumber is out of the validity range of
the long-wavelength assumptionk,  1=F,, this observation led us to realize that if
we had carried out the expansion for an in nite number of terms, it would still be
possible to express the growth rate in the form

2= fo(Fnky) + FEfo(Frk,) + Faf a(Frky) + ::1; (5.4)

where thef; terms are functions expressed as series Bfk,. The rst two terms on
the right-hand side of (5.3) correspond to the rst two terms of the expansion for
small Fk, of the function fq in (5.4). The third term on the right-hand side of (5.3)
comes from the rst term of the expansion off, in (5.4).

5.1. Dispersion relation

The generalized dispersion relation (5.4) indicates that tﬁ]e growth rate should be a
function of the single variable Fnk, when Fy ! 0, i.e. fo(Fnkz). This feature of
the inviscid theoretical analysis is already consistent with gures 2§ and 2(b) where
it was clearly seen that, for the high-Reynolds-number caseRe = 10000; Sc= 1g,
the wavenumberk, max Of the fastest growing perturbation is inversely proportional
to the Froude number ( gure 2a) whereas its growth rate . is independent of the
Froude number (gure 2b). To test the self-similarity in a general way, the growth
rate curves of gure 1(p) for F, 6 0.2 and the highest Reynolds number investigated
fRe=10000; Sc= 1g have been redrawn as a function ofk;, in gure 9. It can be
seen that the collapse of the curves is satisfactory. The slight variations seen in gure
9 for F, = 0:15 andF, = 0:2 are thought to be mainly due to theO(F?) term in (5.4).
The slight departure of theF, = 0:033 curve is mainly attributable to viscous di usion
since the maximum growth rate occurs at large wavenumbég, .« = 21 for such small
Froude numbers. Indeed, at the most ampli ed wavenumber, viscous damping due to
vertical shearing is aboutk? ,.=Re= 0:044 while it is 0.017 forF, = 0:05. Therefore,
this di erence in viscous damping accounts for the approximate di erence of 0.03 in
growth rate between theF, = 0:033 andF, = 0:05 curves in gure 9.

The theory predicts more than the qualitative scaling law since it provides the
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Figure 10. Comparison between the analytical growth rate given by the long-wavelength dispersion
relation (5.3) (solid lines) and numerical growth rates fofRe = 100000, Sc=1g. , Fy = 0:033;
+, Fh=0:05; ,F,=0:1; ,F,=0:15. The growth rate forF, = 0:05 and higher Reynolds number
fRe= 100000, Sc= 1gis also shown by a bold line with +. Note that the theoretical prediction
was expected to be valid only for in nitely small wavenumbers. Yet, the analytical growth rate is,
in practice, correct fork, 6 0:3=F,.

gquantitative long-wavelength approximation (5.3) of the dispersion relation. Figure
10 shows a comparison between the analytical growth rates given by (5.3) and the
numerically calculated growth rates of the zigzag instability forF, 6 0:15. It is
seen that the asymptotic growth rates (5.3) (for which all the coe cients have been
computed exactly in part 2) match the numerical growth rates for small values df,.
As expected, the approximation of the growth rate (5.3) is no longer valid for large
Froude numbers and wavenumbers (in practice whek, > 0:3=F, as seen in gure
10) because our asymptotic formulation is restricted to long-wavelength disturbances
and small Froude numbers and because only the rst terms of the expansion have
been computed. The variations of the slopes at the origin with the Froude number is
well predicted even for nite Froude number. A slight di erence between the slopes
at the origin apparently exists but we believe that this is due to the nite Reynolds
number Re = 10000 investigated. To check this, the Reynolds number has been
further increased toRe= 100000 for F, = 0:05 (bold line with + in gure 10) and it

is seen that the numerically calculated growth rates tend toward the theoretical ones.
The viscosity continues to have an e ect even at high Reynolds number presumably
because of the presence of a strong gradient at= 1 in the eigenmode vorticity (even
discontinuity ask,! OandRe!1 as shown in part 2).

5.2. Zigzag eigenfunction

We now compare quantitatively the spatial distribution of the numerically com-
puted eigenmodes with those obtained asymptotically in part 2 for small Froude
numbers and small vertical wavenumbers. Figure 11 shows a full comparison be-
tween the asymptotic and numerical eigenmodes foF, = 0:033, k, = 8:25 and
fRe=10000; Sc= 1g. The analytical velocity, density and vertical vorticity perturba-
tion elds are given at second order inFnk, by

@no P

i @@< o+ Ve (5.5)



























