R. 1. Garneau, N. Wilusz, J. Wilusz, and C. , The highways and byways of mRNA decay, Nature Reviews Molecular Cell Biology, vol.127, issue.2, pp.113-126, 2007.
DOI : 10.1038/nrm2104

A. Dziembowski, E. Lorentzen, E. Conti, and B. Seraphin, A single subunit, Dis3, is essentially responsible for yeast exosome core activity, Nature Structural & Molecular Biology, vol.8, issue.1, pp.15-22, 2007.
DOI : 10.1093/nar/29.12.2448

URL : https://hal.archives-ouvertes.fr/hal-00167461

A. Lebreton, R. Tomecki, A. Dziembowski, and B. Seraphin, Endonucleolytic RNA cleavage by a eukaryotic exosome, Nature, vol.20, issue.7224, pp.993-996, 2008.
DOI : 10.1038/nature07480

URL : https://hal.archives-ouvertes.fr/hal-01350769

P. Mitchell, E. Petfalski, A. Shevchenko, M. Mann, and D. Tollervey, The Exosome: A Conserved Eukaryotic RNA Processing Complex Containing Multiple 3??????5??? Exoribonucleases, Cell, vol.91, issue.4, pp.457-466, 1997.
DOI : 10.1016/S0092-8674(00)80432-8

D. Schaeffer, B. Tsanova, A. Barbas, F. Reis, and E. Dastidar, The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities, Nature Structural & Molecular Biology, vol.20, issue.1, pp.56-62, 2009.
DOI : 10.1038/nsmb.1528

C. Schneider, E. Leung, J. Brown, and D. Tollervey, The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome, Nucleic Acids Research, vol.37, issue.4, pp.1127-1140, 2009.
DOI : 10.1093/nar/gkn1020

H. Liu, N. Rodgers, X. Jiao, and M. Kiledjian, The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases, The EMBO Journal, vol.21, issue.17, pp.4699-4708, 2002.
DOI : 10.1093/emboj/cdf448

C. Decker and R. Parker, A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation., Genes & Development, vol.7, issue.8, pp.1632-1643, 1993.
DOI : 10.1101/gad.7.8.1632

C. Hsu and A. Stevens, Yeast cells lacking 5'-->3' exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure., Molecular and Cellular Biology, vol.13, issue.8, pp.4826-4835, 1993.
DOI : 10.1128/MCB.13.8.4826

J. Lykke-andersen, Identification of a Human Decapping Complex Associated with hUpf Proteins in Nonsense-Mediated Decay, Molecular and Cellular Biology, vol.22, issue.23, pp.8114-8121, 2002.
DOI : 10.1128/MCB.22.23.8114-8121.2002

E. Van-dijk, N. Cougot, S. Meyer, S. Babajko, and E. Wahle, Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures, The EMBO Journal, vol.21, issue.24, pp.6915-6924, 2002.
DOI : 10.1093/emboj/cdf678

Z. Wang, X. Jiao, A. Carr-schmid, and M. Kiledjian, The hDcp2 protein is a mammalian mRNA decapping enzyme, Proceedings of the National Academy of Sciences, vol.99, issue.20, pp.12663-12668, 2002.
DOI : 10.1073/pnas.192445599

Y. Li and M. Kiledjian, Regulation of mRNA decapping, Wiley Interdisciplinary Reviews - RNA, vol.14, issue.Pt 5, pp.253-265, 2010.
DOI : 10.1002/wrna.15

S. Ling, R. Qamra, and H. Song, Structural and functional insights into eukaryotic mRNA decapping, Wiley Interdisciplinary Reviews: RNA, vol.20, issue.2, pp.193-208, 2010.
DOI : 10.1002/wrna.44

E. Bouveret, G. Rigaut, A. Shevchenko, M. Wilm, and B. Seraphin, A Sm-like protein complex that participates in mRNA degradation, The EMBO Journal, vol.19, issue.7, pp.1661-1671, 2000.
DOI : 10.1093/emboj/19.7.1661

S. Tharun, W. He, A. Mayes, P. Lennertz, and J. Beggs, Yeast Sm-like proteins function in mRNA decapping and decay, Nature, vol.404, issue.6777, pp.515-518, 2000.
DOI : 10.1038/35006676

A. Chowdhury, J. Mukhopadhyay, and S. Tharun, The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs, RNA, vol.13, issue.7, pp.998-1016, 2007.
DOI : 10.1261/rna.502507

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1894922

A. Chowdhury and S. Tharun, Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1-7-Pat1 complex, RNA, vol.15, issue.10, pp.1837-1848, 2009.
DOI : 10.1261/rna.1650109

C. Bonnerot, R. Boeck, and B. Lapeyre, The Two Proteins Pat1p (Mrt1p) and Spb8p Interact In Vivo, Are Required for mRNA Decay, and Are Functionally Linked to Pab1p, Molecular and Cellular Biology, vol.20, issue.16, pp.5939-5946, 2000.
DOI : 10.1128/MCB.20.16.5939-5946.2000

S. Ozgur, M. Chekulaeva, and G. Stoecklin, Human Pat1b Connects Deadenylation with mRNA Decapping and Controls the Assembly of Processing Bodies, Molecular and Cellular Biology, vol.30, issue.17, pp.4308-4323, 2010.
DOI : 10.1128/MCB.00429-10

G. Pilkington and R. Parker, Pat1 Contains Distinct Functional Domains That Promote P-Body Assembly and Activation of Decapping, Molecular and Cellular Biology, vol.28, issue.4, pp.1298-1312, 2008.
DOI : 10.1128/MCB.00936-07

H. Sharif, S. Ozgur, K. Sharma, C. Basquin, and H. Urlaub, Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions, Nucleic Acids Research, vol.41, issue.17, pp.8377-8390, 2013.
DOI : 10.1093/nar/gkt600

F. Tritschler, J. Braun, A. Eulalio, V. Truffault, and E. Izaurralde, Structural Basis for the Mutually Exclusive Anchoring of P Body Components EDC3 and Tral to the DEAD Box Protein DDX6/Me31B, Molecular Cell, vol.33, issue.5, pp.661-668, 2009.
DOI : 10.1016/j.molcel.2009.02.014

S. Fromm, V. Truffault, J. Kamenz, J. Braun, and N. Hoffmann, The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex, The EMBO Journal, vol.12, issue.2, pp.279-290, 2012.
DOI : 10.1038/emboj.2011.408

Y. Harigaya, B. Jones, D. Muhlrad, J. Gross, and R. Parker, Identification and Analysis of the Interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.30, issue.6, pp.1446-1456, 2010.
DOI : 10.1128/MCB.01305-09

T. Nissan, P. Rajyaguru, M. She, H. Song, and R. Parker, Decapping Activators in Saccharomyces cerevisiae Act by Multiple Mechanisms, Molecular Cell, vol.39, issue.5, pp.773-783, 2010.
DOI : 10.1016/j.molcel.2010.08.025

URL : http://doi.org/10.1016/j.molcel.2010.08.025

G. Badis, C. Saveanu, M. Fromont-racine, and A. Jacquier, Targeted mRNA Degradation by Deadenylation-Independent Decapping, Molecular Cell, vol.15, issue.1, pp.5-15, 2004.
DOI : 10.1016/j.molcel.2004.06.028

URL : https://hal.archives-ouvertes.fr/pasteur-01404698

S. Dong, A. Jacobson, and F. He, Degradation of YRA1 Pre-mRNA in the Cytoplasm Requires Translational Repression, Multiple Modular Intronic Elements, Edc3p, and Mex67p, PLoS Biology, vol.17, issue.4, p.1000360, 2010.
DOI : 10.1371/journal.pbio.1000360.s011

S. Dong, C. Li, D. Zenklusen, R. Singer, and A. Jacobson, YRA1 Autoregulation Requires Nuclear Export and Cytoplasmic Edc3p-Mediated Degradation of Its Pre-mRNA, Molecular Cell, vol.25, issue.4, pp.559-573, 2007.
DOI : 10.1016/j.molcel.2007.01.012

O. Kolesnikova, R. Back, M. Graille, and B. Seraphin, Identification of the Rps28 binding motif from yeast Edc3 involved in the autoregulatory feedback loop controlling RPS28B mRNA decay, Nucleic Acids Research, vol.41, issue.20, pp.9514-9523, 2013.
DOI : 10.1093/nar/gkt607

URL : https://hal.archives-ouvertes.fr/hal-00984653

D. Schwartz, C. Decker, and R. Parker, The enhancer of decapping proteins, Edc1p and Edc2p, bind RNA and stimulate the activity of the decapping enzyme, RNA, vol.9, issue.2, pp.239-251, 2003.
DOI : 10.1261/rna.2171203

C. Chang, N. Bercovich, B. Loh, J. S. Izaurralde, and E. , The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1, Nucleic Acids Research, vol.42, issue.8, 2014.
DOI : 10.1093/nar/gku129

M. Fenger-gron, C. Fillman, B. Norrild, and J. Lykke-andersen, Multiple Processing Body Factors and the ARE Binding Protein TTP Activate mRNA Decapping, Molecular Cell, vol.20, issue.6, pp.905-915, 2005.
DOI : 10.1016/j.molcel.2005.10.031

G. Haas, J. Braun, C. Igreja, F. Tritschler, and T. Nishihara, HPat provides a link between deadenylation and decapping in metazoa, The Journal of Cell Biology, vol.1773, issue.2, pp.289-302, 2010.
DOI : 10.1128/MCB.01081-09

S. Ozgur and G. Stoecklin, Role of Rck-Pat1b binding in assembly of processing-bodies, RNA Biology, vol.128, issue.4, pp.528-539, 2013.
DOI : 10.1126/science.1115079

J. Braun, F. Tritschler, G. Haas, C. Igreja, and V. Truffault, The C-terminal ??????? superhelix of Pat is required for mRNA decapping in metazoa, The EMBO Journal, vol.158, issue.14, pp.2368-2380, 2010.
DOI : 10.1016/S0092-8674(02)00873-5

M. Fromont-racine, A. Mayes, A. Brunet-simon, J. Rain, and A. Colley, Genome-Wide Protein Interaction Screens Reveal Functional Networks Involving Sm-Like Proteins, Yeast, vol.24, issue.2, pp.95-110, 2000.
DOI : 10.1002/1097-0061(20000630)17:2<95::AID-YEA16>3.0.CO;2-H

URL : http://doi.org/10.1002/1097-0061(20000630)17:2<95::aid-yea16>3.0.co;2-h

A. Marnef, D. Weil, and N. Standart, RNA-related nuclear functions of human Pat1b, the P-body mRNA decay factor, Molecular Biology of the Cell, vol.23, issue.1, pp.213-224, 2012.
DOI : 10.1091/mbc.E11-05-0415

H. Sharif and E. Conti, Architecture of the Lsm1-7-Pat1 Complex: A Conserved Assembly in Eukaryotic mRNA Turnover, Cell Reports, vol.5, issue.2, pp.283-291, 2013.
DOI : 10.1016/j.celrep.2013.10.004

D. Wu, D. Muhlrad, M. Bowler, Z. Liu, and R. Parker, Lsm2 and Lsm3 bridge the interaction of the Lsm1-7 complex with Pat1 for decapping activation, Cell Research, vol.426, issue.2, 2013.
DOI : 10.1006/meth.1998.0706

A. Lavut and D. Raveh, Sequestration of Highly Expressed mRNAs in Cytoplasmic Granules, P-Bodies, and Stress Granules Enhances Cell Viability, PLoS Genetics, vol.1, issue.2, p.1002527, 2012.
DOI : 10.1371/journal.pgen.1002527.s005

R. Rother, M. Frank, and P. Thomas, Purification, primary structure, bacterial expression and subcellular distribution of an oocyte-specific protein in Xenopus, European Journal of Biochemistry, vol.77, issue.3, pp.673-683, 1992.
DOI : 10.1016/0092-8674(80)90474-2

J. Coller and R. Parker, General Translational Repression by Activators of mRNA Decapping, Cell, vol.122, issue.6, pp.875-886, 2005.
DOI : 10.1016/j.cell.2005.07.012

F. Wyers, M. Minet, M. Dufour, L. Vo, and F. Lacroute, Deletion of the PAT1 Gene Affects Translation Initiation and Suppresses a PAB1 Gene Deletion in Yeast, Molecular and Cellular Biology, vol.20, issue.10, pp.3538-3549, 2000.
DOI : 10.1128/MCB.20.10.3538-3549.2000

P. Rajyaguru, M. She, and R. Parker, Scd6 Targets eIF4G to Repress Translation: RGG Motif Proteins as a Class of eIF4G-Binding Proteins, Molecular Cell, vol.45, issue.2, pp.244-254, 2012.
DOI : 10.1016/j.molcel.2011.11.026

W. Hu, T. Sweet, S. Chamnongpol, K. Baker, and J. Coller, Co-translational mRNA decay in Saccharomyces cerevisiae, Nature, vol.99, issue.7261, pp.225-229, 2009.
DOI : 10.1038/nature08265

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745705

N. Cougot, S. Babajko, and B. Seraphin, Cytoplasmic foci are sites of mRNA decay in human cells, The Journal of Cell Biology, vol.115, issue.1, pp.31-40, 2004.
DOI : 10.1016/S0962-8924(01)01982-1

R. Parker and U. Sheth, P Bodies and the Control of mRNA Translation and Degradation, Molecular Cell, vol.25, issue.5, pp.635-646, 2007.
DOI : 10.1016/j.molcel.2007.02.011

D. Teixeira and R. Parker, Analysis of P-Body Assembly in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.18, issue.6, pp.2274-2287, 2007.
DOI : 10.1091/mbc.E07-03-0199

R. Sikorski and P. Hieter, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, vol.122, pp.19-27, 1989.

P. Evans, Scaling and assessment of data quality, Acta Crystallographica Section D Biological Crystallography, vol.62, issue.1, pp.72-82, 2006.
DOI : 10.1107/S0907444905036693

A. Leslie, H. Powell, R. Read, and J. Sussman, Processing diffraction data with mosflm. Evolving Methods for Macromolecular Crystallography, pp.41-51, 2007.
DOI : 10.1007/978-1-4020-6316-9_4

T. Terwilliger and J. Berendzen, Automated MAD and MIR structure solution, Acta Crystallographica Section D Biological Crystallography, vol.55, issue.4, pp.849-861, 1999.
DOI : 10.1107/S0907444999000839

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746121

T. Terwilliger, Reciprocal-space solvent flattening, Acta Crystallographica Section D Biological Crystallography, vol.55, issue.11, pp.1863-1871, 1999.
DOI : 10.1107/S0907444999010033

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745881

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, Journal of Applied Crystallography, vol.26, issue.6, pp.795-800, 1993.
DOI : 10.1107/S0021889893005588

A. Vagin and A. Teplyakov, : an Automated Program for Molecular Replacement, Journal of Applied Crystallography, vol.30, issue.6, pp.1022-1025, 1997.
DOI : 10.1107/S0021889897006766

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

P. Adams, R. Grosse-kunstleve, L. Hung, T. Ioerger, and A. Mccoy, : building new software for automated crystallographic structure determination, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.11, pp.1948-1954, 2002.
DOI : 10.1107/S0907444902016657

C. Gaboriaud, V. Bissery, T. Benchetrit, and J. Mornon, Hydrophobic cluster analysis: An efficient new way to compare and analyse amino acid sequences, FEBS Letters, vol.112, issue.1, pp.149-155, 1987.
DOI : 10.1016/0014-5793(87)80439-8

R. Bahadur, P. Chakrabarti, F. Rodier, and J. Janin, Dissecting subunit interfaces in homodimeric proteins, Proteins: Structure, Function, and Genetics, vol.11, issue.3, pp.708-719, 2003.
DOI : 10.1002/prot.10461

M. Andrade, C. Petosa, O. Donoghue, S. Muller, C. Bork et al., Comparison of ARM and HEAT protein repeats, Journal of Molecular Biology, vol.309, issue.1, pp.1-18, 2001.
DOI : 10.1006/jmbi.2001.4624

V. Balagopal and R. Parker, Stm1 Modulates mRNA Decay and Dhh1 Function in Saccharomyces cerevisiae, Genetics, vol.181, issue.1, pp.93-103, 2009.
DOI : 10.1534/genetics.108.092601

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621192

S. Tharun, Lsm1-7-Pat1 complex:?? A link between 3??? and 5???-ends in mRNA decay?, RNA Biology, vol.6, issue.3, pp.228-232, 2009.
DOI : 10.4161/rna.6.3.8282

S. Jonas and E. Izaurralde, The role of disordered protein regions in the assembly of decapping complexes and RNP granules, Genes & Development, vol.27, issue.24, pp.2628-2641, 2013.
DOI : 10.1101/gad.227843.113

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, and N. Ben-tal, ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids, Nucleic Acids Research, vol.38, issue.Web Server, pp.529-533, 2010.
DOI : 10.1093/nar/gkq399

S. Jo, M. Vargyas, J. Vasko-szedlar, B. Roux, and W. Im, PBEQ-Solver for online visualization of electrostatic potential of biomolecules, Nucleic Acids Research, vol.36, issue.Web Server, pp.270-275, 2008.
DOI : 10.1093/nar/gkn314

R. Chenna, H. Sugawara, T. Koike, R. Lopez, and T. Gibson, Multiple sequence alignment with the Clustal series of programs, Nucleic Acids Research, vol.31, issue.13, pp.3497-3500, 2003.
DOI : 10.1093/nar/gkg500

P. Gouet, X. Robert, and E. Courcelle, ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins, Nucleic Acids Research, vol.31, issue.13, pp.3320-3323, 2003.
DOI : 10.1093/nar/gkg556

URL : https://hal.archives-ouvertes.fr/hal-00314281