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Abstract. The dynamic dimension of an impinging flow may be significantly reduced by
its boundary conditions and self-sustained oscillations they induce. The spectral signature is
associated with remarkable spatial coherent structures. Dynamic modes decomposition (DMD)
makes it possible to directly extract the dynamical properties of a non-linearly saturated
flow. We apply DMD to highlight the spectral contribution of the longitudinal and transverse
structures of an experimental open-cavity flow.

1. Introduction

Although open physical systems potentially have an infinite number of degrees of freedom, flows
quite often organize around characteristic coherent structures, which play a key-role in both
the dynamics and spectral signature of the flow (e.g. von Karman streets or self-sustained
oscillating flows). This organization invites a modal decomposition which can be used to
understand the connection between the different scales captured by the coherent structures
and their time behavior, or to infer reduced-order models. Classical decompositions are Fourier,
proper orthogonal decomposition (POD), or global mode decompositions. POD is based on a
statistical correlation and can therefore be applied to experimental data, while global modes rely
on some linearized evolution operator and are therefore not easy to deal with experimentally.
Dynamic mode decomposition (DMD) is based on the analysis of the Koopman operator [1]
and aims at extracting the non-linear dynamical features of the flow [2; 3; 4] from time-
resolved experimental data. In this contribution we consider the case of an experimental open-
cavity flow, in the incompressible regime, from which velocity fields were computed using time-
resolved particle image velocimetry (TR-PIV). The spectral signature of the longitudinal spatial
structures, obtained using DMD, will be compared to the signature obtained by discrete Fourier
transform, yielding a validation. DMD modes of the transversal spatial structures allow the
difficult identification of the spectral signature of the centrifugal instability inside the cavity
(Görtler-like spanwise vortex).
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2. Decomposition Method

DMD is a model-free algorithm yielding a decomposition of experimental flow fields into coherent
and dynamically relevant structures [2; 3; 4]. Its underlying premise rests on the identification of
a linear inter-snapshot mapping that best (in a least-squares sense) represents data produced by a
non-linear process. The linear mapping can then be analyzed using eigenvalue-analysis, resulting
in dominant frequencies and modal shapes. Considering a data set V N−1

0 of N realizations of
the velocity field fluctuations, an evolution operator A is supposed, so that,

V N−1
0 = {u0,u1, . . . ,uN−1} = {u0, Au0, . . . , AuN−2} . (1)

Operator A describes the time development of the observable u resulting from a nonlinear
process. The eigenfunctions φi of A and the eigenvalues λi, with Aφi = λiφi, are therefore
characteristic of the time behavior of the field u. The set {φi} is infinite and builds a basis for
the temporal evolution of the velocity field realizations,

u(r, t) =
∑
i≥1

φi(t)αi(r), (2)

with αi as the projection of u onto {φi}. The coefficients αi constitute the dynamical modes. Let
us remark that, using equation (1), expression (2) can be written through a temporal recurrence:

u(r, tk) =
∑
i≥1

λk−1
i φi(t0)αi(r). (3)

The computation of (φi,αi) is accomplished under the assumption that the field uN can be
written as a linear combination of the flow realizations V N−1

0 :

uN = c0u0 + c1u1 + . . .+ cN−1uN−1. (4)

It follows from (1) that AV N−1
0 = V N

1 which leads, with assumption (4), to the definition of the

companion matrix C, according to AV N−1
0 = V N−1

0 C +R, with

C =



0 . . . . . . 0 c0

1 0
... c1

0 1
. . .

... c2
...

. . .
. . . 0

...
0 . . . 0 1 cN−1

 , (5)

and R denoting a residual matrix which is zero when (4) is strictly realized. The dimension of
matrix C is N × N and the coefficients cj are deduced from equation (4) by minimizing the

norm of the difference vector uN −
∑N−1

j=1 cjuj . The operators A and C are similar in the sense
that, if the residual R is zero, they share the same eigenvalues; their eigenvectors are related via
αj ' V N−1

0 vj . An empirical estimation of the eigenvectors {φi} of the evolution operator A is
therefore possible, leading to the equation:

ũk =
N∑
i=1

λk−1
i φi(t0)αi(r). (6)

The initial conditions {φi(t0)} are obtained by projecting u0 onto {αi}. For data sampled from
a periodic dynamic process, dynamic modes have been shown to reduce to Discrete Fourier
Transform (DFT) modes. It can be verified that this property remains valid for dynamics
confined to an attractor, as recalled in [3] (and c.f. end of §4.1).
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3. Experimental conditions

An open rectangular cavity is inserted in a wind flow tunnel. The airflow is generated by
a centrifugal fan placed upstream of a settling chamber (Figure 1). The incoming airflow is
laminar and stationary, and the flow rate is kept constant during the experiment. Between the
external flow and the inside-cavity flow, a convectively unstable shear layer develops (Fig. 2a).
The impact at the downstream cavity edge leads to self-sustained oscillations, which induce the
main features in the power spectrum (Fig. 3 b). Besides this shear instability, the curvature
of the recirculating flow inside the cavity (Fig. 2a) induces centrifugal instabilities over a given
range of the control parameters U , L/H et S/H. In the saturated nonlinear regime this gives
rise to near-toroidal Taylor-Görtler structures [5; 6] (see figure 2 b).

Two- or three-component velocity fields are obtained by particle image velocimetry using an
optical flow algorithm applied to images pairs taken in the considered illuminated plane. As
a reference, a local well-sampled time-series of the axial velocity component is recorded at one
point of the flow by a laser Doppler velocimeter. The matching between a given frequency and
the corresponding longitudinal or spanwise flow structure is performed using two different data
bases, one corresponding to PIV measurements in the longitudinal plane {x, y, z = 0.07H} near
the plane of symmetry of the cavity, the other in the spanwise plane {z, x, y = −0.3H}. The
parameters of the two databases are given in the following sections 4.1 and 4.2.

Figure 1. Sketch of the experimental setup, (a) windtunnel, (b) cavity sub-system with
L/H = 2.

(a) (b)

Figure 2. Smoke visualization for a cavity geometry L/H = 1.5, S/H = 6 and for a typical
Reynolds number <H ≈ 3000. (a) Front view of the longitudinal plane (x, y), (b) top view of
the spanwise plane (x, z) located at y/H = −0.3 inside the cavity.
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4. Dynamic Mode Decomposition of the cavity flow

4.1. Snapshot DMD in the longitudinal plane {x, y, z ≈ 0}
For the study in the longitudinal plane the cavity geometry is chosen so that the ratio of length
to height is L/H = 2 with L = 100 mm and H = 50 mm. The upstream velocity U = 1.9 m/s
corresponds to the Reynolds numbers <L = UL/νair = 12700 and <H = UH/νair = 6350. A
record of 8192 images (512x400 pixels) acquired with a high rate PIV system provides a series
of 4092 velocity fields sampled at 250Hz.

(a) (b)

Figure 3. DMD of velocity fields in the longitudinal plane: (a) operator eigenvalues λk, well
distributed on the unit circle. (b) Comparison between PSD obtained by Fourier transform of
the LDV signal (solid blue line), amplitude spectrum of the DMD (green circles) and the mean
value over space of the Fourier transform of the PIV snapshots (solid red line).

In thae nonlinearly saturated flow regime, the eigenvalues λk of the Koopman operator
are distributed on the unit circle, as presented in figure 3a; they can therefore be written as
λk = exp(iωk∆t) and correspond to the frequencies fk = ωk/2π. One can then determine an
amplitude spectrum of the DMD modes, attributing to each frequency fk ± δfk/2 an amplitude
given by the L2-norm of the corresponding mode αk. This yields the spectrum shown in figure 3b
(green circles) which appears to be similar to the PSD computed by the Fourier transform of the
LDV time-series(solid blue line). The discrepancies can be partially attributed to the fact that
the amplitude spectrum of the DMD modes reflects the behavior of the entire two-component
velocity fields, whereas the PSD of the LDV-record of the axial-velocity component is strictly
local. To estimate the difference between the global and the local behavior one can take the
data set used for the DMD analysis and compute the Fourier transform of each local time series.
These local PSDs are then averaged over space (see figure 3b, solid red line). The agreement with
the spectrum of the DMD modes (green circles) is very good, both in frequency and amplitude,
at least for the main peaks associated with the shear layer instability.

The spatial structures αk, associated with the frequencies fk which are most prominent in
the spectrum of the figure 3b, are given in figure 4. As expected, the high, dominant frequencies
correspond to oscillatory modes of the shear layer (figure 4 c and d), while low frequencies
correspond to structures inside the cavity (figures 4 a and b). These DMD modes are compared
to those obtained by a direct projection of the matrix V N−1

0 onto Fourier modes using a discrete
Fourier transform (DFT) as presented in detail by Basley et al. [7]. The real part of the DFT
modes is plotted in figure 4 d,e,f and g for the same four frequencies than detected by the
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4.
DMD modes (left col-
umn)
DFT Modes (right
column)
Inside cavity structures:
(a) & (e) fk = 0.49 Hz,
(b) & (f) fk =7.1 Hz,
Mixing layer structures:
(c) & (g) fk =19.6 Hz,
(d) & (h) fk = 26.4 Hz,

Quiver field shows
the real part of
αk = αk,xex + αk,yey
and the colorbar shows
the normalized vorticity
intensity.

DMD analysis. The two methods give indeed extremely close results. Because DFT and DMD
modes are complex, a comparison of both of them require to find empirically the common phase.
Although remarkable from the point of view of the numerical precision,this similarity between
both methods is expected since Koopman eigenvalues λk are close to complex exponential
functions (as observed in Figure 3a), hence describe purely oscillating dynamics. Indeed, a
permanent regime, that is a system evolving on an attractor, implies by definition oscillating
modes without any growth rate (no transitory component): DMD modes of a permanent regime
tend to global Fourier modes as analytically demonstrated in [3] in the case of a discrete system
of finite dimension.
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4.2. Snapshot DMD in the spanwise plane {x, z, y = −0.3H}
For a frequency characterization of the spanwise flow structures, the cavity geometry is chosen
such that the ratio of length-to-height is L/H = 1.5 with L = 75 mm and H = 50 mm (Fig. 1).
The upstream velocity U = 0.69 m/s corresponds to the Reynolds numbers <L = UL/νair =
3066 and <H = UH/νair = 2300. A record of 2000 images (with 1032x732 pixels) gives, after
computation of the particle displacements, a series of 1000 velocity fields sampled at 5Hz.

Görtler-like vortices are moving towards the cavity sides due to Ekman-layer pumping. The
point of separation, between the two directions, occurs off-center at zc/S = 0.067. To save
RAM, only a limited area of 500× 200 pixels (138× 51 mm2) centered around zc is concidered
and DMD modes associated with the velocity components ux et uz are computed separately.

(a) (b)

Figure 5. Spectrum
associated with the
DMD αk of the span-
wise dataset
(a) {ux},
(b) {uz}.

The eigenvalues for both the {ux}- and {uz}-modes are again closely distributed on the
unit circle, indicating that the data series is sufficiently long. The amplitude spectrum of
the spanwise DMD modes (figure 5) presents clearly three main frequencies, f1 = 0.13 Hz
(open circle), f2 = 0.22 Hz (solid circle) and a very low one f3 = 0.005 Hz. Between the
{ux}- and {uz}-analysis, only the amplitude is changing; the identified frequencies are the
same. The corresponding eigenvectors α1 and α2 associated with f1 and f2 are given in
figure 6. They signify a link between the detected frequencies and a centrifugal instability
for two reasons. First, they express the slow motion induced by the Ekman-layer pumping, left
for α1 and right for α2; indeed, imaginary and real parts are mainly in phase quadrature. The
expression α1(r) ' α1,r(x, z) + iα1,r(x, z + λ1/4), when multiplied by the temporal coefficient
φ1(t) = e2iπf1t, gives the dynamics of a convective wave moving left,

ũ1(r, t) = (φ1(t)α1(r) + c.c.)/2 = α1,r(x, z) cos(ω1t)−α1,r(x, z + λ1/4) sin(ω1t),

while the analogous expression with α2 represents a right-moving vortices. This relation
is confirmed by a movie based on the time-series reconstruction. Secondly, the quiver
representation of α1 and α2 exhibits vortices at both the down- and upstream ends where
Görtler votices are present.

5. Conclusions

Dynamics in an open cavity mainly comes down to a few spectral components which have been
long studied, questions remains as for a refined analysis of modulation processes and various 3D-
instabilities implied by internal flow. The system is characterized by time scales over two orders
of magnitude corresponding to a full three-dimensional evolution of coherent flow structures.
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(a) <(α1) (b) =(α1)

(c) <(α2) (d) =(α2)

Figure 6. Real and imaginary parts of vectors α1 and α2, associated with f1 = 0.13 Hz and
f2 = 0.22 Hz. Quivers give the real part (αz, αx), and color contours represent the real part of
αk · ex.

We capture the dynamical range over these time scales using the dynamic mode decomposition,
which provides a good numerical estimation of the modes of Koopman evolution operator, from
the experimental data set. This decomposition requires a time-resolved dataset. For this reason,
two different flow configurations and three kinds of velocimetries are used in this study. We show
that, in such a flow, the DMD can reveal a connection between a frequency and some space-time
behavior of the corresponding structures. Dynamic decomposition is first employed in the plane
perpendicular to the shear layer in order to catch the primary instability, which induces self-
sustained oscillations impinging the trailing edge of the cavity the most energetic instabilities
develop in the shear layer (§4.1). It is then applied to analyze the Taylor-Görtler-like structures in
the orthogonal spanwise plane (§4.2). The two main frequencies corresponding to self-sustained
oscillations inside the shear layer 19.6 Hz and 26.4 Hz are well separated. Such a separation
cannot be obtained using the proper orthogonal decomposition (POD). In particular, two of
these spectral components denote in fact a progressive wave as a spanwise mode slowly drifting
towards the Eckman layers located at the transversal walls of the cavity. In the transverse plane,
two frequencies have been identified and linked to the unsteady behavior of Görtler-like spanwise
structures. In particular, two of these spectral components denote in fact a progressive wave: a
spanwise mode slowly drifting towards the Eckman layers located at the transversal walls of the
cavity.
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