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Abstract. In contrast with free shear flows presenting velocity profiles with inflection
points which cascade to turbulence in a relatively mild way, wall bounded flows are de-
prived of (inertial) instability modes at low Reynolds numbers and become turbulent in a
much wilder way, most often marked by the coexistence of laminar and turbulent domains
at intermediate Reynolds numbers, well below the range where (viscous) instabilities can
show up. There can even be no unstable mode at all, as for plane Couette flow (pCf) or
for Poiseuille pipe flow (Ppf) that are currently the subject of intense research. Though
the mechanisms involved in the transition to turbulence in wall flows are now better
understood, statistical properties of the transition itself are yet unsatisfactorily assessed.
A widely accepted interpretation rests on non-trivial solutions of the Navier–Stokes equa-
tions in the form of unstable travelling waves and on transient chaotic states associated
to chaotic repellors. Whether these concepts typical of the theory of temporal chaos are
really appropriate is yet unclear owing to the fact that, strictly speaking, they apply when
confinement in physical space is effective while the physical systems considered are rather
extended in at least one space direction, so that spatiotemporal behaviour cannot be ruled
out in the transitional regime. The case of pCf will be examined in this perspective through
numerical simulations of a model with reduced cross-stream (y) dependence, focusing on
the in-plane (x, z) space dependence of a few velocity amplitudes. In the large aspect-ratio
limit, the transition to turbulence takes place via spatiotemporal intermittency and we
shall attempt to make a connection with the theory of first-order (thermodynamic) phase
transitions, as suggested long ago by Pomeau.
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1. Introduction

The transition to turbulence is an important longstanding problem owing to the
marked difference between transport properties of laminar and turbulent flows but
the process can follow different scenarios depending on the physical situation under
consideration.

In closed flows, besides the instability mechanisms, e.g. Rayleigh–Bénard or
Bénard–Marangoni for convection, Taylor–Couette for centrifugal flows [1], lateral
effects play an important role. One can distinguish confined systems from extended
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Figure 1. The wake of a blunt obstacle (left) and the boundary layer flow
(right) are examples of inflectional and non-inflectional base flow profiles, re-
spectively.

ones. In confined systems, all the dimensions of the experimental cell are of the
order of the length over which the mechanism operates, bifurcation theory applies to
a limited set of central modes governed by normal forms obtained through adiabatic
elimination of enslaved modes. The classical scenarios of transition to temporal
chaos follow. In extended systems, at least one of the transverse dimensions is
much larger than that in the direction selected by the instability mechanism and,
while the latter still generates cells at a local scale, large scale modulations well
described within the envelope formalism can degenerate into spatiotemporal chaos
[2].

In open flows, the situation is more complex and less well understood. The
natural control parameter is the Reynolds number Re = ∆U∆ℓ/ν, where ∆ℓ is the
typical length scale, ∆U/∆ℓ the typical shear in the system, and ν the kinematic
viscosity measuring dissipation effects. At the linear stage [1,3], standard stability
analysis helps one to classify base flow profiles into inflectional and non-inflectional
profiles (figure 1). On general grounds, inflectional profiles become unstable and
then turbulent through linear instability mechanisms of inertial origin (Kelvin–
Helmholtz mechanism) at rather low Re and via cascading scenarios with mild
super-critical flavour, i.e. with the bifurcated state staying in some sense close to
the bifurcating one. On the contrary, non-inflectional flow profiles experience no
instability at low Re but can possibly become unstable against subtle linear viscous
mechanisms (Tollmien–Schlichting waves) at large Re ≥ ReTS only.

An essential assumption of linear stability analysis is the mathematically infinites-
imal character of the perturbations. Relaxing this assumption one finds that, when
ReTS is large, the flow can depart from its laminar profile at values of Re < ReTS.
Conditional stability is thus expected to be the rule for non-inflectional base flow
profiles.

The physical role of advection in open flows is worth considering (figure 2, left).
Assuming a perturbation in the form of streamwise vortices (i.e. with axes aligned
along the flow direction), it is immediately seen to induce flow corrections, called
streaks, that are alternatively slowed down and accelerated with respect to the
base flow. This mechanism, called lift-up, leads to transient perturbation energy
growth even in linearly stable flows [4], thus plays a role in the direct transition to
turbulence, and is an indisputable ingredient of the sustainment of turbulence in
wall flows (figure 2, right) (see [5,6]).
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Figure 2. Left: Lift-up mechanism by which streamwise vortices induce
alternatively slow and fast streaks. Right: Self-sustaining process in wall
flows.

At the nonlinear stage, the by-pass scenario usually involves the nucleation and
growth of turbulent spots embedded in linearly stable laminar flow. An example of
turbulent domain (mature spot) immersed into laminar plane Couette flow (pCf)
is given in figure 3 (left). Laminar-turbulent coexistence can be observed in other
wall flows such as plane Poiseuille channel flow or the boundary layer flow. The
shape and relative speed of spots depend on the case studied (see figure 1 of [7]
for illustrations). Owing to the absence of overall advection and of TS instability
mode (ReTS = ∞), plane Couette flow seems to be the simplest possible case to
study. Poiseuille pipe flow (Ppf) is another classical example of flow that is always
linearly stable [1] but becomes turbulent due to nonlinear perturbations. There,
the coexistence of laminar and turbulent flows take the form of turbulent puffs
becoming turbulent slugs at larger Re [8]. These systems have been the subject
of intense study recently. Here we consider the case of pCf and keep in mind Ppf
results [9–11] for comparison.

2. Phenomenology of plane Couette flow

Plane Couette flow is the flow ideally obtained by shearing a fluid between two
infinite parallel plates at a distance 2h moving in opposite directions at speeds
±U , which defines the streamwise direction x, y and z being the wall-normal and
spanwise directions, respectively. The laminar profile is just Ub(y) = Uy/h. It is
known [1] to stay linearly stable for all values of the Reynolds number Re = Uh/ν (ν
is the kinematic velocity) but, of course, to become turbulent for large enough Re.
Here we summarise experimental results obtained by the Saclay group [7,12–17].

Basically, three kinds of experiments were performed: (i1) spot triggering , a tiny
impulsive jet of controlled intensity is sent through the flow [12,13,16]; (i2) quench
experiments, turbulent flow is prepared at some initial high value of Rei and Re
is suddenly decreased to some final value Ref [15,16]; and (ii) variable-strength
permanent modifications to the base flow [14]. Experiments of the kind (ii) which
approach pure Couette flow by a continuation method confirm the results of exper-
iments of the kind (i) which are basically initial value problems. The bifurcation
diagram given in figure 4 summarises the outcome of kind-(i) experiments:
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Figure 3. Left: spot in plane Couette flow at a late stage of its evolution;
the streamwise direction is horizontal and the streaks are clearly visible; the
hole through which the triggering jet is shot appears as a dark dot on the
left of the picture’s centre (courtesy S Bottin). Right: turbulent stripes at
the upper end of the transitional regime (courtesy A Prigent). In units of the
half-gap h, the size of the set-up was 380h × 2h × 70h for the left snapshot
and 770h × 2h × 340h for the right one.
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Figure 4. Bifurcation of the plane Couette flow as obtained by the Saclay
group.

• For Re < Reu ≃ 280, the laminar profile is rapidly recovered whatever the
intensity of the perturbation brought to the flow.

• For Reu < Re . Reg = 325, turbulence is only transient but as Reg is
approached from below, the lifetime of turbulence increases. For Reg . Re .
360 turbulence takes the form of irregular large spots (figure 3, left) [18]. The
actual status of Reg is discussed in more detail below.

• For 360 . Re . Ret = 415 the spots merge to form oblique stripes (figure 3,
right). These stripes are characterised by a regular modulation of the tur-
bulence intensity which dies out when Ret is approached from below, leaving
one with a regime of featureless turbulence [7,17].

Here we concentrate our attention on the lowest part of the transitional regime,
i.e. Re . 360 where turbulent patches are not yet organised in oblique stripes.
In the diagram, Reg = 325 presents itself as the global stability threshold (‘g’ for
‘global’), i.e. the value of the control parameter below which the final state is always
the laminar profile, whatever the amplitude of the initial triggering perturbation.
Below Reg turbulence is therefore not sustained. The lifetimes of transients were
found to be distributed according to exponentially decreasing laws in the form
N (τ ′ > τ) ∝ exp(−τ/〈τ〉) (see figure 5, top). The early proposal, made by Bottin
and Chaté [16], that the characteristic times 〈τ〉 of the distributions were diverging
as 1/(Reg − Re), was extracted from the results by simply taking the mean of
the transients’ lifetimes at a given Re (figure 5, bottom). However, these results
were somewhat noisy and Reg was not approached sufficiently closely to make the
conclusion decisive. The methodology giving 〈τ〉 was further criticised by Hof et al
[9] who rather suggested the absence of a ‘critical’ point [21] and an exponential
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Figure 5. Top: distributions of transient lifetimes for a series of Reynolds
numbers (quench experiments). Bottom: Characteristic times extracted from
these distributions as functions of Re. Courtesy: S Bottin.

increase of the characteristic time with Re. This new proposal, made in close
correspondence with their findings in the related problem of transitional Ppf, fully
agrees with our re-analysis of the original data by fitting the terminal parts of the
distributions in figure 5 (top) against straight lines. However, the extrapolation of
the exponential variation of the characteristic time with Re to much larger values
may not be justified owing to the limited range of values studied.

According to Hof et al, transient behaviour with exponential distribution of life-
times is associated to homoclinic tangles [22], themselves resulting from the presence
of non-trivial unstable periodic orbits in a low-dimensional dynamical systems per-
spective. Such solutions are known to exist both in Ppf [23–25] and in pCf [26,27]
and are furtively observed in experiments [24]. Since Poincaré’s work, the way a
transverse intersection of stable and unstable manifolds of a limit cycle generates
an uncountable infinity of intersections is well understood, as well as how com-
plexity enters, through the symbolic dynamics attached to the modelling of that
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tangle in terms of Smale’s horseshoe. The exponential distribution of lifetimes of
transient chaotic trajectories around the corresponding chaotic repellor then follows
but, unfortunately, this nice application of the theory of low-dimensional dynam-
ical systems cannot predict how the slopes of the distributions vary with Re. In
this respect, the case of pPf is not completely settled, some results displaying ex-
ponential behaviour [9], others a ‘critical’ behaviour ∝ 1/(Reg − Re)α for some
global threshold Reg with α ∼ 1 [10,11]. A first reason explaining the observed
discrepancies could be the experimental conditions since some experiments were
performed at constant driving pressure gradient [9] and others at constant mass
flux [10,11]. As suggested by our results on plane Couette flow, another plausible
possibility is linked to the fact that the physical system is not confined [28], but
quasi-1D in physical space, i.e. confined in the radial direction, discretised in the
azimuthal direction, but extended in the streamwise direction. Recent results from
R R Kerswell and coll. (private communication) seem to point in that direction.

Taking for granted that the reduction of the dynamics to a 0D problem in physical
space leaves aside interesting questions about the transitional regime in pCf, even
more than in Ppf, we now study its dynamics in a quasi-2D spatiotemporal context,
i.e. depending on space in the streamwise (x) and spanwise (z) directions, while
keeping confinement conditions in the cross-flow direction (y).

3. Modelling transitional plane Couette flow

In contrast with most numerical studies restricting the system size by placing in-
plane periodic boundary conditions at small distances (the size of the so-called
minimal flow unit is typically 4πh × 2h × 2πh where h is the half-gap [29]) and
implicitly analysing the results in a finite-dimensional dynamical systems frame-
work, experiments reported above were performed in domains at least as large as
380h×2h×70h. Direct numerical simulations of the full Navier–Stokes equations in
such domains are indeed not yet feasible with accuracy [30] so that we have found it
advisable to develop a spatiotemporal model. Instead of a set of differential equa-
tions governing scalar amplitudes (Lorenz-like model), the resulting model was a
set of partial differential equations for a few fields (Swift–Hohenberg-like model). It
was obtained from primitive equations (3D) through a systematic weighted residual
approach, the Galerkin method, which uses a basis that fulfills the no-slip bound-
ary conditions and projects the residuals on the same basis [32]. Here a simple
polynomial basis was chosen and the expansion was truncated at lowest non-trivial
order thus freezing most of the cross-flow space dependence, while leaving the in-
plane dependence free. This was justified by the fact that, in the lowest part of
the transitional regime, experimental and numerical evidences suggest the existence
of coherent patterns occupying the full gap 2h with limited cross-stream structure
[14,33]. This restriction could of course be overcome but at a price of heavier an-
alytical and numerical computations that we are not ready to pay for, since we
mostly look for qualitative hints and not for quantitative agreement.

Due to the way it is obtained, the model a priori displays the problem’s
most relevant general properties such as non-normal linear terms accounting for
lift-up mechanism, linear viscous damping, nonlinear advection terms preserving
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perturbation kinetic energy, and linear stability of the base profile for all Re. Nu-
merical simulations a posteriori show that it also shares many features of the com-
plete physical system. In particular the statistics of homogeneous turbulent state
no longer depends on the size of the simulation domain as soon as it is large enough
(extensivity property) while the turbulent→ laminar transition is indeed discontin-
uous with exponentially distributed transient lifetimes [34].

Using this model, our main objective has been to contribute to ‘criti-
cal/exponential’ controversy in the pCf case (with possible extrapolation to the
Ppf case) and more particularly to point out the possible role of size effects.

3.1 Sub-criticality in the 32h × 2h × 32h system

In a first instance a 32h×2h×32h system has been considered, which is of moderate
size when compared to the size of coherent structures ∼12h×2h×6h [6]. The state
of the system was determined from its mean turbulent energy contents. The global
stability threshold, with all the ambiguities the term covers, was determined by a
combination of quench experiments, where Re is abruptly decreased from Rei = 200
for which the flow is uniformly turbulent to variable Ref ≪ Rei, and annealing
experiments where Re was quasi-adiabatically decreased. As a result, turbulence
seemed sustained for Re greater than ≈175 but definitely transient for Re < 175:
the time series of the mean turbulent energy presented distinct long plateaus before
sudden decay occurred. Furthermore, the distributions of the transients’ lifetimes
were clearly exponential and closely resembled the experimental ones depicted in
figure 5 (top). The difference between the global threshold in the model Reg ≈ 175
and in the laboratory Reg ≈ 325 could be attributed to the under-estimation of
viscous dissipation and energy transfer towards small cross-stream scales due to
truncation. In spite of this lowering of the transitional regime by an empirical factor
of about two, most qualitative aspects of nonlinear processes seemed preserved, e.g.
those linked to the development of turbulent spots [35].

The variation with Re of the decay rate of the lifetime histograms is given in
figure 6, which shows well-aligned points in lin-log scale, hence exponential behav-
iour, except for Re = 174 and 174.5 which are mis-aligned. It turns out that this
mis-alignment could not be explained by statistical errors, which suggests a cross-
over to critical behaviour very close to Re = 175, possibly linked to size effects.
Improving over this result was however beyond the reach of numerical means and
the visualisation of the velocity fields during decay did not help us discriminate
between temporal and spatiotemporal behaviour.

In view of the typical size of streak segments mentioned earlier, temporal behav-
iour remained plausible in the 32h × 2h × 32h system. Expecting that this will
no longer be the case when confinement effects are made weaker, we considered a
much larger system of size 256h × 2h × 128h.

3.2 Sub-criticality in the 256h × 2h × 128h system

Annealing experiments (Re decreasing quasi-adiabatically) first showed that turbu-
lence could be maintained for very long times well below Reg ≃ 175 without any
sign of decay. The time series of the mean turbulent energy shown in figure 7 (left)
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Figure 6. Decay rate of lifetime distributions as functions of Re in lin-lin
scale (left) and in lin-log scale (right).

was obtained in this way for Re = 170. In contrast, relaxation at the end of a
very long but regular and monotonic transient was observed for Re = 169 without
any trace of plateau indicating that turbulence could be metastable. So, at least
down to Re = 170 the turbulent state thus seems to be a local attractor and the
continuous line in figure 7 (right) indicates the variation of the corresponding mean
turbulent energy as a function of Re.

Visualisations of the turbulent pattern at Re = 170 showed that, when the mean
turbulent energy level was high, the system was in a state of fine-grained mixture of
turbulent and laminar patches (spatiotemporal intermittency [36]), whereas during
the excursions toward comparatively low values, large laminar domains were present
for relatively long lapses of time. An explanation to the exponential behaviour
of the lifetime distributions, alternative to the accepted one in terms of chaotic
saddles, could then be obtained by considering the large 256h × 2h × 128h system
as an assembly of 32 smaller 32h×2h×32h sub-systems and comparing the typical
dynamics of the sub-systems to that of the 32h × 2h × 32h system [37]. Returning
to the smaller system and comparing its time-series histograms at Re = 200 to
those at Re = 175, it could be seen that an exponential tail appeared at low
energy when Re was decreased, so that, when Re was further decreased, excursions
toward smaller and smaller energies were more frequent, forcing the decay of a given
transient when some limiting energy, Elim

t (32 × 32) ∼ 0.025, was reached. Setting
this observation in the context of the sub-systems’ dynamics, one could then appeal
to Pomeau’s analogy between sub-critical bifurcations in extended systems and first-
order (thermodynamic) phase transitions [38] and the related theory of nucleation:
The advent of a sizable laminar domain in the large system implies an excursion of
the mean energy towards smaller values (e.g. t ∼41,000, 51,000, 62,500 in figure
7, left), though the system apparently remains in the sustained turbulent regime.
Such excursions correspond to the breakdown of turbulence over regions already
larger than the size of a sub-domain, which is also the size of the smaller system.
Accordingly, while turbulence is relatively short-lived in the smaller system (since
the occurrence of such a fluctuation would have led the turbulent regime to its end),
it can be long-lived in the larger system because a wide region that fell laminar can
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Figure 7. Left: Time series of the mean turbulent energy for the
256h × 2h × 128h system at Re = 170. Right: Bifurcation diagram as ob-
tained from the model in the same system (full line: average mean turbulent
energy during the adiabatic decrease of Re; open and filled dots: bracketing of
the laminar/turbulent boundary for homogeneous low-level turbulent initial
conditions; open and filled square: bracketing of the frontier at a single point
for a strongly inhomogeneous initial state.

become turbulent again by contamination from its surroundings. This observation
opens the way to the understanding of the whole ‘turbulent → laminar’ transition
in terms of directed percolation and statistical estimates that come with it [39].

The interpretation of the exponential decay of lifetime distributions in the smaller
system thus rests on the idea that spatiotemporal fluctuations result in a random
process exploring the low energy exponential tails of the mean turbulent energy
histograms appearing when Re is small enough. While such a tail was indeed
unobservable at Re = 200, it was already sizable at Re = 175, and quite substantial
for Re = 170 provided that the histogram was determined under the condition that
the system is still in the chaotic transient state, i.e. as long as Et > Elim

t (32× 32).
The argument was closed by saying that the uniformly random exploration of the
low-energy exponential histogram tails converted itself into exponentially decreasing
lifetime histogram tails [40]. Unfortunately, like the conventional view, this new
interpretation does not predict how the lin-log slopes vary since it does not tell us
how the tail’s importance changes with Re though the trend can be easily guessed.
Invoking a spatiotemporal origin to the shape of the lifetime distribution could
however help us understand the possible presence of a cross-over from exponential
to critical variation.

Evidence that the turbulent state for Re > 170 is a local attractor comes from
the attempt to determine the frontier of its attraction basin as seen from the lam-
inar → turbulent viewpoint. Open and filled dots in figure 7 (right) bracket the
‘line’ separating random initial conditions with given initial mean turbulent energy
obtained by attenuating the same homogeneous turbulent solution with variable
factors. Above the line, the system evolves toward the turbulent state whereas it
relaxes below. However, the frontier appears to be strongly dependent on the shape
of the initial condition and this dependence is better understood in physical space
than in phase space. For example, the open and filled squares in figure 7 (right)
bracket the frontier corresponding to another kind of initial condition displaying
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wide laminar domains competing with the spatiotemporally intermittent state al-
luded to above. Still another frontier would be obtained for transverse turbulent
stripes (parallel to the z-axis, not related to stripes in figure 3) that are found

to invade the system only when Re > Re⊥, where Re⊥ is the threshold value for
span-wise turbulent stripes and happens to depend on the fraction αLx of the sys-
tem occupied by the stripe at the initial time (a single value α ≈ 1/3 has been

studied, yielding Re⊥ = 195). In the same way, strong localised perturbations
form spots that make the whole system tumble into the turbulent state only for
Re > Respots ∼ 230 but a precise determination of the corresponding threshold
is barely feasible since it implies a three-parameter study by varying Re, the ini-
tial size and amplitude of the perturbation. Long-range interactions associated to
pressure effects, well accounted for in the model, also seem to play an important
role.

To conclude, for decaying turbulence, the nucleation of sufficiently large laminar
domains seems to provide a good understanding of the origin of the exponentially
decreasing distribution of the transients’ lifetimes at a given size, though a more
complete study of the variation of the decay rates with Re combined with size
effects is needed, which is currently under way. Though it has the same observable
consequence as the saddle interpretation, this new approach clearly points to a
spatiotemporal perspective that seems better suited than the strictly temporal one
since spatial extension is a crucial feature of the problem. For onset, things are
much more complicated since the transition depends sensitively on the shape and
amplitude of the initial condition and on the Reynolds number. Furthermore, it
seems difficult to find a definite connection between our different results obtained
in a spatiotemporal context and the search for edge states that have been much
studied recently in a finite dimensional framework for both the pCf and the Ppf
[29,41,42].

4. Conclusion

The transition to turbulence in wall flows leaves several problems open. Most
difficulties stem from the nature of the non-trivial solution competing with the base
state. Answers to this question have been looked for first within linear stability
theory extended to take into account transient energy growth induced by non-
normality, and next using the theory of nonlinear dynamical systems and temporal
chaos. Accordingly, special periodic solutions (travelling waves) have been found,
that serve as a skeleton for complex dynamics described in an abstract phase space
in terms of homoclinic tangles and chaotic transients. This approach is however
fully valid for confined systems and can only be applied to open systems at the
price of putting artificial periodic boundary conditions at small distances in at
least one (Ppf is quasi-1D), if not two (pCf is quasi-2D) directions of physical space.
While the theory of chaotic transients well explains the exponential behaviour of
the lifetime distributions, it does not account for the variation of their inverse decay
rate with Re, which was found exponential in some cases and critical in others.

Taking another point of view, Pomeau long ago proposed an analogy of this
kind of discontinuous bifurcation to a first-order (thermodynamic) phase transition
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[38] and put forward a related nucleation problem [39]. In the same time, he
introduced the concept of transition to turbulence via spatiotemporal intermittency ,
a contamination process where above some threshold, activity invades the system
whereas it dies below it [38]. The spatiotemporally intermittent state is a mixture of
active and quiescent domains. Though at the time of the proposal, people focused
mostly on the universality properties of the continuous transition [36], examples of
discontinuous transitions were known. One of them was put in relation with the
transition to turbulence in pCf [16] but the results were not reliable since the model
was too far from concrete hydrodynamics. Keeping all this in mind, we developed a
model which, instead of proceeding to full dimensional reduction in physical space,
just froze part of the wall-normal dependence. In spite of an insufficient energy
transfer through cross-stream (small) scales which led to a lowered transitional
range, it correctly accounted for the interplay of streamwise vortices and streaks
(large in-plane structures) and qualitatively reproduced hydrodynamical features,
e.g. non-local pressure effects, and transitional properties. Even in the absence
of firm conclusions (the work is still in progress), the most interesting results are
a better appreciation of the drawbacks of the dynamical systems approach, and
some support to the phase transition viewpoint. It indeed suggests a different
interpretation of the transients’ lifetime distribution in systems of moderate size
and offers a glimpse on the origin of complications arising from size effects and the
role of topology of laminar/turbulent domains in pCf. The approach also suggests
to look at Ppf along similar lines by considering it as a quasi-1D system and not
as a 0D system in physical space.

Apart from perspectives open for other wall flows and flow control, the present
approach and its spatiotemporal re-framing may help us to understand the nature
of the turbulent attractor better with respect to some ‘thermodynamic’ approach to
far-from-equilibrium systems to be defined in a firm statistical physics environment.
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