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We consider the stability of a thin flexible cylinder considered as a beam, when
subjected to axial flow and fixed at the upstream end only. A linear stability analysis
of transverse motion aims at determining the risk of flutter as a function of the
governing control parameters such as the flow velocity or the length of the cylinder.
Stability is analysed applying a finite-difference scheme in space to the equation of
motion expressed in the frequency domain. It is found that, contrary to previous
predictions based on simplified theories, flutter may exist for very long cylinders,
provided that the free downstream end of the cylinder is well-streamlined. More
generally, a limit regime is found where the length of the cylinder does not affect the
characteristics of the instability, and the deformation is confined to a finite region close
to the downstream end. These results are found complementary to solutions derived
for shorter cylinders and are confirmed by linear and nonlinear computations using a
Galerkin method. A link is established to similar results on long hanging cantilevered
systems with internal or external flow. The limit case of vanishing bending stiffness,
where the cylinder is modelled as a string, is analysed and related to previous results.
Comparison is also made to existing experimental data, and a simple model for the
behaviour of long cylinders is proposed.

1. Introduction

When a long flexible cylinder with a free downstream end is surrounded by flow
parallel to its axis (figure 1) transverse deflection may occur. This may be the
result of random excitation forces, such as those caused by turbulence. It may also
be the consequence of full coupling between the motion of the cylinder and the
unsteady dynamics of the flow. The latter case may lead to what is commonly
referred to as a fluidelastic instability. It is of practical importance in the design
of systems such as towed underwater acoustic arrays or long floating containers
for oil or water transportation. Excessive departure from the expected straight-line
configuration results in additional drag, poor performance of the acoustic sensors or
early failure through fatigue. Other applications may be found in high-speed train
vibrations or wear of flexible rods in nuclear reactors.

A general review of most of the existing work on the subject may be found in
Päıdoussis (2003), where various geometries and boundary conditions are considered.
We focus here on the case of a cantilevered (i.e. clamped–free) straight cylinder.
Experimental results in Päıdoussis (1966) and Päıdoussis et al. (2002) have shown that,
as the flow velocity is increased, the system loses stability first by divergence (growing
non-oscillatory motion), then by flutter (oscillatory motion). This occurs only when the
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Figure 1. A long cantilevered cylinder in axial flow.

end-shape is sufficiently well streamlined. Other experiments by Ni & Hansen (1978),
Sudarsan, Bhattacharyya & Vendhan (1997) and Pao (1970) also showed cases of
divergence and flutter. In similar but distinct problems, such as that of a filament
in a plane flowing soap film (Zhang et al. 2000) or a filament inclined in the flow
(Schouveiler, Eloy & Le Gal 2005), flutter has also been observed. In terms of models,
the earlier linear analysis of Päıdoussis (1966), corrected in Päıdoussis (1973), has been
used in various forms by most of the authors: Triantafyllou & Chryssostomidis (1984,
1985); Dowling (1988); Sudarsan et al. (1997). The cylinder is modelled as a beam
(with flexural rigidity set to zero in some cases), coupled with the fluid dynamics via
inviscid terms (Lighthill 1960), friction and specific models of the flow-induced forces
at the trailing end. Prediction of divergence and flutter using this model were found
to be in good agreement with experiments in Semler et al. (2002). Further refinements,
including accounting for nonlinear effects, showed that the linear approach was robust,
at least for the first instabilities encountered: divergence occurs in a supercritical form
and is followed by flutter. The flutter instability threshold computed on the deformed
buckled solution was similar to that of the linear prediction, where it is considered as
a loss of stability of the undeformed configuration (Semler et al. 2002).

The case of very long cylinders has been recognized in some of the earliest papers
as being of particular interest (see Ortloff & Ives 1969; Pao 1970; Lee 1981).
This interest arose from practical applications where the length-to-diameter ratio
L/D would exceed 102 or even 103. The above authors, unfortunately using the
uncorrected equations of motion, found that very long cylinders had a specific stability
behaviour, which differed from that of shorter ones. The problem of divergence
instability of cylinders with increasing length has been solved by Triantafyllou &
Chryssostomidis (1984). They found that, as the length is increased, divergence
persists for streamlined cylinders, but disappears when they are blunt. Neglecting
all flexural rigidity, Triantafyllou & Chryssostomidis (1985) found that long cylinders
should not flutter at all. Dowling (1988) reached the same conclusion using a more
elaborate matched asymptotic expansion approach in which bending stiffness was
taken into account where needed. Experiments on such long systems are somewhat
inconclusive because of the difficulty of conducting accurate laboratory experiments
with very slender beams in flow. Yet, divergence and flutter have been observed for
cylinders where L/D is larger than 100 by Ni & Hansen (1978) and by Sudarsan et al.
(1997), and in such cases the deformation seems to be confined to the downstream
part of the cylinder.

The effect of length on stability of coupled fluidelastic slender systems is an
important issue. In other similar systems that are tensioned by friction and/or gravity,
several authors found the existence of a limit configuration for long lengths. Doaré
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& de Langre (2002), considering a hanging fluid-conveying pipe tensioned by gravity,
found in both experiments and numerical simulations that the flutter instability,
equivalent to the classical garden-hose instability, was confined to a finite zone close
to the downstream end. Provided the pipe was long enough to contain this zone, the
instability was not affected by the length of the domain. A similar conclusion was
reached for hanging ribbons with axial flow in Lemaitre, Hémon & de Langre (2005),
a filament inclined in the flow in Schouveiler et al. (2005), a filament in plane soap
flow in Zhang et al. (2000), and a hanging beam with a follower force in de Langre,
Doaré & Pellet (2001).

Building on these results, we address in this paper the issue of flutter of long
cylinders, where the meaning of ‘long’ has yet to be defined. In § 2, the equations of
motion are recalled and a new dimensionless form is proposed, which is appropriate
for the analysis of the effect of the length. The procedure used for their solution is
also described. In § 3, the effect of length on stability is analysed. In § 4, the case of
very long cylinders is considered, and a link is established with previous analyses,
particularly when the cylinder is modelled as a string. Comparison with experiments
is also presented. Finally, in § 5, we propose a simple model for the dynamics of these
long cylinders subjected to flow, using data on short cylinders.

2. Equation of motion

2.1. A cantilever beam in axial flow

Following Päıdoussis (1973) and Päıdoussis et al. (2002), the cylinder is modelled as
a beam, i.e. with non-vanishing flexural rigidity. The equation governing the lateral
motion Y (X, T ) reads

EI
∂4Y

∂X4
− ∂

∂X

(

Θ
∂Y

∂X

)

+ m
∂2Y

∂T 2
=FF , (2.1)

where EI is the flexural rigidity, Θ(X) is the local axial tension, m is the mass per
unit length, and FF is the transverse fluid force per unit length acting on the beam.
A uniform axial flow is assumed. The fluid loading resulting from the motion may be
modelled as the sum of the following:

(a) an inviscid force as in Lighthill (1960), acting on the entire length of the
cylinder, that depends on the local deformation

FI = −ρA

(

∂2Y

∂T 2
+ 2U

∂2Y

∂X∂T
+ U 2 ∂2Y

∂X2

)

eY , (2.2)

where ρ is the fluid density, A = πD2/4 is the cross-sectional area of the cylinder, U

is the mean flow velocity and eY is the transverse unit vector; this expression includes
added mass, added stiffness (centrifugal load) and Coriolis effects;

(b) a drag force with normal and tangent components acting on the entire length
of the cylinder,

FD = − 1
2
ρDUCN

(

∂Y

∂T
+ U

∂Y

∂X

)

n + 1
2
ρDU 2CT t, (2.3)

where n and t are the local normal and tangential unit vectors of the deformed beam
axis (figure 1) and CN , CT are the normal and tangential drag coefficients, respectively;
a detailed discussion of the relation of the latter to the cylinder roughness may be
found in Päıdoussis (2003), but suffice it to say here that they are of the same order
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of magnitude, typically 0.01, and that values of the ratio CN/CT of 0.5 and 1.5
correspond, respectively, to rough and smooth cylinders;

(c) a base drag force

FBD = 1
2
ρDUCb t, (2.4)

where Cb typically varies from zero, for a streamlined end, to π/4 for a blunt end;
(d) a lift force exerted at the downstream end

FL = fρAU

(

∂Y

∂T
+ U

∂Y

∂X

)

n, (2.5)

where f depends on the shape of this end, typically being zero for a blunt end and
unity for a perfectly streamlined end.

Including the effect of all these forces yields

EI
∂4Y

∂X4
− ∂

∂X

(

Θ
∂Y

∂X

)

+ 1
2
ρU 2D(CN − CT )

∂Y

∂X

+ 1
2
ρUDCN

∂Y

∂T
+ 2ρAU

∂2Y

∂X∂T
+ (m + ρA)

∂2Y

∂T 2
= 0, (2.6)

where the tension is given by

Θ(X) = −ρU 2
(

A − 1
2
D2Cb + 1

2
DCT X

)

. (2.7)

The tension Θ(X) includes drag forces and the coefficient of the centrifugal load, (2.2),
which has the same effect on the dynamics of the cylinder as an axial compressive
force of magnitude ρAU 2. We shall refer to this force as the ‘effective compressive
force’.

It is emphasized here that in this paper, unlike in many previous studies, X = 0 is
at the equilibrium position of the downstream end of the body, while the upstream
end is at X = −L (figure 1). Hence, the corresponding boundary conditions at the
upstream and downstream ends, respectively, read

Y (−L) =
∂Y

∂X
(−L) = 0,

∂2Y

∂X2
(0) =

[

EI
∂3Y

∂X3
+ fρAU

(

∂Y

∂T
+ U

∂Y

∂X

)]

(0) = 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2.8)

These equations have been used in various forms by Triantafyllou &
Chryssostomidis (1985), Dowling (1988), Sudarsan et al. (1997) and Päıdoussis et al.
(2002), with some simplifying assumptions as discussed in Päıdoussis (2003). More
sophisticated models including lateral confinement or tapering effects are also given
in this same reference.

2.2. Neutral point

It appears in (2.7) that, at the location X = XC = −LC where

LC =
D(π − 2Cb)

2CT

, (2.9)

the local tension Θ vanishes, as the tension induced by friction and by the base drag
is exactly balanced by the effective compressive force resulting from the centrifugal
load. Downstream of this point, −LC <X � 0, the beam is in compression, and
upstream of this point, X < −LC , it is in tension. The parameters XC and LC will now
be referred to as the neutral point and the compression length, respectively. As noted
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by Triantafyllou & Chryssostomidis (1985) and Dowling (1988), this particular point
is of interest because the only stiffness arises from the flexural rigidity. Therefore, a
special treatment is necessary when a string approximation is used, that is when all
flexural rigidity is neglected. In fact, with all points downstream of the neutral point
being in compression, no stiffness exists in this segment of the cylinder other than
that due to flexural rigidity. Using typical values of the coefficients Cb and CT , the
order of magnitude of LC/D is about 102. Therefore, for most applications in the
field of towed systems the length L will be larger than LC so that a neutral point will
exist. It should be noted that the position of this neutral point does not depend on
the flow velocity, contrary to the cases where the load balance that defines the neutral
point involves gravity, as in Doaré & de Langre (2002) and Lemaitre et al. (2005).

Perhaps the existence of a compression over a portion of the cylinder, downstream
of the thereby defined neutral point, is counterintuitive. The analogy between internal
and external axial flow over the cylinder may be invoked here to make this matter
physically clearer. Consider internal flow of fluid mass per unit length M and velocity
U in a cantilevered blunt-ended flexible cylinder. Equation (2.2) applies in this case
also, with M replacing ρA; yet in this case it is easier to visualize that at the free
end there exists an effective compressive load equal to MU 2 (Päıdoussis 1998). By
similarity (see Päıdoussis 2003 for a more extensive discussion) there is a similar
(effective) compressive force at the end of a blunt cantilevered cylinder, ρAU 2.
Moreover, for external viscous flow, there is a base drag as given by (2.4) and a
distributed frictional drag as given by the second term of (2.3), generating tensile
forces. It is the balance of these tensile and compressive forces that gives rise to
a point where the tension is null, and downstream of it, the tension is effectively
replaced by compression.

2.3. Dimensionless forms

Following Päıdoussis et al. (2002), we define the dimensionless variables

x =
X

L
, η =

Y

L
, t =

(

EI

m + ρA

)1/2
1

L2
T , u =

(

ρA

EI

)1/2

UL, β =
ρA

m + ρA
, ε =

L

D
.

(2.10)

For convenience, we also introduce the coefficients cT = 4CT /π, cN =4CN/π, cb =
4Cb/π, so that LC = D(2 − cb)/cT . Equation (2.6) may be re-written in dimens-
ionless form as

∂4η

∂x4
+

∂

∂x

[

u2
(

1 − 1
2
cb + 1

2
εcT x

)∂η

∂x

]

+
εcT

2

(

cN

cT

− 1

)

u2 ∂η

∂x

+
εcT

2

(

cN

cT

)

√

βu
∂η

∂t
+ 2

√

βu
∂2η

∂t∂x
+

∂2η

∂t2
= 0, (2.11)

with the boundary conditions

η(−1) =
∂η

∂x
(−1) = 0,

∂2η

∂x2
(0) =

[

∂3η

∂x3
+ f u

(

√

β
∂η

∂t
+ u

∂η

∂x

)]

(0) = 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2.12)

This dimensionless set of equations is identical to that used in Päıdoussis et al.
(2002), except for the change of variables x = ξ − 1. The neutral point is located at
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xC = −LC/L = −(2 − cb)/εcT . Short cylinders may be defined by the condition that
εcT ≪ 1, so that all length-dependent terms vanish in (2.11).

In order to analyse the effect of length on stability, a more appropriate dimensionless
form may be defined, where the compression length LC is used in the scaling in place
of the cylinder length L, as in Doaré & de Langre (2002) and Lemaitre et al. (2005).
The corresponding variables are

z =
X

LC

, y =
Y

LC

, τ =

(

EI

m + ρA

)1/2
1

L2
C

T ,

v =

(

ρA

EI

)1/2

ULC, β =
ρA

m + ρA
, ℓ =

L

LC

.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2.13)

Equation (2.6) now becomes

∂4y

∂z4
+

∂

∂z

[

v2
(

1 − 1
2
cb

)

(1 + z)
∂y

∂z

]

+ v2
(

1 − 1
2
cb

)

(

cN

cT

− 1

)

∂y

∂z

+
√

βv
(

1 − 1
2
cb

)cN

cT

∂y

∂τ
+ 2

√

βv
∂2y

∂τ∂x
+

∂2y

∂τ 2
= 0, (2.14)

and the corresponding boundary conditions are

y(−ℓ) =
∂y

∂x
(−ℓ) = 0,

∂2y

∂z2
(0) =

[

∂3y

∂z3
+ f v

(

√

β
∂y

∂τ
+ v

∂y

∂z

)]

(0) = 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2.15)

In this dimensionless form, the effect of length ℓ now appears only in the upstream
boundary conditions. The new variables are related to the previous set by z = xℓ,
τ = tℓ2, v = u/ℓ and ℓ = εcT /(2 − cb). The neutral point is now located at z = −1,
and long cylinders may be defined by the condition that ℓ ≫ 1. Note that other
dimensionless forms, such as one using D as a length scale as in Triantafyllou &
Chryssostomidis (1984, 1985), would also allow us to analyse the dependence of the
dynamics on L.

2.4. Solution procedure

To analyse the stability of the straight-line position of the cylinder, perturbations of
the form y(x, t) =ϕ(x)eiωt , in (2.11), or equivalently y(z, t) =ψ(z)eiΩτ , in (2.14), are
imposed. The corresponding equation for the mode shape ϕ(x) reads

ϕ(4)+u2
(

1− 1
2
cb+

1
2
εcT x

)

ϕ(2)+
(

1
2
εcNu2+2iω

√

βu
)

ϕ′+
(

1
2
iωεcN

√

βu−ω2
)

ϕ = 0, (2.16)

with ϕ(−1) = ϕ′(−1) = ϕ(2)(0) = [ϕ(3)(0) + f u(iω
√

βϕ(0) + vϕ′(0))] = 0, where ()(n)

denotes differentiation with respect to x. Alternatively, using the other set of
dimensionless variables, we obtain

ψ (4) + v2
(

1 − 1
2
cb

)

(1 + z)ψ (2) +

[

v2
(

1 − 1
2
cb

)cN

cT

+ 2
√

βiΩv

]

ψ ′

+

[

iΩ
√

βv
(

1 − 1
2
cb

)cN

cT

− Ω2

]

ψ = 0, (2.17)

with ψ(−ℓ) = ψ ′(−ℓ) = ψ (2)(0) = [ψ (3)(0) + f v(iΩψ(0) + vψ ′(0))] = 0, where differen-
tiation is now with respect to z.

For a given set of parameters, say (u, εcT , cN/cT , cb, f , β) or equivalently (v, ℓ,
cN/cT , cb, f , β), the eigenmodes (ϕN , ωN ) or (ψN , ΩN ) may be computed by solving



Flutter of flexible cylinders 377

(a) (b) (c)ωI

ωR ωR ωR

ωI ωI

Figure 2. Types of instability, depending on the crossing of axes in the complex ω-plane.
(a) Divergence, (b) flutter by Hopf bifurcation, (c) flutter of the Päıdoussis type.

a standard linear eigenvalue problem. Stability is ensured when all eigenfrequencies,
ω or Ω , have a positive imaginary part. When one of the imaginary parts becomes
negative while the real part of the frequency is equal to zero, divergence results.
Conversely, an instability associated with a positive real frequency is defined as
flutter. It has been found necessary for fluidelastic systems to distinguish between
two kinds of flutter: if an eigenvalue crosses the real axis, ωI = 0, into the flutter
domain defined by ωI < 0, a classical Hopf bifurcation occurs. Alternatively, when
an eigenvalue emerges from the imaginary axis, ωR = 0, into the flutter domain, the
instability is commonly referred to as Paı̈doussis flutter, as originally proposed by
Done & Simpson (1977). For this particular form of flutter, which occurs only after
divergence, oscillations of increasing frequency occur as the control parameter, in our
case velocity, is increased.

The two types of flutter are illustrated in figure 2. As Päıdoussis flutter is a secondary
instability derived from an analysis based on the initial geometric configuration
rather than the post-divergence configuration, it may be irrelevant. Yet, nonlinear
computations in Semler et al. (2002) have shown that the linear analysis gives a good
approximation of the qualitative and quantitative set of instabilities for short cylinders.
As we seek to explore systematically the effects of several parameters on stability,
the simpler linear approach is used in this paper, with a nonlinear computation on a
particular case, § 3.4, to check its relevance in our case of long cylinders.

A Galerkin method based on the eigenmodes of a cantilevered beam without flow
has been used for similar types of equations pertaining to the linear stability of
fluid-conveying pipes, plates or cylinders in axial flow, as shown in Päıdoussis (1998,
2003). In terms of the numerical method, it has been observed that, as the length
of the system (parameter εcT ) is increased, more and more modes are required in
order to achieve acceptable convergence of the eigenmode analysis. For instance, for a
fluid-conveying pipe tensioned by gravity (Doaré & de Langre 2002) or for a hanging
ribbon (Lemaitre et al. 2005), it was found that up to fifty modes were required.
This could be understood by considering that an increasing number of modes play a
role in the instability as the length L is increased: the zone where the corresponding
deformation takes place is almost of constant size and therefore diminishes when
scaled by the length of the system, so that modes of shorter wavelength, and therefore
higher order, are required in the modal basis.

We use here a standard finite-difference scheme in space as in Sugiyama & Kawagoe
(1975) to discretize (2.17). It is thus easier to adapt the spatial discretization to the
relevant length scales. Unless otherwise specified, our results are obtained using 300
nodes. A more general approach using finite elements may be found in Bhattacharyya,
Vendhan & Sudarsan (2000).
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3. Effect of length on stability

3.1. Previous results

We summarize some results obtained by Semler et al. (2002), where equation (2.16)
has been solved for several values of f , cN/cT , εcT , with the mass parameter β being
fixed at 0.47 which is close to neutral buoyancy (β = 0.5). The relation between cb

and f , the two coefficients related to the shape of the downstream end, was set to
cb =1 − f . Note that the precise interdependence of cb and f is not really known.
However, it is clear that as the end of the cylinder becomes more streamlined (f
tends towards unity), the base drag is diminished (and in the limit cb tends to zero).
Vice versa, as the free end becomes blunt, f comes close to 0 and cb = O(1). For
simplicity, therefore, the linear relationship cb = 1 − f was used by Päıdoussis (2003)
and has been adopted here also.

Computations showed that the critical velocities that yielded either divergence
or flutter both increased with length, by varying the dimensionless parameter εcT .
Depending on the values of f and cN/cT , however, instabilities could cease to
exist above a finite length of the cylinder. Flutter appeared mostly in the form of
a Hopf bifurcation, but the possibility of Päıdoussis type flutter was mentioned,
and calculated in one case. As noted by these authors and confirmed by recent
computations, convergence of the results was not always established for the longer
cylinders, typically from εcT = 1 up to the highest tested value, εcT = 4. For instance,
for f = 0.5, flutter was found for εcN up to 3, that is ℓ = 2, but these results were
later found to display an artificial convergence: our new calculations using the same
Galerkin procedure showed that the corresponding critical velocity increases steadily
with the number of modes, without reaching convergence.

Note that in terms of predicting the effect of the dimensional length L on a
dimensional critical velocity U , the apparent increase of the dimensionless velocity
u with the dimensionless length εcT can be misleading, as both are defined using L.
Using the proposed dimensionless velocity v = u/ℓ, which does not involve L but LC ,
is more appropriate for studying the effect of length. If the results are expressed in
terms of (v, ℓ) instead of (u, εcT ), the highest value of ℓ considered is ℓ ≃ 2 which
does not allow us to draw conclusions for truly long cylinders, ℓ ≫ 1. Similarly, the
experimental results of Päıdoussis (1966), where ε is varied up to a value of 45 and
affects stability, do not come into the range of long cylinders in our sense, since ℓ < 2.

The results presented next explore this range (ℓ ≫ 1) using the numerical procedure
described above to solve (2.17), which is the adequate dimensionless form for long
cylinders. We first present two cases which are representative of the results to be
presented in more detail in subsequent sections.

3.2. A system stabilized at sufficiently large ℓ; f = 0.5

The case of f =0.5, which is that of a rather blunt end, such as a hemispherical one,
is analysed for cN/cT = 1, which corresponds to a medium surface roughness. For a
given value of ℓ the velocity v is varied, and the domains of instability as well as the
type of instability are determined in the (ℓ, v)-plane, solving (2.17) directly. Figure 3(a)
shows the results obtained with the procedure described above and their comparison
with previous computations using a Galerkin approximation of the same equations.
For the divergence instability the critical velocity is found to decrease steadily with
length, up to about ℓ = 1. This evolution may be compared to the result given by
Semler et al. (2002) in terms of the dependence of u on length: for εcN = 0 they found
that divergence occurred at u = 2.39 which yields the asymptotic relation for small
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Figure 3. Effect of length on the stability of a cylinder, (a) for a system stable at high enough
ℓ, with f = 0.5, (b) for one unstable at high ℓ, with f = 0.8. Present calculations: —, critical
velocity for divergence; - - -, critical value for flutter by Hopf bifurcation; . . . , critical velocity
for flutter of the Päıdoussis type. Results derived from the calculations by Semler et al. (2002):
− · −, limits for divergence and flutter of short cylinders; ©, �, for cylinders of intermediate
length; ×, +, new calculations using the Galerkin method.

cylinders, v = 2.39/ℓ, which compares well with our results. Near ℓ =1, divergence
disappears in our case, which is consistent with their results at εcN = 1.5.

Flutter is also found above the divergence limit. The evolution of the critical velocity
is similar to that of divergence: for short cylinders, ℓ ≪ 1, it is consistent with their
results at εcN = 0, yielding v = 5.87/ℓ. Flutter is suppressed above ℓ = 1.

3.3. A system not stabilized for large ℓ; f =0.8

Considering now a cylinder with f = 0.8, i.e. with a well streamlined end, yields
distinct results depending on the length ℓ, figure 3(b). For short cylinders, ℓ ≪ 1, the
divergence and flutter limits decrease with ℓ in a manner similar to that of the previous
case, as could be predicted from the results of Semler et al. (2002) (v =1.79/ℓ for
divergence, v = 4.72/ℓ for flutter). However, for long cylinders, divergence and flutter
persist, in contrast to the previous case with f = 0.5. Moreover, the corresponding
thresholds are found to depend weakly on ℓ. Both divergence and flutter results for
long cylinders are confirmed by converged Galerkin computations at ℓ =4.4 using
12 modes. Note that above ℓ = 1, flutter becomes of the Päıdoussis type as was
hypothesized by Semler et al. (2002).

In figure 4, we show the shape of the unstable mode, ψ(z), for several values
of the cylinder length. The eigenmodes are of arbitrary amplitude. The divergence
deformation, figure 4(a–c), closely resembles that of a first mode divergence and is
clearly confined to the downstream end of the cylinder, as was previously reported
by Triantafyllou & Chryssostomidis (1984). The flutter mode shape is evaluated at
a velocity v which is 10 % above the critical value, and is shown by reconstructing
the motion at several instants of a cycle, but neglecting the imaginary component
(growth rate). The fluttering motion, figure 4(d–e), is also confined to a region of
dimensionless scale 1, which corresponds to LC in dimensional terms. Note that the
fluttering motion is similar for the Hopf bifurcation case, ℓ = 0.5, and the Päıdoussis
type flutter cases, ℓ =2 and 5.
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Figure 4. Modal shape ψ(z) of the unstable modes as a function of the length of the cylinder
for f = 0.8. (a–c) Divergence mode shape for ℓ= 0.5, 2, 5, respectively. (d–f ) Flutter motion
over a cycle of oscillations reconstructed from the complex mode shape at v = 1.1vF for
ℓ= 0.5, 2, 5, respectively.

These results confirm the existence of limit regimes for long cylinders where
divergence and flutter exist and where the corresponding motion is limited to a
downstream region of typical size LC . This is consistent with previous work on
hanging fluid-conveying pipes (Doaré & de Langre 2002) and on ribbons subjected
to flow (Lemaitre et al. 2005).

3.4. Nonlinear model

As noted before, because flutter arises following divergence, a nonlinear stability
analysis on the deformed configuration is required. In this problem, the dominant
nonlinear terms are associated with geometric effects, when the fluid forces are
applied on the instantaneous deformed position of the cylinder. The corresponding
set of equations has been derived by Lopes, Päıdoussis & Semler (2002).

Using a Galerkin approximation of the displacement of the cylinder, these coupled
equations were solved in Semler et al. (2002) for relatively short cylinders, ε = 0.5
with f = 0.7, so that ℓ = 0.29. It was found that stability is first lost by divergence,
followed by restabilization and then flutter. A rich sequence of bifurcations then
occurs, which is not discussed here. The critical velocities for divergence and flutter
as well as the mode shapes compared well with experimental results. Moreover, the
sequence of divergence and flutter was qualitively and quantitatively similar to that
predicted by the linear equations.

We use in our approach exactly the same set of nonlinear equations of motion
and the same numerical method (AUTO, Doedel & Kernéves 1986), but with a high
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Figure 5. Solution of the nonlinear equation of motion for a long cylinder, ℓ= 4.44, f = 0.8.
(a) Bifurcation diagram of the displacement at the downstream end when the flow velocity
is varied. o, Divergence at v = 1.59; *, flutter at v = 5.03. (b) Deformation of the cylinder for
three flow velocities along the branch in bold line: − · −, v = 2.5; - - -, v =3.5; —, v = 5.

number of modes (N = 12), for a system with εcN =8, corresponding to ℓ =4.44 in
our variables, and f = 0.8. The resulting bifurcation diagram is shown in figure 5(a) in
terms of the effect of the flow velocity v on the dimensionless transverse displacement
at the downstream end y(0). The system is stable at low flow velocities, and the
first bifurcation is a pitchfork bifurcation leading to divergence (buckling), occurring
at v =1.59 which, as expected, is identical to the prediction of the linear analysis
using the same Galerkin discretization. The bifurcation is supercritical resulting in
a progressive deformation of the cylinder, as exemplified in figure 5(b) for several
values of the velocity after divergence and before flutter. Note that the deformation
in this range of velocities remains small, of the order of 0.1, and becomes increasingly
confined in the downstream region.

At v = 5.03, the buckled shape loses stability via a Hopf bifurcation and flutter
results. This critical value is reasonably close to the prediction of the linear stability
analysis, which is v = 5.52. In fact, the deformed static configuration just before the
onset of flutter does not deviate significantly from the original straight shape, assumed
in the linear analyis. This shows that the linear approach has some relevance, at least
up to this second bifurcation.

4. Stability of long cylinders

4.1. Stability domain

The linear stability of long cylinders is now systematically explored by solving (2.17)
for the length equal to ℓ =10, since computations for longer cylinders showed small
variations in the results. The corresponding discretization grid needed to ensure that
about 30 nodes lie in the compression zone, of size 1, is thus N = 300. This allows an
accurate representation of the gradients in that zone. The ratio cN/cT is fixed at 1,
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Figure 6. Stability diagram for long cylinders, ℓ ≫ 1, from computations at ℓ= 10, depending
on the parameter f relative to the shape of the downstream end. —, Divergence limit;
- - -, flutter limit; . . . , exact divergence limit adapted from the solution of Triantafyllou &
Chryssostomidis (1984), using (4.2) with the change of variables of (4.3).

unless otherwise specified. The parameter f is varied from f = 0 (blunt end) to f = 1
(perfectly streamlined end).

Figure 6 shows the stability diagram in the parameter space (f, v). For f less
than 0.6, no instability is found. For f larger than 0.6, divergence is observed above
velocities of order 1. Flutter, always of the Päıdoussis type, arises approximately in
the range 0.65 <f < 0.95, for velocities of order 5. Calculations for values of f close
to 0.6 or to 1 converged with respect to both length and the number of nodes, and
the corresponding velocities were clearly much higher than 5. By varying the ratio
cN/cT from 0.5 to 1.5, corresponding, respectively, to rough and smooth cylinders,
it is found that the divergence and flutter domains always exist in the general form
shown in figure 6, but with lower limits of f that vary from 0.3 to 0.85.

4.2. Divergence

Setting the frequency Ω to zero in (2.17), with cN/cT =1 yields

ψ (4) + v2
(

1 − 1
2
cb

)

[(1 + z)ψ ′]′ = 0 (4.1)

with the condition at the dowsntream end ψ (3)(0) + f v2ψ ′(0) = 0; the other boundary
conditions are omitted here for the sake of clarity. In the particular case where cb =0,
the exact solution for the critical velocity for divergence for a semi-infinite cylinder
has been given by Triantafyllou & Chryssostomidis (1984) in implicit form involving
v and f , namely

Ai′
(

− v2/3
)

− v2/3(1 − f )
(

1
3

−
∫ −v2/3

0
Ai(s) ds

)

=0, (4.2)

where Ai is the Airy function. It can be shown that no divergence occurs in the range
of f < 0.75.
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This solution may be generalized to include the effect of base drag, i.e. cb �= 0, by
simply replacing v and f by w and g defined, respectively, by

w2 = v2/(1 − (cb/2)); g = 2f/(2 − cb). (4.3)

Equation (4.1) with the associated boundary condition then reduces to a form identical
to one solved by Triantafyllou & Chryssostomidis (1984), so that (4.2) may be used
with (w, g) in place of (v, f ) to derive the solution. If it is further assumed that
cb = 1 − f , the relation between v and f is fully determined. The range of divergence
is 0.6 <f < 1, and our numerical results are found to approximate this limit solution
closely, as can be seen in figure 6.

4.3. Comparison with other models

The existence of flutter for long cylinders, as found in our computations, seems to
contradict previous results by Dowling (1988) and Triantafyllou & Chryssostomidis
(1985) who, using some simplifications on the role of bending stiffness, both concluded
that long cylinders would not flutter.

The large length-to-diameter ratio in many practical applications of this problem
have led several authors to develop solutions for the case where the bending stiffness of
the cylinder is neglected. The simpler equation of motion then involves only second-
order, rather than fourth-order, derivatives in space. This equation is commonly
associated with strings, a flexible medium with a stiffness that is due only to its
tension. The works of Ortloff & Ives (1969), Pao (1970), Lee (1981), Triantafyllou &
Chryssostomidis (1985) and Dowling (1988) use this approximation throughout or
in parts of their models. A dimensionless number that would be appropriate for the
comparison of the effect of bending and tension-induced stiffness is

B =
EI/λ4

Θ0/λ2
, (4.4)

where EI is the bending stiffness, Θ0 is a tension to be defined and λ is the scale of the
spatial variations in X of the displacement Y . It seems more appropriate to choose
λ= LC than λ=L, as the deformation takes place on that scale (see figure 4). As the
tension Θ(X) varies with both position and flow velocity, it becomes necessary to
choose a particular value, say Θ0. With the main tensioning effect being axial friction
and the scale of interest being LC , we propose to use Θ0 = CT ρDU 2LC . The above
dimensionless number is then approximately B ≃ cT /v2. Since the critical velocities
found in our computations are of the order of 1–5 and cT is of order 0.01, B is
much smaller than unity. It may be expected that the role of the bending stiffness
is important only in the compression region where no positive stiffness exists other
than the one caused by bending.

In the work of Dowling (1988), a technique of matched asymptotic expansions is
used to incorporate the bending stiffness only in the region where it plays a significant
role, which is the region of large gradients in the vicinity and downstream of the
neutral point. The corresponding developments require that cN/cT be strictly less
than 1. Applying this method to the case of cN/cT = 0.75 and εcT = 60, equivalent
to ℓ in the range 30–60 depending on the value of f , leads to the conclusion that
no instability exists for any value of v or f . The possibility of divergence is actually
excluded in the development, as can be seen by setting the frequency to zero in the
series solution. Yet, divergence has been known to exist based on the exact solution of
Triantafyllou & Chryssostomidis (1984), at least for cN/cT =1. Flutter found in our
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Figure 7. Stability diagrams for a string subjected to axial flow, (a) in terms of our
variables (f, ℓ), (b) in terms of the variables used by Triantafyllou & Chryssostomidis (1985),
ǫ = ℓ(1 + f )/2, q = cb/2 = (1 − f )/2; —, limit between stability and divergence for a beam
at vanishing bending stiffness derived from our results; - - -, limit given by Triantafyllou &
Chryssostomidis (1985) using a string model. S, stability; F, flutter.

computations for long cylinders is always of the Päıdoussis type and thus emanates
from a divergent mode. We may therefore state that flutter is not found in Dowling’s
approach because, as divergence is not considered, it is consequently excluded from
the analysis.

For the sake of comparison with the work of Triantafyllou & Chryssostomidis
(1985), where no bending stiffness is considered, our results may be used to derive
the solution for a cylinder of vanishing stiffness. Letting EI go to zero is equivalent
to considering the limit of stability for very high values of v in graphs such as
figure 3. The resulting stability diagram (figure 7a), gives regions of stability and
flutter depending on the length ℓ and the coefficient f . For short strings, stability is
ensured only for very blunt ends with f < 1/3. As the length is increased, the domain
of stability widens, but well streamlined ends still lead to flutter even for very long
strings, as shown in figure 6.

We may compare these results with the criterion proposed by Triantafyllou &
Chryssostomidis (1985), using a pure string model and verified numerically by
Bhattacharyya et al. (2000). Their criterion simply predicts instability when q > 1 − ǫ

where q = cb/2 = (1 − f )/2 and ǫ = ℓ(1 + f )/2. In terms of our variables this means
that ℓ > 1, which differs significantly from our results (figure 7a). This comparison
is also shown in terms of the variables q and ǫ (figure 7b). The differences may
be explained as follows. Their prediction of instability for all short strings, ℓ < 1,
is directly associated with the absence of any positive tension in the system and,
therefore, of any stiffness. In our computations, a bending rigidity, however small, is
sufficient to stabilize short cylinders, provided the end is blunt enough (low values
of f ). Similarly, the prediction of stability for all long strings, ℓ > 1, is obtained, as
noted by the authors, without particular treatment at the neutral point where some
bending rigidity is required in order to ensure continuity. In our computations, we
found that introducing this bending rigidity, even vanishingly small, does modify the
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stability of long cylinders, which are unstable provided the end is well streamlined.
We may conclude that for this problem, the pure string model does not accurately
predict the behaviour of cylinders, even of those with a very small bending rigidity.

4.4. Comparison with experiments

A detailed comparison with experiments exists in Päıdoussis et al. (2002) and Semler
et al. (2002), but only for short cylinders, i.e. with the dimensionless length ℓ always
less than unity (see also Päıdoussis 2003). Experiments in the regime of long cylinders
are particularly difficult, as the length typically must be more than a hundred times
larger than the diameter, with the friction coefficient cT of the order of 0.01. The
establishment of a steady axial flow with a straight initial configuration of a slender
neutrally buoyant structure and the preservation of this state for a sufficient time to
allow instabilities to develop are difficult to achieve. Tests by Ni & Hansen (1978) on
a flexible cable in a water tunnel and by Sudarsan et al. (1997) in a towing tank are
the main existing sources.

In the early experiments by Ni & Hansen (1978), the length-to-diameter ratio
is ε = L/D = 500. The measured friction coefficient is about cT =0.015 and the
hemispherical shape of the downstream end leads to approximately f =0.5. These
parameters combine into a dimensionless length of ℓ = εcT /(1 + f ) = 5, which is not
much larger than 1, but already in the range of long cylinders, as can be seen from
our results. Divergence, and some flutter near u =30 (corresponding to v = 6), were
observed. This is of the same order of magnitude as the critical velocities shown
in figure 6, but for higher values of f only. Ni & Hansen (1978) also observed
a deformation of about one diameter (1.6 cm) occurring in the last metre of the
cylinder of total length L =7.92 m. This can be compared to the nonlinear results
of figure 5 for f = 0.8, where the deformation occurs over a dimensional length of
order LC , in our case with LC = 1.52 m, and a magnitude of order 0.1LC , which is
15.2 cm.

In the more recent experiments by Sudarsan et al. (1997), the largest length-to-
diameter ratio is L/D = 150. A cylinder clamped at the upstream end with a well
streamlined free end (referred to as test 20) is observed to diverge at a dimensionless
velocity of u =3.13. When using the friction coefficient cT = 0.0475 measured by
the authors and the value of f = 0.8 corresponding to the well streamlined end,
the dimensionless length is ℓ ≃ 4 and therefore the experimental critical velocity
is about v ≃ 0.8. This is of the same order of magnitude, though lower, than the
divergence critical velocity for very long cylinders at f = 0.8 (figure 6). It should
nevertheless be noted that the values of cT obtained in these experiments are higher
than those of other authors, as discussed in Päıdoussis (2003). If a more typical
value of cT = 0.02 is used, we obtain ℓ =1.7 and v = 1.87, which is located in the
transition range between short and long cylinders (figure 3b). Results of other tests by
Sudarsan et al. (1997), such as their tests 16 and 17 where a change of the upstream
boundary conditions significantly modifies the stability, also suggest that the long
cylinder regime is probably not reached for all these tests.

From these comparisons it may be stated that experimental evidence confirms the
existence of instabilities for long cylinders, at flow velocities compatible with our
predictions. Still, considerable work remains to be done to achieve the same accuracy
in experimental comparisons for long cylinders as is available for short cylinders.
Future work should include both detailed experiments and further parametric analysis
of the model in both the linear and nonlinear regimes.
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Figure 8. Model of the stability of a long cylinder using the stability diagram of a short
cylinder of effective length ℓ= 1. (a) Effect of length on the critical velocities for divergence
and flutter for f = 0.8; —, present results; −.−, short cylinder approximation, equation (5.1);
- - -, long cylinder approximation, equation (5.2). (b) Stability diagram: - - -, long cylinder
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5. A model for long cylinders using results for short cylinders

For short cylinders, in the sense of εcT ≪ 1, in (2.11) the critical velocity u is
independent of εcT and depends only on f , for given values of cN/cT and β . In terms
of our dimensionless velocity v based on LC , we then have

v(ℓ, f ) = u(f )/ℓ. (5.1)

Conversely, for long cylinders, ℓ ≫ 1, we have shown that the deformation is confined
to the downstream end in a region of dimensional size Lc, which is 1 in dimensionless
form.

Ni & Hansen (1978) noted that the experimental results for their long cylinders
could be compared with the model of Päıdoussis (1973) provided the length of the
cylinder was replaced, in the formula, by that of the region where the deformation
took place. In a related problem, Doaré & de Langre (2002) showed that the dynamics
of long hanging pipes was controlled by the length of the domain where unstable
bending waves exist. We may therefore assume that the behaviour of a long cylinder
will be similar to that of a short cylinder of effective length ℓe =1, so that the critical
velocities for divergence and flutter read

v(ℓ, f ) = u(f )/ℓe = u(f ). (5.2)

These two approximations, (5.1) for short cylinders and (5.2) for long cylinders, are
shown in figure 8(a) for the case of f = 0.8. Here, u(f ) represents the critical velocities
for divergence and for flutter for a short cylinder, in the sense of εcT ≪ 1, such as
computed in Semler et al. (2002) for instance. The approximation for long cylinders
is found to be reasonably good, both for the flutter and the divergence limits, and
the combination of the two limits gives a good estimate over all values of the length.

Considering now the entire range of f , figure 8(b) shows the comparison of the
limit for long cylinders found in figure 6 with the one derived from (5.2). The order
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of magnitude of both divergence and flutter critical velocities is approximated well,
but a difference can be observed concerning the effect of the lift parameter f on
stability: for short cylinders, divergence and flutter arise above f = 1/3, whereas this
limit is at f = 0.6 for long cylinders. This may be explained qualitatively in terms of
the balance of forces that cause divergence. For short cylinders, the stabilizing forces
are the bending stiffness and base drag at the end, which varies as cbU

2 = (1 − f )U 2.
The destabilizing forces are the negative added stiffness, proportional to U 2 and
the lift force at the downstream end, proportional to f U 2. The balance results
in a criterion for divergence that depends both on f and U 2. Increasing f (thus
increasing streamlining) is destabilizing as it reduces drag-induced tension, through
cb, and increases the downstream lift. Note also that in the case of no bending
stiffness, EI = 0, all forces are proportional to U 2 and the critical velocity cannot
depend on U . In long cylinders, an additional stabilizing force is given by the axial
friction, which plays a role only when ℓ =L/LC is not small. Since this additional
stabilizing force is also proportional to U 2, higher values of the lift coefficient f are
required to compensate for it, leading to a higher critical lift parameter f , as found
in figure 8(b).

Using a similar argument, we may predict an additional stabilizing (respectively,
destabilizing) force proportional to (cN/cT − 1)U 2 when cN/cT is lower (respectively,
higher) than 1; this can be seen in (2.11) or (2.14). This also results in a higher critical
lift coefficient, consistent with the results of Semler et al. (2002) for short cylinders
and our results for long cylinders.

6. Concluding remarks

The possibility that very long cylinders with a free downstream end may flutter
when subjected to axial flow has always been a concern in the design of long
towed underwater arrays or floating containers. Because of the difficulty in realizing
laboratory experiments with such slender systems, analytical models have been
developed that involved approximations regarding the respective roles of axial tension
and flexural stiffness in the stability of the cylinder. These models led to the conclusion
that, though divergence was possible, the risk of flutter would disappear if the cylinder
were long enough. Simultaneously, extensive numerical and experimental analyses
of the linear and nonlinear stability of shorter cylinders were conducted, which
showed the adequacy of the models for the fluid forces. These analyses made use of
dimensionless parameters based on the cylinder length, which could be misleading
in determining the effect of length on stability, and also in deciding whether long
cylinders would flutter.

By introducing an alternative dimensionless scheme for the same equations and by
exploring a larger range of values of the cylinder length, we found that flutter can
also exist for very long cylinders, provided that the downstream end is sufficiently
well streamlined. This flutter regime, which could not be found in previous analytical
solutions because of the simplifying assumptions made therein, is, in fact, very similar
to that of shorter cylinders, both in terms of linear and nonlinear dynamics. Indeed,
this similarity is so strong that a very long cylinder can, to some extent, be modelled as
a short cylinder of length LC , which is the length where friction-related flow-induced
tension is negligible compared to the bending stiffness. This length is also the scale
where most of the deformation occurs. The main specificity of long cylinders is that
the friction-induced tension stiffens the upstream part, so that a higher lift coefficient
is required at the downstream end for flutter to arise.
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The spatially restricted form of instabilities found here for long cylinders is very
similar to that observed recently in experiments and models of hanging fluid-conveying
pipes, hanging ribbons with axial flow or inclined filaments in flow. They all belong
to a type of edge flutter, where the flutter wavelength is not fixed by the scale of the
structure but by the boundary-layer thickness of the structural displacement defined
by a balance between local bending stiffness and fluid forces.
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Päıdoussis, M. P. 1998 Fluid–Structure Interactions: Slender Structures and Axial Flows, vol. 1.
Academic.
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Päıdoussis, M. P., Grinevich, E., Adamovic, D. & Semler, C. 2002 Linear and nonlinear dynamics
of cantilevered cylinders in axial flow. Part 1. Physical dynamics. J. Fluids Struct. 16, 691–713.

Pao, H. P. 1970 Dynamics stability of a towed thin flexible cylinder. AIAA J. Hydronaut. 4, 144–150.

Schouveiler, L., Eloy, C. & Le Gal, P. 2005 Flow-induced vibrations of high mass ratio flexible
filaments freely hanging in a flow. Phys. Fluids 17, 047104.
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