
HAL Id: hal-01050800
https://polytechnique.hal.science/hal-01050800

Submitted on 4 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal mixing in two-dimensional plane Poiseuille flow
at finite Peclet number

D. P. G. Foures, C. P. Caulfield, Peter J. Schmid

To cite this version:
D. P. G. Foures, C. P. Caulfield, Peter J. Schmid. Optimal mixing in two-dimensional plane
Poiseuille flow at finite Peclet number. Journal of Fluid Mechanics, 2014, 748 (june), pp.241-277.
�10.1017/jfm.2014.182�. �hal-01050800�

https://polytechnique.hal.science/hal-01050800
https://hal.archives-ouvertes.fr


J. Fluid Mech. (2014), vol. 748, pp. 241–277. c© Cambridge University Press 2014
doi:10.1017/jfm.2014.182

241

Optimal mixing in two-dimensional plane
Poiseuille flow at finite Péclet number

D. P. G. Foures1, C. P. Caulfield2,1,† and P. J. Schmid3

1Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK

2BP Institute, University of Cambridge, Madingley Rise, Madingley Road, Cambridge,
CB3 0EZ, UK

3Laboratoire d’Hydrodynamique (LadHyX), CNRS-École Polytechnique, 91128 Palaiseau, France

(Received 8 November 2013; revised 8 November 2013; accepted 31 March 2014;
first published online 28 April 2014)

We consider the nonlinear optimisation of the mixing of a passive scalar, initially
arranged in two layers, in a two-dimensional plane Poiseuille flow at finite Reynolds
and Péclet numbers, below the linear instability threshold. We use a nonlinear-adjoint-
looping approach to identify optimal perturbations leading to maximum time-averaged
energy as well as maximum mixing in a freely evolving flow, measured through the
minimisation of either the passive scalar variance or the so-called mix-norm, as
defined by Mathew, Mezić & Petzold (Physica D, vol. 211, 2005, pp. 23–46). We
show that energy optimisation appears to lead to very weak mixing of the scalar
field whereas the optimal mixing initial perturbations, despite being less energetic,
are able to homogenise the scalar field very effectively. For sufficiently long time
horizons, minimising the mix-norm identifies optimal initial perturbations which are
very similar to those which minimise scalar variance, demonstrating that minimisation
of the mix-norm is an excellent proxy for effective mixing in this finite-Péclet-number
bounded flow. By analysing the time evolution from initial perturbations of several
optimal mixing solutions, we demonstrate that our optimisation method can identify
the dominant underlying mixing mechanism, which appears to be classical Taylor
dispersion, i.e. shear-augmented diffusion. The optimal mixing proceeds in three
stages. First, the optimal mixing perturbation, energised through transient amplitude
growth, transports the scalar field across the channel width. In a second stage, the
mean flow shear acts to disperse the scalar distribution leading to enhanced diffusion.
In a final third stage, linear relaxation diffusion is observed. We also demonstrate the
usefulness of the developed variational framework in a more realistic control case:
mixing optimisation by prescribed streamwise velocity boundary conditions.
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1. Introduction
The study of mixing mechanisms in a flow is a long-standing problem in fluid

mechanics due both to its inherent complexity and its wide-ranging applicability.
Indeed, understanding and modelling the ocean’s circulation (Wunsch & Ferrari
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2004), the prediction of the spreading of a pollutant in the atmosphere, the ocean, a
lake or a river (Lekien et al. 2005), the natural ventilation in a room or a building
(Linden 1999), the study of mixing of air and fuel in an engine (Annaswamy &
Ghoniem 1995) or the mixing in microfluidic devices (Hessel, Löwe & Schönfeld
2005; Nguyen & Wu 2005) are all problems where mixing holds a central role.
Mixing quantification and in some cases control (inhibition or enhancement) are very
important for many geophysical, environmental or industrial applications.

The mixing of a passive scalar was first identified as requiring two ordered
processes by Eckart (1948). First, relatively large-scale ‘stirring’ creates filaments
of passive scalar and in a second stage molecular diffusion acts to smooth out the
filamented concentration field. Mixing is therefore strongly linked to the concurrent
action of advection and diffusion. Taylor (1953) studied the action of a shear flow on
a passive scalar field, and was able to show that diffusion is enhanced in zones of
large shear (see also Rhines & Young 1983) by a mechanism now commonly known
as Taylor dispersion. Later, with the development of the dynamical systems description
of fluid flows, the possibility of mixing by chaotic advection was investigated and
described by Aref (1984) with his famous blinking vortex system. It was shown that
stretching and folding mechanisms (typical of chaotic flows) are very effective at
mixing (for a review of mixing processes, see Ottino 1990). Despite a large body of
literature on the subject, no unified theory for mixing has yet emerged, principally
because of a lack of a way to quantify the phenomenon.

In fact, one of the major challenges when considering the mixing of a passive
scalar in a flow consists of defining a way to measure the mixing properly and
quantitatively. There is no universally accepted measure of mixing, and although
ergodic theory defines a ‘mixing flow’ rigorously (see Thiffeault 2012), this definition
is far from being practical in real fluid problems. Therefore, other measures have
been applied to assess the mixedness of a flow. Variance has historically been used
in order to quantify mixing (Danckwerts 1952) but this approach fails when there
is no molecular diffusion, because it is unable to quantify pure stirring effects.
D’Alessandro, Dahleh & Mezic (1999) proposed quantifying mixing using an entropy
definition, but this approach is unfortunately not adapted to a continuous passive scalar
field (see Mathew, Mezić & Petzold 2005 for an overview of mixing quantification
methods). Mathew et al. (2005) introduced a new measure to quantify mixing in
spatially periodic domains: the mix-norm. Based on Sobolev norms of negative index
(as defined more carefully in (2.5)) which de-emphasise the role of small scales, this
class of measures is sensitive to both stirring and diffusion, and is derived from the
theoretical definition of mixing given by the ergodic theory.

Naturally, the need to quantify mixing arises when one wants to control this
process, either by enhancing or preventing it. As noted above, D’Alessandro et al.
(1999) studied the problem of optimal mixing via an entropy maximisation approach.
However, the flow was not governed by the Navier–Stokes equations, but was
prescribed as two orthogonal shear flows. An optimal steady Stokes flow (Re→ 0)
obtained by superposition of two flows (array of vortices) was obtained by Mathew
et al. (2007) by optimising the mix-norm. Once again, there was no incorporated
dynamics for the velocity flow and the model does not embed the molecular diffusion
of the passive scalar. A mixed cost functional based on variance minimisation was
also used by Liu (2008). This model embedded diffusion for the passive scalar but
no flow dynamics: the velocity field was once again prescribed, and was not a freely
evolving solution of the Navier–Stokes equations. Yet another mix-norm optimisation
was performed by Lin, Thiffeault & Doering (2011). The mixing flow was optimally
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found via an adjoint-based optimisation but was still not required to be a solution of
the Navier–Stokes equations. (A very clear and complete review on mixing measures
and optimisation is given in Thiffeault 2012.)

In parallel, because of the lack of an obvious way to measure mixing, optimal
destabilisation based on energy optimisation has often been considered as a proxy for
mixing optimisation. This originates from the hypothesis that an energetic perturbation
being associated with a strong advection field will induce stirring and hence ultimately
effective mixing. Indeed mixing via destabilisation of the flow was thoroughly studied
by Aamo and co-workers (Aamo & Krstić 2003; Aamo, Krstić & Bewley 2003; Aamo
& Krstić 2004; Balogh, Aamo & Krstić 2005). The mixing of discrete particles was
considered and the quality of the mixing assessed via a box-counting algorithm. In
this case, the flow was a solution of the Navier–Stokes equations, and control was
performed through wall blowing and suction. Despite the control not being designed
for mixing optimisation, effective mixing was indeed observed. We may however
wonder whether the same mixing quality can be obtained with less effort with a
direct optimisation of ‘mixedness’.

Furthermore, because mixing enhancement can only be performed via stirring
control which is an inherently nonlinear phenomenon, we have to consider the full
nonlinear Navier–Stokes operator in any variational formulation of the optimisation
problem. A variational formulation based on a Lagrange multipliers approach to
enforce the Navier–Stokes equation was recently applied to nonlinear flows (Cherubini
et al. 2010; Pringle & Kerswell 2010; Juniper 2011; Monokrousos et al. 2011; Rabin,
Caulfield & Kerswell 2012, 2014). We will therefore follow and generalise the
formulations presented in those studies. However, previous nonlinear optimisation
studies were carried out to investigate nonlinear energetic optimal perturbations,
typically to identify an ‘optimal’ route to turbulence from a laminar state in various
shear flows. Therefore, those studies focused on appropriate measures to distinguish
turbulent and laminar flow, either the finite-time maximisation of the energy defined
as the L2-norm of the velocity vector squared or the time-averaged dissipation
(Monokrousos et al. 2011).

However, in this paper, we are interested in a finite-time optimal value of
‘mixedness’. This concept is defined using various norms of the passive scalar
field (as we briefly outlined earlier) which we wish to homogenise. By exploring
different mixing measures we are able to characterise their respective usefulness.
In particular, we are interested in whether measures based on the mix-norm are
appropriate proxies for mixing in bounded flows with finite diffusivities, thus
demonstrating a generalisation of their applicability from their original theoretical
development. We apply the nonlinear variational framework to find nonlinear optimal
initial perturbations maximising the final time value of mixedness. Also, in order to
investigate the question of effective mixing via an energy amplification mechanism,
we find optimal initial perturbations maximising the time-average value of the energy.
We find that energy-optimal perturbations are not able to homogenise the passive
scalar, in contrast to both (variance and mix-norm) mixing-optimal perturbations.

Furthermore, generalising Eckart’s two-stage concept, we identify a generic
three-stage mechanistic picture for long-time optimal mixing. The first stage is
an energisation/transport stage during which the perturbation velocity displaces
the concentration interface from the centre of the domain towards the walls as
it is energised by transient growth mechanisms and grows in amplitude. Then,
mixing occurs due to both perturbation advection (stirring) and background shear
(Taylor-dispersion-enhanced diffusion) during a second dispersion/diffusion stage,
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before a third final stage during which the flow ‘relaxes’ and purely diffuses. We
conjecture that the relative strength of the two phenomena of stirring and dispersion
is closely related to the initial amount of energy injected into the flow. Furthermore,
optimal boundary conditions can also be optimised using the same variational
framework (Fursikov, Gunzburger & Hou 1998; Mao, Blackburn & Sherwin 2012).
Therefore, we demonstrate that a forcing strategy for the wall velocity boundary
condition can be identified which leads to effective mixing and relies on the same
three-stage mechanistic picture as identified for the optimal initial perturbation case.

The remainder of the paper is organised as follows. In § 2 we define several
measures to quantify mixing and derive their time-evolution equations in order to
gain some insight into their evolution subject to both advection and diffusion. We also
present the classical two-stage mixing process due to both advection and diffusion. In
order to study the behaviour of the several defined mixing norms, we study a spatially
periodic toy model (chequerboard flow)which consists of an analytical mixing flow
embedding both advection and molecular diffusion. In § 3.1 we present the governing
equations and the flow configuration. Armed with the insight gained in § 3.1, we
present in § 3.2 a variational frameworkdesigned to optimise either finite-time mixing
or time-averaged energy in order to investigate the possibility of energy optimisation
as a proxy for mixing optimisation. We present the results in § 4 for different control
strategies (either by prescribing a finite-size initial perturbation or by imposing a
streamwise velocity boundary condition). We eventually draw our conclusions in § 5.

2. Mathematical definitions of mixing
2.1. Measures of mixing

‘Mixing’ is a concept which is commonly used to characterise the properties of the
spatial distribution of a species in a given domain. We focus our attention on the case
where this distribution can entirely be described by a scalar field representing the
species concentration. Even though a rigorous mathematical definition of a ‘mixing
flow’ exists in the sense of ergodic theory (see Mathew et al. 2005; Thiffeault
2012), we believe it is fair to say that there is no universally accepted measure of
mixing. A mixing measure should be an indicator of how uniformly a scalar field
is distributed across the domain; loosely, it should be a measure of homogeneity or
‘mixedness’. Let us consider a case where the scalar field is equal to its maximum
value in a convex subspace of the domain Ω and vanishes everywhere else. This
should naturally correspond to a minimal mixing measure (given the subspace is not
too elongated). On the other hand, if the scalar field is equal to its spatial average
everywhere in the domain, this homogeneous state should yield a maximal value of
the mixing measure. Considering these two extreme situations, one is tempted to
adopt the variance of the field as an appropriate measure for mixing, the first case
of minimal mixing corresponding to a maximum variance value and the second case
of maximal mixing corresponding to the minimum variance.

Without any loss of generality, we can consider a zero-mean scalar field θ(x, t),
such that the variance can simply be expressed by the L2-norm of the scalar field:

Var θ = 1
VΩ
‖θ‖2

2 = 1
VΩ

∫
Ω

θ(x, t)2 dΩ, (2.1)
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where VΩ is the volume of the domain Ω . This definition of mixing is the most
natural one, because it measures the fluctuations of the scalar field from its mean.
We consider the case where θ is governed by a (non-dimensional) advection–diffusion
equation such as

∂tθ +U · ∇θ − Pe−1∇2θ = 0, (2.2)

where Pe=U0L0/κ is the Péclet number with U0 and L0 being characteristic velocity
and length scales of the flow, and κ is the diffusion coefficient of the fluid. Here U
is the non-dimensional velocity field transporting the quantity θ , either prescribed or
a dynamically varying solution of evolution equations. We further require ∇ · U = 0.
With such an evolution equation for θ , we can derive a differential equation describing
the time evolution of its variance:

1
2

d
dt
‖θ‖2

2 =−Pe−1‖∇θ‖2
2. (2.3)

The theoretical challenge arises when Pe → +∞ (κ = 0, no molecular diffusion),
as this equation leads to ‖θ(x, t)‖2 = ‖θ0(x)‖2 for any time t. With the variance
independent of time, mixing (in the variance sense) is not possible for any total
velocity field U.

However, we expect a mixing measure to be sensitive to the effect of pure advec-
tion of the scalar field, a process often referred to as ‘stirring’. For a finite Péclet
number Pe (κ 6= 0), we see that the rate of decrease of the square of the variance is
proportional to the norm of the concentration gradient squared. We can also derive
an equation for the time evolution of the gradient norm in which the velocity field
explicitly appears. We obtain

1
2

d
dt
‖∇θ‖2

2 =−
∫
Ω

∇θ · ∇U · ∇θ dΩ − Pe−1
∥∥∇2θ

∥∥2

2 . (2.4)

By combining (2.3) and (2.4), we see that in a diffusive case the time evolution of
the variance does depend on the velocity field U. Therefore, it seems straightforward
that increasing the concentration gradients via the velocity field U will promote a more
effective diffusion process. In other words, the velocity gradient ∇U acts as a ‘catalyst’
for diffusion.

Specifically, diffusion can thus be enhanced by shear, a phenomenon known as
Taylor dispersion (see Taylor 1953). Shear-enhanced diffusion can be exploited by
creating a velocity field (or by taking advantage of the background velocity field)
which transports the concentration field in such a way as to increase the length of
large-gradient zones separating regions of different concentration. The concentration
field hence becomes very filamented. Qualitatively, a filament is an elongated zone
of given concentration value, embedded in a fluid with a very different concentration
value. In practice, the longer the filament, or the more filaments there are, the
more effective will be the mixing of the flow. Mathematically, such a filamented
concentration field is associated with a large value of the gradient-norm. When the
typical size of a filament approaches the diffusion length scale, the overall diffusion
is enhanced and the sharp gradients are rapidly smoothed, leading to a very mixed
concentration field. Therefore, we conclude that with diffusion present in the system,
variance appears to be an acceptable mixing measure as it is able to account for
mixing due to both diffusion and advection (stirring). Despite this, it is unable to
quantify mixing in the limit where Pe→+∞.
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To overcome this issue, Mathew et al. (2005) proposed making use of Sobolev
norms of negative index, referred to as mix-norms. Such measures have strong links to
the ergodic-theory definition of mixing. A common choice is to define the mix-norm
as

Mix θ = 1
VΩ

∥∥∇−1θ
∥∥

2

2 = 1
VΩ

∫
Ω

(∇−1θ(x, t)
)2

dΩ. (2.5)

In this expression, the operator ∇−1 can be defined using the inverse of the Laplacian
operator ∇−1=∇∇−2. In practice, to compute the quantity ∇−1θ , we solve a Poisson
equation ∇2Θ = θ , with appropriate boundary conditions (see appendix A), and
identify ∇−1θ with the gradient ∇Θ . In the simplest case, when the domain is doubly
periodic, the operator ∇−1 can be defined by its action on the Fourier transform θ̂ :

∇−1θ̂ = k
k2
θ̂ , (2.6)

where k is the wavenumber with magnitude k. Considering the magnitude of this
quantity (as in (2.5)), we find |∇−1θ̂ |2 = k−2|θ̂ |2. The pre-factor k−2 shows that this
operator emphasises the role of large scales (small k); in contrast, the small scales
(large k) will contribute less to the norm. The generalisation of this quantity to non-
periodic domains requires the introduction of a boundary condition for the quantity
Θ . This condition will naturally arise when expressing the optimisation problem as a
variational formulation. We conjecture that the practical usefulness of the mix-norm
to quantify mixing extends from periodic to bounded domains.

By downplaying the role of small scales, this norm is able to measure the degree of
‘mixing’ of a flow even in the absence of diffusion. Indeed, the mix-norm will be large
in a completely unmixed situation and will decrease as advection transports the scalar
to distribute it equally across the domain, by for example creating filaments of large
concentration surrounded by low-concentration areas. In the limit where Pe→+∞, an
optimal ‘mixing’ flow (i.e. one with minimised mix-norm) creates increasingly smaller
scales for the scalar field (Lin et al. 2011), reminiscent of fractals.

To summarize, an effective mixing flow corresponds to a velocity field which
creates a very filamented concentration field, by increasing gradients of concentration
and generating progressively smaller length scales in the passive scalar field. Then,
when the concentration gradients are sufficiently large, if Pe is finite, diffusion is
greatly enhanced and quickly renders the concentration field uniform. For Pe→+∞,
mixing can never be accomplished through the action of diffusion; no matter how
fine the filaments, the concentration field will never be uniform, but will rather tend
towards uniformity if the stirring is very effective, such as when stretching-and-folding
mechanisms are present. The mix-norm (2.5), by being able to measure how
filamented a flow is, can measure the efficacy of stirring, even in the absence of
diffusion. In the following section, we will introduce and study a spatially periodic
toy model for a mixing flow at different values of the Péclet number Pe. One part
of the mixing is due to stirring (mixing due to advection only) which creates a
filamented flow corresponding to large gradients (or more specifically a long contact
surface between areas of very different concentration). To reach a perfectly mixed
state eventually, we also need to have some irreversible smoothing process, i.e.
molecular diffusion.

2.2. Mixing toy model: the ‘chequerboard flow’
We propose an analytical toy model for the mixing of a passive scalar due to both
advection and molecular diffusion. As presented in the previous section, the mixing of
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a passive scalar can be accomplished through two independent mechanisms: stirring
and diffusion. One can act only on stirring (through the advecting velocity field)
since diffusion is entirely governed by the fluid properties and described by the only
parameter Pe. A velocity field is able to mix a passive scalar effectively if it is able
to increase the gradient of concentration in the L2-sense (more precisely, increase
the total length of the interface between areas of different concentration), which will
allow, in a subsequent stage, the variance of the concentration to decrease quickly
when the diffusion length scale is reached by the advection process.

We propose a flow field which monotonically mixes a passive scalar field θ

by the action of a prescribed time-dependent velocity field which continuously
creates chequerboard patterns. As time evolves, the size of the chequerboard squares
decreases, yielding finer and finer length scales. This flow is considered in a doubly
periodic unit square. We consider a finite-Péclet-number version of the toy model flow
presented in Lunasin et al. (2012). This model will give insight into how different
mixing measures behave in the presence of diffusion, which is essential for effective
mixing. In fact, in real flows, no matter how weak the molecular diffusion, it cannot
be neglected by assuming κ = 0 because of the singular behaviour discussed in § 2.1.
Moreover, despite the absence of dynamics – the prescribed flow is not a solution
of the Navier–Stokes equations – we will be able to draw conclusions about the
temporal evolution of the norms in a mixing situation.

We define a one-dimensional rectangular diffusive ‘packet’ of width w, centred at
x= c, as:

rc,w(x, t)= 1
2

+∞∑
k=−∞

[
erf
(

x+ k− c+w/2

2
√

Pe−1t

)
− erf

(
x+ k− c−w/2

2
√

Pe−1t

)]
, (2.7)

where Pe is the inverse of the non-dimensional diffusivity coefficient. We use the error
function because it is an exact solution of the diffusion equation. The summation over
k allows us to consider periodic boundary conditions, but can in practice be truncated
to a few terms. Due to the integral definition of the error function, we notice the
following property for a rectangular diffusive packet:

rc3,w3 = rc1,w1 + rc2,w2, (2.8)

with c3 = (c1 + c2)/2 and w3 = w1 + w2. The equivalent two-dimensional rectangular
diffusive packet of width w = (wx, wy)

> and centred at c = (cx, cy)
>, can be defined

for all x= (x, y)> and t as:

Rc,w(x, t)= rcx,wx(x, t)rcy,wy(y, t). (2.9)

The concentration field θ is defined as a sum of such rectangular functions:

θ(x, t)=
N(t)∑
i=1

Rci,wi(x− ui(t), t)− 1
2
, (2.10)

where ui(t) = (ui(t), vi(t))> are the horizontal and vertical velocities of the ith
diffusive packet, and N(t) their number. We subtract 1/2 in order to have a zero-mean
concentration field. At time t= 0, the upper half of the unit square has a concentration
equal to θ(y> 0.5, 0)=−0.5 and the bottom half has the opposite concentration value
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(a) (b)

(c) (d )

t = 0

t = 1

FIGURE 1. (Colour online) Schematic of the chequerboard flow from t = 0 to t = 3/2.
(a) Initial concentration pattern (t= 0) consisting of two bands of opposite concentration.
(b) 2 × 2 chequerboard pattern after a time t = 1/2. (c) Concentration field at t = 1,
composed of four squares which are in the same configuration as the initial condition.
(d) Chequerboard pattern of size 4× 4 at t= 3/2. The evolution between these phases is
a continuous process.

θ(y< 0.5, 0)= 0.5, as sketched in figure 1(a). This field corresponds to the expression

θd(x, t)= R(x, t)c0,w0 − 1
2 , (2.11)

for t= 0, c0 = (L/2, L/4)> and w0 = (L, L/2)>.
This simple model has the ability to create increasingly smaller scales due to the

self-similar properties of the chequerboard flow and also to account for diffusion of
the scalar field since the functions used are exact solutions of the two-dimensional
diffusion equation. Therefore, this toy model, even though no dynamics is included,
contains many of the ingredients required to describe the main properties of mixing
when only advection and diffusion are at play. At t = 0 (this is the first period, so
n = 1) we split the single rectangle into two squares (by virtue of formula (2.8)).
The left square is then advected upward over a distance lu(1) = 1/2 with a velocity
u(1) = 1, such that at t = 1/2, the concentration field has the pattern of a 2 × 2
chequerboard, as shown in figure 1(b). We can then split each of these squares (along
the y direction) into N = 4 identical rectangles. This manipulation allows us to define
a horizontal velocity field (still with a magnitude of u(1) = 1) such that the bottom
and top rectangles are advected to the right over a distance lu(1) while the two middle
rectangles remain at the same location, leading after time t= 1 to the pattern shown
in figure 1(c). We recognise that this field is composed of four squares which are
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in the same position as the initial condition at t = 0 or in its symmetric counterpart
with respect to the horizontal axis. The same process can thus be applied to create
an 8 × 8 chequerboard at t = 5/2. By repeating this process iteratively n times, the
flow continuously shapes a concentration field into the form of a chequerboard of
size 2n × 2n at times t = (n − 1/2). The advection length during the nth step is
naturally given by lu(n)= 1/2n. Therefore, the time duration of the nth period is 2u/lu.
In order to keep the time period constant and equal to one, we have to choose the
velocity magnitude during the nth stage to be u(n)= 1/2n−1. We here stress that we
depart from the fixed-power (constant velocity u(n)) approach adopted in Lunasin et al.
(2012). The steps corresponding to n < t < n + 1/2 can be seen as a folding stage
whereas a stretching motion is observed when n + 1/2 < t < n + 1. This flow can
therefore be considered as a classical example of stretching and folding flows (Ottino
1990).

The only parameter of this flow is the Péclet number Pe. We study three different
values for this parameter, corresponding to strong diffusion (Pe = 103), medium
diffusion (Pe= 105) and weak diffusion (Pe= 107). Finally we discuss the no-diffusion
limiting case Pe → +∞. We present in figure 2 snapshots of the concentration
fields at different times for the case Pe = 103. The velocity field acts as desired,
continually creating an increasingly fine chequerboard pattern for times corresponding
to half-integer numbers of the fundamental period. In addition, the diffusion acts to
smooth the initially discontinuous distribution of concentration. We notice that the
variance (that we can infer qualitatively by looking at the intensity of the colours)
decreases dramatically around t= 2. This can be explained because the length scales
created by advection only (the inviscid chequerboard flow) have decreased sufficiently
for diffusion to become effective. Indeed, the gradient-norm first increases, after which,
when mixing by diffusion becomes relevant, it starts to decrease again (around t' 1.5
for Pe' 103 and t' 4 for Pe= 105). The mixing time can be evaluated by predicting
when the flow length scale lf (t) = 1/2t+1 (a continuous extension of the advection
length scale lu(n)) and the diffusion length scale ld(t)= (Pe−1t)1/2 are equal. Equating
these two length scales gives a mixing time of tm = 3.15 for Pe= 103, tm = 6.01 for
Pe= 105 and tm = 9.04 for Pe= 107.

We now perform several mixing simulations with the various norms introduced in
§ 2.1. In effect, we measure, for each specified case, the variance of the concentration,
the norm of its gradient and the mix-norm as functions of time. We normalise each
of these quantities with the corresponding quantities, evaluated for the concentration
field θd (defined in (2.11)) corresponding to the field obtained when no advection is
imposed. Normalising with respect to this pure-diffusion case allows us to compare
the evolution of the different norms without focusing on simple diffusion processes
but rather stressing the impact of the imposed advection field. All these quantities
are plotted against time in figure 3. First, the predicted mixing times tm correspond
remarkably well to the time when the variance curve can no longer be distinguished
from the abscissa. This observation strongly supports the validity of the assumption
made about the leading mixing mechanism: when the diffusion and advection length
scales become of the same order, mixing (due to diffusion) becomes very effective.

Several interesting trends can be deduced from observing these three quantities, all
expressing in a different manner the passive scalar distribution. Both the variance
and the mix-norm curves are monotonic functions of time while the gradient
norm (for all considered cases) is initially larger than for the purely diffusive case
(‖∇θ‖2 > ‖∇θd‖2). This period lasts longer for smaller diffusion coefficients (larger
Pe). The increase of the gradient norm reflects the creation of small length scales
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(a) (b) (c)

(d ) (e) ( f )

−0.5 0 0.5

FIGURE 2. (Colour online) Chequerboard flow for Pe = 103. We plot the concentration
field for several times. We notice that for times corresponding to a half-integer numbers
of periods, the flow has the shape of a chequerboard, more and more refined as time
increases. Around t= 2, the variance decreases dramatically due to the fine length scales
created by the chequerboard flow, enabling diffusion to act more effectively.
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FIGURE 3. Time evolution of various quantities characterising the passive scalar θ
spatial distribution. (a) Normalised mix-norm ‖∇−1θ‖2/‖∇−1θd‖2. (b) Normalised variance
‖θ‖2/‖θd‖2. (c) Normalised gradient norm ‖∇θ‖2/‖∇θd‖2. The normalising field θd
corresponds to a field obtained with no advection, i.e. by the pure diffusion of the initial
profile at t= 0, see (2.11). Both variance and mix-norm can be considered as good mixing
measures because of their monotonic decay in time.

(thus increasing the interface length between zones of low and high concentration) by
the chequerboard flow, ultimately leading to very effective diffusion, which explains
why all norms decrease suddenly after the gradient norm has reached its maximum.
For the case Pe= 107, the large-gradient stage lasts longer (as predicted by the large
mixing time tm = 9.04); it is therefore not completely shown in our time window
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which is limited by computational memory constraints. We nevertheless expect the
same behaviour as observed for larger diffusivities, but for longer times. The fact that
the evolution of the gradient-norm is not monotonic, even though our toy model has
been designed to mimic monotonic mixing in time, thus shows that this norm is not
a good measure of mixing. Based on this criterion, both variance and the mix-norm
can be considered as good mixing measures.

However, in the no-diffusion case (Pe→+∞), we would have a constant variance,
which eliminates this quantity as an appropriate mixing measure in this limit.
Therefore only the mix-norm (amongst these three quantities) should be used as
a robust mixing measure. In the case where Pe is finite, even if both the mix-norm
and the variance can characterise mixing correctly, the variance seems to be far
more sensitive to a change in diffusivity coefficient whereas the mix-norm evolution
remains very similar when the Péclet number varies by four orders of magnitude.
For very large values of Pe, the variance decreases very slowly for short times and
consequently its variations are harder to measure. The mix-norm, however, clearly
decreases monotonically from t= 0, showing as argued by Mathew et al. (2005), that
the mix-norm can capture ‘stirring’ processes as precursors to real ‘mixing’.

We thus conclude that for cases where diffusion is very small, the mix-norm is a
more robust mixing measure than the variance, even though, for finite Pe the variance,
due to its monotonic decay, is as plausible a measure as the mix-norm.

3. Mixing optimisation in two-dimensional plane Poiseuille flow
3.1. Governing equations and flow configuration

In order to demonstrate the technique of mixing optimisation, we choose to study a
two-dimensional flow test case: the mixing of a passive scalar by an incompressible
flow in a two-dimensional channel of dimension L= 4π, H = 2 (non-dimensionalised
by the channel half-width h). The flow is driven by a constant pressure gradient.
The flow variables (velocity and pressure) are governed by the two-dimensional
Navier–Stokes equations, characterised by the momentum diffusivity ν (i.e. the
kinematic viscosity), while the scalar field satisfies an advection–diffusion equation,
where the transport is imposed by the velocity field and the diffusion is governed by
the molecular diffusivity coefficient κ . By denoting the centreline velocity umax, we
can derive two non-dimensional numbers: the Reynolds number Re and the Péclet
number Pe, measuring the relative strength of advection over diffusion (momentum
diffusion for the Reynolds number and molecular diffusion for the Péclet number).
These numbers can be expressed for this particular flow as

Re= umaxh
ν

, Pe= umaxh
κ

. (3.1a,b)

We consider the simplest case Re = Pe, corresponding to a Schmidt number
Sc= ν/κ = 1.

With this non-dimensionalisation, the solution to the steady Navier–Stokes equations
in the channel can be expressed as

u= (1− y2) ex, (3.2)

where y is the cross-stream variable of the spatial vector x= (x, y)>, and ex denotes the
unit vector in the streamwise direction. We consider a finite-size perturbation q(x, t)=
(u(x, t), p(x, t))>. The scalar field is denoted by θ(x, t) and is advected by both
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the background and disturbance velocities, u and u, respectively. For clarity, we will
define the total velocity field as U= u+ u. The equations governing these quantities
are the nonlinear disturbance equations given as

∂tu+U · ∇u+ u · ∇u+∇p− Re−1∇2u= 0, (3.3a)
∇ · u= 0, (3.3b)

∂tθ +U · ∇θ − Pe−1∇2θ = 0. (3.3c)

We impose the boundary conditions

u(x±, t)= u±ey, (3.4a)
∂yθ(x±, t)= 0, (3.4b)
∂yp(x±, t)= 0, (3.4c)

with x± representing the coordinates of the walls (x± = (x, ±1)) and ey denoting
the cross-stream unit vector. We keep homogeneous Dirichlet boundary conditions
for the cross-stream velocity to avoid injecting or pumping fluid into the channel
(which would imply that the scalar field average is not conserved). Periodic boundary
conditions are enforced in the x-direction. This choice enables the study of mixing for
relatively long times without the requirement of a very large computational domain.
However, this type of boundary condition might introduce some artificial mixing
due to the overlap of the perturbation with itself after a certain time. We limit the
unwanted consequence of the periodic boundary condition by choosing a sufficiently
long channel length of L= 4π.

Naturally, this system of equations requires a set of initial conditions. These can be
expressed as

u(x, 0) = u0(x), (3.5a)
θ(x, 0) = θ0(x). (3.5b)

The initial condition u0(x) as well as the wall boundary condition u± will be
considered as control variables, and will thus be used in our optimisation scheme to
achieve optimal mixing. The initial concentration θ0(x) will be fixed for all simulations
performed in this paper: we start from a configuration of concentration which
corresponds to a non-mixed state consisting of two stripes of opposite concentration
with a common interface in the middle of the domain, at y= 0. The interface between
these two layers is considered to be a diffusive interface which, in the absence of
advection, can be described by the scalar field θ0(x):

θ0(x)= 1
2

erf
(

y
l0

)
. (3.6)

As a discontinuity might be expected to lead to numerical instabilities, we choose l0=
51y (with 1y as the grid spacing in the y direction) to obtain a smooth profile on
our computational grid. The initial concentration field then consists of two horizontal
stripes of opposite concentration, of magnitude ±0.5. The interface between these two
stripes is centred at y= 0.

3.2. Variational formulation of optimal mixing
We have defined in (2.1) and (2.5) two measures (variance and mix-norm) which are
able to determine the level of mixing in a given flow, based on the spatial distribution
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of a passive scalar θ . We have explored in § 2.2 how these measures behave in the
case of a mixing flow, in the presence of molecular diffusion for the passive scalar.
Here, we will study a more realistic flow: pressure-driven two-dimensional plane
Poiseuille flow. Contrary to previous mixing studies, scalar diffusion is embedded in
the model. Also, instead of a prescribed velocity field, we will consider a dynamical
flow, governed by the incompressible Navier–Stokes equations. Above all, we would
like to investigate the sensitivity of optimal control solutions (initial conditions and
boundary conditions) with respect to the chosen norm. In previous studies, such as
in Aamo & Krstić (2003), mixing was thought to be strongly enhanced as the energy
of the flow was maximised. To verify whether this assumption holds, we want to
compare final-time mixing optimisation against time-integrated energy optimisation.
More specifically, we choose a time-averaged energy optimisation since mixing – a
continuous process – takes place continuously over the time interval [0, T]. Moreover,
the stirring part of the mixing is entirely governed by the nonlinear terms in the
Navier–Stokes equations, whose strength at time t can be measured by evaluating the
disturbance energy

E(t)= 1
2‖u(x, t)‖2

2. (3.7)

Therefore, it seems sensible to consider time-averaged rather than finite-time energy
optimisation. In fact, we study time-averaged energy, final-time mix-norm and variance
optimisation. We investigate whether the most energetic perturbation is the one leading
to maximum mixing and assess the appropriateness of the variance and the mix-norm
for quantifying mixing processes.

We pose a general cost functional J which allows for several measures based on
either the kinetic energy or directly on the passive scalar θ . The cost functional can
be written as

J (u, θ)= 1− α
2

∫ T

0
‖u(x, t)‖2

2 dt+ α
2

∥∥∇−βθ(x, T)
∥∥

2

2
, (3.8)

with the L2-norm ‖·‖2 classically defined as in (2.1). The parameter α (we only
consider the values α = 0 and α = 1) determines to what degree energy or mixing is
optimised. When α = 0, the time-integrated energy is maximised. As already noted,
mixing is a continuous process which might be enhanced by nonlinear advection (or
stirring). Therefore if one wants to reach a finite-time optimal mixing, it is sensible
to look for the perturbation which maximises the total amount of energy within this
time-interval. This justifies the choice of the time-averaged energy rather than its
finite-time evaluation. For a discussion on the relation between the optimisation of
the finite-time and the time-averaged energy, see Duguet et al. (2013). For α = 1,
mixing is the optimised quantity. In this case, the norm is entirely determined by
β. As presented in § 2.1, β = 1 corresponds to a Sobolev norm of negative index
(L2-norm of ∇−1θ , also referred to as the mix-norm), β = 0 corresponds to the
variance (L2-norm of θ ). The case β =−1 corresponding to the gradient L2-norm will
not be considered for optimisation, as it was found to yield an inappropriate measure
of mixing owing to its non-monotonic temporal evolution.

After defining the cost functional J we need to decide what kind of ‘control’ we
will apply to the flow in order to reach an extremal value of J . In this paper, we
will consider two different types of optimal control: optimal initial conditions (3.5)
and optimal boundary conditions (3.4). The term ‘optimal control’ may be misleading,
in as far as we will only optimally identify the initial (or wall boundary) condition,
and then let the flow evolve freely, solely governed by the Navier–Stokes equations.
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The cost functional J (u, θ) is a function of the velocity and concentration fields,
which are themselves implicit functions of the initial condition u0 and boundary
condition u±. Since this dependence cannot be expressed explicitly, we have to embed
the dependence of the variables u and θ on the control variables in an augmented
cost functional where the evolution constraints equation (3.3), and both initial (3.5)
and boundary conditions (3.4) appear explicitly. This augmented functional L is
given by

L (u, p, θ, u0, u±, u†, p†, θ †, u†
0, u†
±)

=J (u, θ)− 〈u†, ∂tu+U · ∇u+ u · ∇u+∇p− Re−1∇2u
〉

− 〈p†,∇ · u〉− 〈θ †, ∂tθ +U · ∇θ − Pe−1∇2θ
〉

− (u†
0, u(x, 0)− u0

)
− [u†

±, u(x±, t)− u±
]
, (3.9)

where we have used the scalar products 〈·, ·〉, (·, ·) and [·, ·] defined as

〈
a(x, t), b(x, t)

〉= ∫ T

0

∫
Ω

a(x, t)>b(x, t) dΩ dt,(
c(x), d(x)

)= ∫
Ω

c(x)>d(x) dΩ,

[
e(x, t), f (x, t)

]= ∫ T

0

∫ L

0
e(x, t)>f (x, t) dx dt,


(3.10)

for arbitrary (possibly vectorial) functions a, b, c, d, e and f of the indicated
variables.Moreover, we recall that U = u + u. We here stress that the nonlinear
dynamics of the Navier–Stokes operator has been included in the variational
formulation.

The adjoint variables (indicated with a superscript †) are Lagrange multipliers
enforcing all constraints of the system: u† enforces the Navier–Stokes equations
(3.3a), p† is associated with the incompressibility condition (3.3b), and θ † is the
adjoint concentration field imposing the passive scalar advection–diffusion equation
(3.3c). Finally, u†

0 and u†
± impose the initial and boundary condition constraints (3.5)

and (3.4), respectively.
To ensure the optimality of the solution, we need to enforce δL = 0. As detailed in

appendix A, δL depends on several variables, all of which are independent of each
other. We thus require that all partial derivatives of the functional L vanish. It is
easily verified that the variations with respect to the adjoint variables result in the
enforcement of the various dynamical constraints.

First variations with respect to the ‘direct’ variables u, p and θ lead to the
definition of a set of partial differential equations describing the evolution of the
adjoint variables u†, p† and θ †:

∂tu† + (U · ∇u† − u† · ∇U)> +∇p† + Re−1∇2u† = θ †∇θ − (1− α) u, (3.11a)
∇ · u† = 0, (3.11b)

∂tθ
† +U · ∇θ † + Pe−1∇2θ † = 0, (3.11c)

where [u† · ∇U>]i = u†
j ∂iUj. As is conventional, these equations are anti-diffusion

equations and therefore have to be solved backwards in time, from t = T to
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t = 0. Moreover, because the direct equations (3.3) are nonlinear and because the
time-averaged energy is considered in the objective functional, the direct disturbance
velocity field u explicitly appears in the adjoint equations. This requires saving the
velocity field during the direct time integration. Due to memory constraints, we adopt
a classical check-pointing approach in order to avoid saving the direct field at every
iteration. Some boundary integrals (temporal and spatial) arise when calculating the
partial derivatives of L . By setting each of the independent expressions to zero, we
find the so-called natural adjoint boundary conditions:

u† (x±, t)= 0, ∂yθ
† (x±, t)= 0. (3.12a,b)

No natural boundary condition for the pressure is found, and so we adopt, as in the
direct case,

∂yp† (x±, t)= 0. (3.13)
The adjoint terminal conditions are found to be

u†(x, T)= 0, θ †(x, T)= (−1)βα∇−2βθ(T). (3.14a,b)

The fact that the adjoint velocity field at the final time vanishes may seem unusual,
but it stems from the fact that we do not evaluate the disturbance velocity magnitude
(energy) at the final time t= T . Instead, we consider a time-averaged measure which
leads to a forcing term in the adjoint Navier–Stokes equation (3.11a). For t< T and
α = 0 (i.e. when energy is optimised), the adjoint velocity field is no longer zero
because it is forced by the production term −(1−α)u. In this case, the adjoint scalar
field θ † is identically zero, because its terminal condition vanishes and there is no
external forcing in (3.11c), while the extra forcing term θ †∇θ in (3.11a) vanishes
as well. However, when α = 1, the adjoint scalar field θ † is no longer zero, and the
momentum equation (3.11a) is forced by the non-zero term θ †∇θ . For all choices of
α, with the above set of boundary and terminal conditions, we also find the following
equations:

u†
0 = u(x, 0), (3.15a)

u†
± =∓Re−1∂yu†(x±, t). (3.15b)

These expressions are directly related to the gradient of the cost functional with
respect to the control variables:

∇u0J = u†
0, (3.16a)

∇u±J = u†
±. (3.16b)

A more detailed derivation of these equations is given in appendix A. By employing
a gradient descent algorithm, we are able to reach the optimal control strategies u0 or
u± such that δL vanishes.

Furthermore, we need to constrain the size of the control variables u0 and u±. This
is accomplished by normalising the general Lp-norms (defined on their respective
spaces):

‖u0‖p
p =

∫
Ω

|u0|p dΩ = 2E0, (3.17a)

‖u±‖p
p =

∫ T

0

∫ L

0
|u±|p dx dt= 2Ew, (3.17b)

where E0 and Ew, respectively, represent their initial Lp-norms. It is important to
appreciate that only for p = 2 do these two quantities represent actual energies. In
what follows we will consider the optimisation of the initial condition or the wall
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boundary condition separately, which requires the normalisation of only one of these
variables. A convenient way to enforce the normalisation of such a quantity in
the optimisation process is detailed in the appendix of Foures, Caulfield & Schmid
(2013) for the case p= 2, and is here generalised for any p. Therefore, our variational
formulation can be applied to time-averaged energy or mixing optimisation, either by
prescribing an initial perturbation or a wall disturbance.

3.3. Numerical implementation
The numerical code used is a modified version of the Navier–Stokes solver presented
in Foures et al. (2013). Spatial discretisation uses Fourier modes in x and second-order
finite differences in y. Advection and diffusion are treated using a mixed fourth-order
Runge–Kutta Crank–Nicolson method. The incompressibility condition is enforced
using a standard incremental pressure-correction scheme (Guermond, Minev & Shen
2006). We use 200 grid points in the y direction and 400 Fourier modes in the
x direction. The time step for the time integration scheme is chosen according to
a classical CFL condition. In practice, we have dt ≈ 10−3. The results were not
sensitive to an increase of either spatial or temporal resolution, therefore establishing
the convergence of the numerical scheme.

4. Results
4.1. Optimal initial perturbation

In this section, we study optimal perturbations for various measures in the Poiseuille
flow defined in § 3.1 at Re = 500. It has been conjectured that mixing is closely
related to nonlinear energy amplification (Aamo & Krstić 2003). Thus, in order to
investigate the mixing properties of an energetically optimal flow, we will first focus
on the optimal initial perturbations yielding an extremal value of the time-averaged
energy. This problem is rather classical (see, for example, the linear study by Guégan,
Schmid & Huerre 2006). By choosing α=0 in the cost functional (3.8) and optimising
with respect to u0 only (homogeneous Dirichlet boundary conditions are prescribed at
the wall), we perform a series of nonlinear optimisations for several time horizons
T . The initial energy amplitude is constrained using the L2-norm (p = 2 in (3.17b))
and such that E0 = 10−2, which corresponds to an initial velocity value one order of
magnitude lower than the base-flow velocity amplitude. This ensures that the nonlinear
terms in (3.3a) and, more importantly, (3.3c) are not negligible, and therefore stirring
by advection is possible. For small values of E0, no mixing is possible by advection
because the nonlinear terms can be neglected. However, for increasing E0 values, we
expect the mixing due to stirring to be more and more effective because a larger
amount of energy is provided to the system. We restrict ourselves to the intermediate
case E0 = 10−2, as this choice is associated with the nonlinear advection having the
same order of magnitude as the linear base-flow advection.

We present in figure 4 the initial vorticity field ∇ × u0 and terminal concentration
field θ(T) corresponding to the time-averaged energy optimisation (α = 0) over the
time interval [0,T] for several optimisation times T . The optimised initial perturbation
velocity field consists of arrays of elongated vortices tilted against the base-flow shear
which allows for energy transfer from the base flow to the perturbation via the Orr
mechanism (see Orr 1907; Lindzen 1988). The final concentration field consists
of large-scale sinuous structures which are characteristic of the optimal advection
field. We notice that the scalar field is not well-mixed, even after a rather long
integration time. Indeed, the two initial layers of opposite concentration are still
clearly defined, showing that the large vortices generated during the time evolution of
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FIGURE 4. (Colour online) Initial vorticity ∇ × u0 (top plot of each pair) and
terminal concentration θ(T) (bottom plot of each pair) distributions corresponding to the
time-averaged energy optimisation over the time interval [0,T] for four optimisation times
T ∈ [2; 5; 10; 30]. Colourbars for the vorticity (left) and the concentration field (right) are
displayed at the bottom of the figure.

the time-averaged energy-optimal perturbations are unable to mix effectively the two
regions (top and bottom) of the flow. Based on this observation, mixing enhancement
via energy optimisation seems to be a highly suboptimal method.

We define the time-averaged gain as

G(t)=
1
t

∫ t

0
‖u‖2

2(τ ) dτ

‖u0‖2
2 . (4.1)

This gain is simply a rescaled time-integrated energy which is the objective functional
for α = 0. We plot in figure 7(a) the time-averaged gain as a function of time for
the energy-optimal solutions. First, we note that the time evolution of the optimal
solutions defines an optimal time-averaged gain envelope Gopt(T) (plotted with a
dashed line), establishing an upper limit of energy amplification that a perturbation
(satisfying E0 = 10−2) can experience. Any curve G(t) has to lie below this optimal
envelope and be tangent to it at precisely the relevant target time t= T .

We also define normalised quantities in order to quantify mixing. Let us define M(t)
and V(t), the normalised mix-norm and variance, as

M(t) =
∥∥∇−1θ

∥∥
2

2∥∥∇−1θd

∥∥
2

2 , (4.2a)

V(t) = ‖θ‖2
2

‖θd‖2
2 , (4.2b)
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where the scalar field θd is the solution of the pure diffusion equation (3.3c) with
U= 0 and initial condition θ(x, 0)= θ0(x). With such a time-dependent normalisation,
we only measure the additional mixing that can be attributed to the advection field
(as in § 2.2). Under the scaling (4.2), a purely diffusive process yields constant values
for both M(t) and V(t).

The curves of both M(t) and V(t) corresponding to the time-averaged energy
optimisations are plotted in figures 7(b) and 7(c). At this stage, we note that short-time
energy-optimal solutions are more likely to lead eventually to low values of either
the mix-norm or the variance. Indeed, smaller advection length scales observed for
small values of T mix the scalar field more effectively compared to the very large
length scales which arise when the time integration interval is longer. As a general
remark, we can already conclude that energy-optimal perturbations fail to induce an
effective finite-time mixing mechanism, especially for long time horizons.

To confirm, both qualitatively and quantitatively, that mixing optimisation cannot be
achieved by maximising energy growth, we perform a series of mixing optimisations,
for the same time intervals as used for the energy optimisation case. We thus choose
α = 1 to define the cost functional and investigate the cases β = 1 and β = 0,
respectively corresponding to mix-norm and variance optimisation. Contrary to the
time-averaged energy maximisation, now the quantity J has to be minimised.

Let us first focus on the most sophisticated mixing definition: the mix-norm as
defined in (2.5) (with α= 1, β = 1). As before, we present in figure 5 several optimal
initial perturbations and final scalar fields for typical horizon times T = 2, 5, 10
and 30. Even if their general structures and typical length scales are different from
the optimal energy case, the optimal mix-norm perturbations still consist of elongated
vortices tilted against the mean shear for all considered horizon times T . This means
that the strategy for optimal mixing (in the mix-norm sense) relies to some extent on
energy harvesting from the base flow. For short times, we notice that large blobs of
the passive scalar are periodically protruding into the region of opposite concentration
value, quite similarly to the short-time energy-optimal solutions. Since the mix-norm
downplays the role of small length scales, large-scale structures promoting the
exchange of the passive scalar between the top and bottom part of the channel are
preferred. For later times, the optimal initial perturbation does not vary significantly;
nonetheless, the scalar field becomes progressively well mixed. It seems to be clear
that final-time mix-norm optimisation leads to a better mixed scalar field at the end
of the optimisation interval, compared to the case of energy optimisation. Indeed, the
scalar fields at time t = T presented in figure 5 are more homogeneous than their
energy-optimal counterparts. We notice, however, that the global stratification from
negative to positive concentration has been conserved, due to the no-slip condition at
the wall.

We plot in figure 7(d) the energy evolution G(t) corresponding to the mix-norm
optimisation initial perturbation. This plot, displaying a transient growth of energy
for the mix-norm-optimal perturbation, confirms that the mix-norm-optimal mixing
strategy does depend on energy amplification, but does not maximise it. Similarly to
the energy optimisation case, we plot in figure 7(e) the optimal curves M(t) for the
optimal mix-norm initial perturbations, while in figure 7(f ) we plot the normalised
variance time evolution V(t) corresponding to the mix-norm optimal perturbation.
The curves in figure 7(e) define the optimal variance envelope Mopt(T). We note that
the individual normalised mix-norm time evolution M(t) of each perturbation is not
monotonic. Instead, there is a generic behaviour for the curves M(t): after an initial
strong decrease, the normalised mix-norm value displays an oscillatory behaviour.
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FIGURE 5. (Colour online) Initial vorticity ∇× u0 (top) and terminal concentration θ(T)
(bottom) profiles corresponding to the mix-norm optimisation over the time interval [0, T]
for four optimisation times T ∈ [2; 5; 10; 30]. Colourbars for the vorticity (left) and the
concentration field (right) are displayed at the bottom of the figure.

We note, on each of these curves, a temporal stage during which the normalised
mix-norm starts to increase anew. In terms of mixing, this would correspond to a
‘demixing’ or ordering phenomenon. This effect is however very small compared
to the initial decrease of the mix-norm for earlier times, demonstrating that strong
mixing is taking place in the flow.

Finally, in figure 6 we display the optimal initial vorticity and the final passive
scalar fields corresponding to variance minimisation (with α = 1, β = 0). For short
times, the optimal solutions (initial perturbations) consist of small-scale vortices
localised in the middle of the domain which are able to mix effectively the two
layers of the passive scalar in the close vicinity of their common interface. For such
time horizons, variance optimisation leads to optimal initial perturbations with a far
smaller typical wavelength than both the energy- and mix-norm-optimal solutions. For
longer times, the typical length scale of the perturbation increases (but still remains
smaller than for the energy optimisation), and the localisation of the initial disturbance
at the concentration interface persists even though the vorticity field spreads in the
cross-stream direction as T increases. Besides, it is noteworthy that the T = 30
variance optimal initial perturbation is almost identical to the mix-norm-optimal
initial perturbation for the same optimisation time. This means that, in contrast to
short-time strategies, long-time mixing strategies are very similar in both norms.

It is clear from the analysis of both the mix-norm- and variance-optimal solutions
that for short times, mix-norm optimisation leads to a more globally mixed
flow, without taking advantage of molecular diffusion at small scales, while the
variance optimisation yields an optimal perturbation focusing on the interface
and entirely relying on the effects of small-scale diffusion, rather than on energy
amplification. This is confirmed in figure 7(g) where we observe thatfor short times,
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FIGURE 6. (Colour online) Initial vorticity ∇× u0 (top) and terminal concentration θ(T)
(bottom) profiles corresponding to the variance optimisation over the time interval [0, T]
for four optimisation times T ∈ [2; 5; 10; 30]. Colourbars for the vorticity (left) and the
concentration field (right) are displayed at the bottom of the figure.

the variance-optimal solutions do not amplify energy at all, instead preferring a
different strategy based on localising the perturbation at the interface in order to
increase its length and thus to maximise diffusion. For longer time though, both
types of optimisation (mix-norm and variance) seem to lead to very similar results,
as is apparent through comparison of figures 7(e) and 7(h), where we plot the
normalised mix-norm time evolution M(t) for the mix-norm optimal perturbation and
the variance optimal perturbation respectively.

In figure 7(i), we plot the optimal curves V(t) defining the optimal envelope Vopt(T).
We notice, as a general trend, that, after the optimal time, the time evolution of the
normalised variance V(t) reaches a plateau, implying that at this stage the mixing is
almost entirely due to a pure diffusion process. The solution for T = 2 even displays
a positive slope for V(t) after t ' 6. After this time, the flow is diffusing the scalar
field less effectively than the pure diffusion equation, suggesting that there is a late
drawback for optimising variance for very early times. This is the price to pay when
the mixing strategy is not based on energy amplification but rather on diffusion
optimisation close to the interface. The resulting mechanism is effective for short
times, but the perturbation amplitude subsequently decays too quickly to have any
further effect on the scalar field.

Overall, even if the energy-optimal perturbation is a suboptimal candidate for
enhancing mixing in a flow, we note that nearly all optimal mixing (variance or
mix-norm) initial perturbations are composed of several vortices tilted against the
mean shear, taking advantage of the two-dimensional Orr mechanism in order to
extract energy from the base flow. However, the optimal wavelengths of these
structures depend on the type of optimisation chosen. We present in table 1 the
dominant observed wavelength m as a function of the time integration length T and



Optimal mixing in two-dimensional plane Poiseuille flow 261

t

V
(t

)
M

(t
)

G
(t

)

10 20 30

10 20 30

10 20 30

0

0.4

0.8
(c)

(b) (e)

( f )

(a)

0

0.4

0.8

10 20 300

(h)

10 20 300

0

2

Optimal energy G(T) Optimal mix-norm M(T) Optimal variance V(T)

1

0.4

0.8

0.4

0.8

2

1

0.4

0.8

0.4

0.8

2

1

10 20 30

(d) (g)

0 10 20 300

t
10 20 300

(i)

t
10 20 300

FIGURE 7. (Colour online) Time evolution of the considered measures G(t) (top row),
M(t) (middle row) and V(t) (bottom row) corresponding to the various identified optima
(as defined in (4.1), (4.2a) and (4.2b)). The first, second and third columns correspond
respectively to the time evolution of the optimal initial perturbations of the time-averaged
energy G(T), the mix-norm M(T) and the variance V(T). For each series of optimisations,
five different horizon times were considered: T ∈ [2; 5; 10; 20; 30]. The dots on each
curve indicate the optimisation times. The figures located on the diagonal correspond
to the time evolution of the actual optimised quantities, from which we can define the
optimal envelopes Gopt(T), Mopt(T) and Vopt(T) (obtained by cubic interpolation of the five
computed optima). These optimal envelopes are plotted with dashed lines on the panels
of each row.

Horizon time T
2 5 10 20 30

Optimised measure G(T) 7 5 4 3 3
M(T) 10 9 7 7 7
V(T) 33 15 8 7 7

TABLE 1. Dominant wavenumber m for each of the performed optimisations.

the type of optimisation performed. Since these perturbations are not monochromatic,
m is defined as the most energetic wavenumber contained in u0 (for example, m= 0
corresponds to a constant and m= 1 to a sinusoidal signal of period L= 4π). As a
general observation, no matter what the nature of the objective functional is, short-time
optimisation leads to high wavenumbers (small-scale structures) while long-time
optimisation is associated with low wavenumbers (large-scale structures). Also, for a
fixed optimisation time, we observe a hierarchy from low to high wavenumbers when
passing from energy to mix-norm and, finally, to variance optimisation.



262 D. P. G. Foures, C. P. Caulfield and P. J. Schmid

Finally, because of the nonlinear nature of the optimisation problem and the
complex objective functional, optimality is unsurprisingly difficult to reach. To
characterise the convergence properties of our solutions, we define the gradient
residual r as

r=
∥∥∇u0J

⊥∥∥
2

2∥∥∇u0J
∥∥

2

2 . (4.3)

This residual measures the component of the gradient (3.16) along the normalisation
constraint (3.17), and is further discussed in the appendix of Foures et al. (2013).
We observed for all performed optimisations a decrease of the residual down to r ∼
O(10−4). We believe that the size of this residual shows that each of the identified
solutions lies in the close vicinity of an at least locally optimal solution.

4.2. Time evolution analysis and physical interpretation
Our conclusion from the previous section is that the energy-optimal initial perturbation
is less effective at mixing a flow than the optimal solution based on an appropriate
mixing measure (variance or mix-norm). In order to understand the principal
difference between the energy-optimal perturbations and mixing-optimal perturbations,
we will analyse in more detail the time evolution of two typical optimal solutions.
We plot in figure 8 the instantaneous vorticity and scalar fields corresponding to the
variance-optimal initial disturbance (α = 1 and β = 0 and time horizon T = 30) for
several time instants t ∈ [0; 30]. The vorticity colourmap is deliberately saturated at
50 % of the maximum and minimum to visualise the evolution of the perturbation
amplitude. Even though energy cannot directly be deduced from these plots, the
more vivid the colours, the larger the size of the disturbance. Inspection of both the
vorticity and scalar field snapshots shows that the initial vortices are responsible for
a periodic vertical transport of scalar from the bottom to the top, and vice versa,
creating at t ' 5 a pattern consisting of a succession of vertical stripes of minimum
and maximum value.Then, for t > 5, the perturbation loses a significant amount of
energy, indicating that the transport is then almost completely due to the parabolic
background flow. By advecting the scalar field as close to the walls as possible, the
optimal perturbation exploits Taylor dispersion due to the background flow. Indeed,
close to the walls, where shear is important, diffusion can be enhanced via the
production term in (2.4). It is thus very beneficial to advect the scalar field towards
the walls.

For comparison, in figure 9 we display the time evolution of the vorticity and scalar
fields for the energy-optimal perturbation for a horizon time of T = 5. We choose
this particular solution, since amongst the energy optima, it is the solution which is
most able to mix the scalar field (see figures 7b and 7c). Initially, the flow organises
itself in a series of vortices tilted against the mean shear, which subsequently get
amplified owing to the non-normality of the Navier–Stokes equations. These vortices
create a spatially periodic disturbance of the scalar field which is advected away from
its side of origin in the channel (i.e. the dark fluid lifted to the top of the channel and
the light fluid brought to the bottom of the channel). Even though the shape of the
perturbation is different for the energy and variance optima, the early stage (0< t<
10) is rather similar for both solutions. However, we notice that the energy-optimal
perturbation does not transport the scalar field as close to the walls as the variance-
optimal perturbation. After this initial stage of re-organisation of the scalar field into
an array of alternating positive- and negative-concentration patches, the energy-optimal
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FIGURE 8. (Colour online) Time evolution of the variance-optimal perturbation (T = 30)
for six different times from t = 0 to t = 30. Top figures show the perturbation vorticity
field ∇× u (left colourbar) and bottom figures show the scalar field θ (right colourbar).

perturbation does not decay as quickly as the variance-optimal perturbation, as we can
deduce from the vorticity colour scales in figures 8 and 9. For t> 10, the advection
then has a negative effect on mixing as the vortices continue to transport the scalar
field in a roughly circular manner, which eventually leads, once again, to a segregation
of the negative and positive layers of the passive scalar.

We observed in § 2.2 that the passive scalar gradient norm does not show a
monotonic time evolution during a typical mixing process. This prevented us from
using it as a mixing measure, but amongst the norms considered, it is the one
exhibiting the richest dynamics. Therefore, in an effort to characterise the different
mixing stages, we will focus on its rate of production given in (2.4). We define
x-averaged quantities corresponding to the several production terms observed in this
equation as

Pu(y, t) = −1
L

∫ L

0
∇θ · ∇u · ∇θ dx, (4.4a)

Pu(y, t) = −1
L

∫ L

0
∇θ · ∇u · ∇θ dx, (4.4b)
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(left colourbar) and bottom figures show the scalar field θ (right colourbar).

Pd(y, t) = − 1
Pe L

∫ L

0
|∇θ |2 dx, (4.4c)

where Pu and Pu represent respectively the production term due to the base flow
u and the production term due to the perturbation velocity u; Pd represents the
negative-definite production due to molecular diffusion. Moreover, the term Pu can
be simplified using the expression for the base flow given in (3.2). We find

Pu(y, t)= y
L

∫ L

0
∂xθ∂yθ dx. (4.5)

We also define the x-integrated total rate of change of the scalar gradients P as

P= Pu + Pu + Pd. (4.6)

Here we focus on the optimal mixing case (corresponding to the T = 30
variance-optimal perturbation) represented in figure 10. There is an initial strong
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diffusion process occurring at the initially sharp interface (y' 0) for very short times.
This occurs in every simulation and is independent of the optimal mixing process we
are about to describe. Moreover, the contribution of this process to the overall mixing
is very limited. The production of gradients (and therefore the mixing process) then
occurs in three overlapping stages. First, an energisation/transport stage occurs for
0 < t . 4.5. During this stage, the interface is advected towards the top and bottom
walls by the perturbation velocity u as we can deduce from the two rays departing
from the centreline to the walls in the Pu plot (figure 10a). We furthermore deduce
from the plot of Pd (figure 10c) that the transport of the interface towards the walls
is not associated with enhanced diffusion. This transport stage is correlated in time
with the energetic transient growth of the perturbation velocity u which reaches its
maximal energy for t= 5.

A second stage then starts during which the passive scalar is effectively mixed
by several co-operating mechanisms. First, the velocity perturbation (which reaches
its maximum energy) further advects the passive scalar field from 4 . t . 7. This
advection is no longer a displacement of the interface, but rather a stretching and
stirring process, mostly located in the vicinity of the wall. The signature of this
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phenomenon can be seen by the strong production of gradients close to the wall
in the Pu plot, for 4 . t . 7. Secondly, because of the previous transport stage,
the concentration field is in a configuration which is able to take advantage of the
constant shear offered by the background flow. Indeed, the concentration vertical
interfaces (at t ' 4) are progressively deformed into parabolae due to the base-flow
advection, therefore increasing their total length. The background shear action occurs
for 4. t . 10 and is the leading passive scalar gradient production mechanism as can
be observed in the Pu plot (figure 10b). These two gradient production mechanisms
(perturbation advection stirring and interface elongation due to the background shear)
are both eventually followed by a slightly delayed strong molecular diffusion as
we can see in the Pd plot of figure 10(c).Finally, the third and last stage starts
around t ' 10 and is a relaxation stage where the perturbation is too small to have
a significant impact, and the scalar field has almost become x-independent close to
the wall, preventing the background shear from further mixing (the term in (4.5)
vanishes when ∂xθ = 0). The concentration field is therefore mostly controlled by a
linear diffusion process which continues to homogenise it. A second-order effect also
responsible for the quality of mixing is a weak contribution of the term Pu in the
interior of the domain for 6 . t . 13. This corresponds to a weak stirring.

Therefore, in this case, the identified leading mechanism for mixing is the
production of concentration gradients by the background shear, followed up by
a strong molecular diffusion. This mechanism is commonly referred to as shear-
enhanced diffusion or Taylor dispersion. However, the exploitation of the base-flow
shear is only possible because of the initial energisation and transport stage performed
by the velocity perturbation u.

In this particular case of channel flow at Re= 500, the strategy to mix effectively
relies on an initial nonlinear advective transport (with coincident transient perturbation
energy growth) of the scalar field towards the walls of the channel where, in a
second stage, a linear mechanism driven by the parabolic background flow takes
over to stretch and disperse the scalar field therefore enhancing molecular diffusion
processes. Eventually pure diffusion (i.e. with no advective enhancement) prevails
and further homogenises the concentration field in a final relaxation stage. This
three-stage mixing strategy takes advantage of the shear-augmented diffusion (i.e.
Taylor dispersion) which the background flow provides close to the walls.

4.3. Mixing through wall forcing
The variational method presented in § 3.2 is formulated to accommodate both optimal
perturbations and optimal streamwise velocity boundary conditions. We study the latter
problem in this section. We focus on the problem of wall actuation because of its
great interest in engineering applications, where prescribing an initial perturbation, or
acting directly in the bulk of the flow is not feasible or at least difficult to realise.
Therefore we act on the fluid through its boundaries with the exterior domain, i.e. the
walls. The norm chosen for the normalisation of the initial wall forcing is no longer
the L2-norm, but instead we choose an Lp-norm with a relatively large value of p
(p= 20) to approximate to the L∞-norm and preserve the continuity of the associated
unit sphere. We choose an Lp-norm constraint to constrain the maximum value of the
streamwise velocity at the wall. If we had instead opted for an L2-norm constraint,
the energy could be strongly localised in the (x, t) space and therefore the streamwise
velocity could locally be substantially stronger than the base flow, which is a situation
we wish to avoid. We set Ew = 1/2 (as defined in (3.17b)). Therefore, we ensure
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that the boundary velocity is never larger than the base-flow advection, i.e. |u±|. 1,
without constraining the total amount of energy ‖u±‖2

2/2 injected into the flow, which
quantity we measure a posteriori. Also, the length of the channel is reduced to L= 2π
to reduce the size of optimisation space.

Owing to the incompressibility condition, we can demonstrate that any gradient in
the x-axis direction of the boundary velocity u± will induce a vertical velocity in the
flow, without violating the homogeneous Dirichlet condition for v. We recall that we
keep the homogeneous Dirichlet boundary condition for the vertical velocity in order
to avoid any pumping or injection of fluid in the channel, therefore conserving the
total concentration of passive scalar. The vertical velocity close to the wall can thus
be deduced to be

v± ∝∓∂xu±, (4.7)

where the proportionality factor is the inverse of a typical length scale in the
y-direction. We will not compute the exact magnitude of the cross-stream velocity,
but thanks to this scaling we can derive its shape. As an example, we choose α = 1,
β = 0 and T = 20. We thus optimise the mixing at T = 20 of the variance of the
scalar field.

We have found that the nonlinear nature of the optimisation problem poses great
challenges to effective numerical algorithms converging to a satisfactory solution.
Multiple solutions, local rather than global maxima of the cost functional and
algorithmic difficulties in finding a proper descent direction and step length all
contribute to problems which are non-trivial to address and overcome. In the previous
section, both the cost functional and its gradient have been reduced to acceptable
levels such that an optimal solution could be claimed. For the wall forcing problem,
such a favourable outcome eluded us despite considerable efforts. Nonetheless, a
substantial reduction in the cost functional could be achieved before numerical
difficulties prevented any further reduction, and we present the solution obtained at
this point. Even though optimality cannot be claimed due to a non-vanishing gradient,
we were able to identify a wall forcing strategy which resulted in a noticeable mixing
efficacy. The variational problem thus suggests an improved, albeit suboptimal,
solution to achieve a better mixed state by wall forcing. The effectiveness of the
incomplete optimisation thus gives valuable results and physical insight into mixing
processes. We present in figure 11 a typical result of a time-dependent boundary
condition designed to ‘optimise’ the finite-time mixing in the flow.

First of all, we remark that the top and bottom wall boundary conditions are very
similar even though they are completely independent variables in the optimisation
process. They are actually the same field, shifted by a phase of φ = π, therefore
promoting sinuous modes. The boundary condition identified is composed of streaks
of gradients of streamwise velocity, and therefore we observe that the vertical velocity
close to the wall is composed of jets of very small streamwise extent (associated with
sharp streamwise gradients in the u± plots in figure 11), evolving along different lines
of almost constant velocity. The velocity of these jets is, for the vast majority of
the time, positive (going in the same direction as the base-flow velocity). We give
some reference lines for the velocity of the jet ujet (velocity of the moving streaks
of gradient along the walls) in figure 11(a). It appears that the velocity of the jets is
limited by the base-flow advection, i.e. ujet . 1.

We plot in figure 12 the time evolution of both the vorticity field and the
concentration field from t = 0 to t = 40. Despite the fact that the optimisation
has not converged, we observe very good mixing of the scalar field in the flow. This
suggests that for practical applications, finding the optimal solution is not always
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FIGURE 11. (Colour online) The boundary condition aiming to minimise variance at time
T = 20: (a) bottom boundary condition u−, (b) top boundary condition u+.

needed and that an approximate solution (which is cheaper to obtain) can indeed lead
to a very satisfactory level of mixing.

In order to compare how much energy we have injected into the flow, we compute
the value of the L2-norm of the wall velocity. We find ‖u±‖2

2/2 ' 3.8 × 10−1.
Therefore, we have injected roughly 40 times more energy than in the initial
perturbation study described in § 4.1. Naturally, forcing the flow from the boundary is
much less effective at mixing than applying a perturbation directly within it. Secondly,
we apply a streamwise velocity perturbation, even though the cross-stream direction is
the one in which we wish to mix. Finally, we recall that the wall boundary condition
is not optimal, since we were unable to obtain convergence.

Similarly to how we defined the normalised variance and mix-norms, we define the
normalised gradient norm as

D(t)= ‖∇θ‖2
2

‖∇θd‖2
2 . (4.8)

We plot in figure 13 the time evolution of several normalised measures: gradient norm
D, variance V , mix-norm M and energy of the perturbation E (defined respectively
in (4.8), (4.2b), (4.2a) and (3.7)). We confirm the qualitative observation made in
figure 12 that the mixing is indeed very effective because the three scalar field
measures have decreased by a factor of 104 at the end of the time integration.
Furthermore, by further analysing these time evolution plots, we notice that the
mixing process once again occurs in three separate stages. First, for 0 . t . 5, the
perturbation energy increases from zero to approximately ‖u‖2

2 = 5 × 10−2. This
increase of energy in the bulk of the flow is associated with a purely diffusive
evolution of the passive scalar norms (horizontal line) but a substantial ‘transport’
of the scalar field (as shown in figure 12b,c). From t ' 5 to t ' 11, the gradient
norm increases by approximately an order of magnitude, and in the meantime, the



Optimal mixing in two-dimensional plane Poiseuille flow 269

y

y

−1

0

1

−1

0

t = 0 t = 3.7 t = 7.3

t = 10.9 t = 14.6 t = 18.2

t = 21.8 t = 25.5 t = 29.1

t = 32.7 t = 36.4 t = 40

1(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) (k) (l)

y

y

−1

0

1

−1

0

1

y

y

−1

0

1

−1

0

1

y

x

y

0 2 4 6
x

0 2 4 6
x

0 2 4 6
−1

0

1

−1

0

1

−40 −20 −0.5 00 0.5
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the concentration intensity.

mix-norm starts to decrease. This is the signature of a second dispersion/diffusion
stage during which the length of the ‘interfaces’ is increased. Filaments of dye are
created in the flow but the typical size of a filament has not yet reached the diffusion
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FIGURE 13. Time evolution of various measures for the wall boundary condition case:
gradient norm D(t), variance V(t) and mix-norm M(t). The figure also displays the energy
of the perturbation E(t). These various measures are respectively defined in (4.8), (4.2a),
(4.2b) and (3.7). After the initial increase of the flow energy E(t), the gradient norm D(t)
increases during the passive scalar filamentation stage. For longer times, effective mixing
occurs as shown by the strong decrease of all passive scalar norms.

length scale (figure 12d,e). This occurs around t' 11 where we see that the gradient
norm starts to decrease anew, this being associated with a stronger decrease of the
variance of the passive scalar (figure 12f,g). Finally, a relaxation/diffusion stage is
observed where both the velocity and passive scalar field are governed by essentially
linear diffusion processes (figure 12h–l). We therefore notice a hierarchy of the norms
in terms of sensitivity to mixing. Indeed, the mix-norm is the first to experience a
decrease, before the variance and eventually the gradient norm decrease as well. We
conjecture that this scenario is generic for a real (i.e. finite Pe) mixing process.

Similarly to our analysis approach for the mixing-optimal initial perturbation
presented in § 4.2, we plot in figure 14 the several contributions, as defined in (4.4),
governing the production of concentration gradients. The very beginning of the first
stage, as observed in figure 13, corresponds to energy amplification and transport
from the wall where it is injected into the interior of the domain. Therefore, for
t . 5, because the concentration interface is not yet significantly perturbed on small
scales, no gradient production mechanism is observed. From t ' 5, the interface is
advected and ‘transported’ towards the walls of the domain (e.g. figure 12c), very
similarly to what has been observed in the optimal initial perturbation case. Then,
for 10 . t . 20, we observe the second dispersion/diffusion stage, with a very strong
contribution to the gradients production from the velocity perturbation u, both at the
walls and throughout the bulk of the domain. Concentration gradient production is
associated with a slightly delayed strong diffusion as we can notice in the Pd plot
in figure 14(c), once again the signature of the classical filamentation-then-diffusion
process. The Taylor dispersion phenomenon is also observed (term Pu, figure 14b),
but is not the dominant concentration gradient production mechanism, in contrast to
what has been observed in the initial perturbation case. This can be explained by
the high levels of perturbation energy we provide in the boundary forcing situation.
Indeed, with more energy available, not only is the transport of the scalar towards
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FIGURE 14. (Colour online) Variation with time of: the x-integrated production of scalar
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the boundary condition aiming to minimise variance at T = 20.

the walls to take advantage of the Taylor dispersion possible, but a powerful interior
stirring driven by the perturbation velocity u is present as well (see figure 12e,f in
particular). This can be observed on both the concentration snapshots in figure 12 and
in the Pu plot of figure 14(a). The final late relaxation stage for t & 20 is also clear.

5. Conclusion and perspectives
Here, we have focused on the problem of the mixing of a passive scalar in a two-

dimensional plane Poiseuille flow, governed by the Navier–Stokes equations for the
velocity field and a classical advection–diffusion equation for the concentration field
with finite values of the Reynolds and Péclet numbers. We have presented a toy model
for mixing in the presence of both advection and diffusion in order to characterise the
behaviour of several scalar field measures during the time evolution of an idealised
mixing flow. We conclude that in the presence of diffusion, both the variance and the
mix-norm as defined in (2.5) can be used successfully in order to assess the degree
of mixing in the flow. When diffusion is not present however, amongst the considered
norms, only the mix-norm is sensitive to ‘mixing’, which is then reduced to stirring



272 D. P. G. Foures, C. P. Caulfield and P. J. Schmid

only. We also conclude that measuring the passive scalar gradient norm cannot be
linked to the degree of mixing in a flow because of its non-monotonic time evolution
during a pure mixing process.

We have formulated a nonlinear variational framework in order to identify control
strategies (in terms of initial perturbations or boundary conditions) optimising either
the time-averaged energy of the velocity perturbation or a measure of the mixing
performed on the scalar field: the variance or the mix-norm. We have investigated
the possibility of mixing through energy amplification as was proposed in Aamo &
Krstić (2003). Our results show that the energy-optimal initial perturbation is not able
to produce effective mixing in the channel at this subcritical Reynolds number. One of
the main differences between our study and previous works by Aamo and co-workers
is the stability of the system. Indeed, we have considered a stable flow whereas in
Aamo et al. (2003) for example, the channel flow is considered at a supercritical
Reynolds number. We conclude that for stable flows, mixing cannot be systematically
produced by optimal control strategies promoting energy amplification. We conjecture
that this result extends to unstable laminar flows, but this of course has yet to be
shown.

However, the identified solutions which are associated with maximum mixing do
have some characteristics of the energy-optimal solution, and in particular rely (for
early stages) on the well-known Orr energy amplification mechanism. By comparing
initial perturbations obtained by either optimising the variance or the mix-norm we
conclude that for short times, the variance-optimal perturbation is associated with
disturbances of very small length scales which are able to enhance mixing through
diffusion before the optimal target time. On the other hand, the mix-norm-optimal
perturbation (since it downplays the role of small scales) is associated with larger
length scales and the leading mechanism is coherent transport (stirring) by the
perturbation. For longer times however, the optimisation of both norms leads to the
identification of the same type of optimal solutions.

Through the analysis of the different terms in the scalar gradient time-evolution
equation, we identify a generic long-time mixing scenario associated with this
long-time mixing-optimal perturbation. The mixing process in this particular case
of a stable two-dimensional Poiseuille flow consists of three stages. First, the
perturbation velocity is ‘energised’ by undergoing transient energy growth and
advects or ‘transports’ the concentration interface from the centreline of the channel
towards the walls where the background shear is large, in order to take advantage
of the well-known Taylor dispersion mechanism (or shear-augmented diffusion).
After this first transport and energisation stage, the concentration field is ‘dispersed’
and stretched by the background shear, therefore enhancing diffusion and leading
to effective mixing. This is essentially classical Taylor dispersion. During this
dispersion/diffusion stage, some stirring is also performed by the velocity perturbation,
but this mechanism is weaker than the Taylor-enhanced diffusion process for the flow
associated with an optimal initial perturbation, although this nonlinear stirring due to
the perturbation velocity would be likely to be stronger and more effective at mixing
with a larger initial perturbation energy. Finally, a third relaxation/diffusion stage is
observed where energy and mixing measures decay due to linear diffusion processes.

We also have identified a wall boundary condition able to produce very effective
finite-time mixing. In this case, because the initial energy is zero, the transport and
transient energy growth stage must be preceded by a forced energisation where energy
is transferred from the wall to the bulk of the flow. Then transport of the passive
scalar interface from the middle of the domain towards the walls is once again
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observed, still associated with a transient energy growth of the velocity perturbation.
After this transport/energisation stage, because the total amount of injected kinetic
energy is larger than in the flow associated with an optimal initial perturbation, the
perturbation velocity continues to act on the passive scalar field by performing a
strong stirring, breaking up large scales into smaller scales where diffusion is more
effective. Taylor-dispersion-enhanced diffusion is also present but is no longer the
dominant mixing mechanism in this intermediate dispersion/diffusion stage, which is
once again followed by a final relaxation stage.

The mechanistic picture described in this paper only holds for the two-dimensional
case considered. In three dimensions, more complex fluid mechanisms are present
such as vortex stretching, and effective energy amplification strategies do not rely
on the Orr mechanism alone anymore. Therefore, different mixing strategies might
be observed. We conjecture that the two main results of this paper – namely the
ineffective mixing through energy amplification and the exploitation of Taylor
dispersion due to the background flow – extend to the three-dimensional case.
However, the exact nature of the nonlinear mixing due to the perturbation velocity
field is likely to be very different. Furthermore, the picture is even more uncertain if
the flow is susceptible to primary instabilities.

We consider this study to be a first attempt to optimise the mixing of a passive
scalar in a flow governed by the nonlinear Navier–Stokes equations. However, in order
to apply such methods in real engineering situations, many improvements must still be
made. First of all, this optimal control study was performed in a full-state-information
context where we assumed that we know the state vector everywhere and at any time
exactly. Of course, in applications, this is not possible and the information can only be
collected by sensors which force us to develop a partial-state-information framework.
Also, even in the wall forcing flow, we considered continuous functions. However, in
reality, the control of the flow can only be done at discrete locations, for example by
blowing and suction. The type of actuator needs to be embedded in the model in order
to be able to mimic realistic situations. Also, the presence of noise coming from the
measurements needs to be taken into account.

Finally, the ultimate goal of such control problems is to be able to control the
flow in real time. Therefore, the optimisation algorithm needs to be very effective
in order to identify the control strategy as the flow evolves. Developing effective
optimisation algorithms is therefore crucial. Variational methods for optimisation have
been intensively developed and applied recently in the fluid mechanics literature.
Applying these theoretical studies by performing control experiments or designing
optimal mixing devices is probably the next task to carry out in order to push forward
real-world flow control possibilities.
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Appendix A. Derivation of adjoint equations and gradients

In this appendix we derive the gradient of the cost functional J defined in (3.8),
as well as the adjoint equations together with the associated terminal and boundary
conditions. We rewrite the cost functional (3.8) using the Einstein summation
convention:
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J (ui, θ) = 1− α
2

∫ T

0

∫
Ω

ui(x, t)ui(x, t) dt dΩ

+ α
2

∫
Ω

∂
−β
j θ(x, T)∂−βj θ(x, T) dΩ. (A 1)

In subsequent steps, we will use for simplicity the following notation:

(a(x, t0), b(x, t0))=
(
a, b)t=t0,

[c(x0, t), d(x0, t)]= [c, d]x=x0 .

}
(A 2)

The augmented Lagrangian functional with embedded constraints is

L (ui, u†
i , p, p†, θ, θ †, u±, u†

±) = J (ui, θ)−
〈
u†

i , ∂tui +Uj∂jui + uj∂jui

+ ∂ip− Re−1∂jjui
〉− 〈p†, ∂juj

〉
− 〈θ †, ∂tθ +Uj∂jθ − Pe−1∂jjθ

〉− (u†
0i, u0i − ui

)
t=0

− [u†
±i, u±i − ui

]
x=x±

. (A 3)

In order to ensure the optimality of the solution, we need to enforce δL = 0 with

δL =
〈
δL

δu
, δu
〉
+
〈
δL

δp
, δp
〉
+
〈
δL

δθ
, δθ

〉
+
(
δL

δu0
, δu0

)
+
[
δL

δu±
, δu±

]
+
〈
δL

δu†
, δu†

〉
+
〈
δL

δp†
, δp†

〉
+
〈
δL

δθ †
, δθ †

〉
+
(
δL

δu†
0

, δu†
0

)
+
[
δL

δu†
±
, δu†

±

]
.

(A 4)

With all terms in (A 4) independent of each other, we require all partial derivatives
of the functional L to vanish. The second line of (A 4) corresponds to the derivative
of L with respect to the adjoint variables, enforcing the direct equations and
constraints. Let us compute the differential with respect to the direct variables term
by term. We obtain〈

δL

δui
, δui

〉
=
〈
δJ

δui
, δui

〉
− 〈u†

i , ∂tδui + δuj∂jUi +Uj∂jδui

−Re−1∂jjδui
〉− 〈p†, ∂jδuj

〉
− 〈θ †, δuj∂jθ

〉− (u†
0i, δui

)
t=0 −

[
u†
±i, δui

]
x=x±

, (A 5)

which can be rewritten after some rearranging and integration by parts, and by
explicitly computing the term δJ /δui:〈

δL

δui
, δui

〉
= 〈(1− α) ui + ∂tu†

i − u†
j ∂iUj +Uj∂ju†

i + ∂ip† + Re−1∂jju†
i − θ †∂iθ, δui

〉
− (u†

i , δui
)

t=T +
(
u†

i − u0i, δui
)

t=0

− [u†
i Ujnj + p†ni + Re−1∂ju†

i nj + u†
±i, δui

]
x=x±

+ [Re−1u†
i nj, ∂jδui

]
x=x±

, (A 6)



Optimal mixing in two-dimensional plane Poiseuille flow 275

where nj is the jth component of the outward unit vector normal to ∂Ω . The
differentiation with respect to the pressure p gives, after integration by parts,〈

δL

δp
, δp
〉
=− 〈∂iu†

i , δp
〉+ [u†

i ni, δp
]

x=x±
. (A 7)

The differentiation with respect to the scalar concentration θ yields, after integration
by parts,〈

δL

δθ
, δθ

〉
= 〈∂tθ

† +Uj∂jθ
† + Pe−1∂jjθ

†, δθ
〉

− (θ † − (−1)βα∂−βjj θ, δθ
)

t=T +
(
θ †, δθ

)
t=0

− [θ †Ujnj + Pe−1∂jθ
†nj, δθ

]
x=x±
+ [Pe−1θ †nj, ∂jδθ

]
x=x±

. (A 8)

During the derivation of the previous expression, we used the direct boundary
condition on the concentration field (3.4c) when β = −1. When β = 1 however, by
requiring the boundary contributions (arising from integration by parts) to be zero,
we find the boundary condition

∂−1
y θ(x±, t)= ∂yΘ(x±, t)= 0, (A 9)

where Θ is the solution to the Poisson equation ∇2Θ = θ . This boundary condition
is needed to define the Poisson operator used to compute ∇−1θ .

From the space and time integrals, we recover the field adjoint equations:

∂tu
†
i +Uj∂ju

†
i − u†

j ∂iUj + ∂ip† + Re−1∂jju
†
i = θ †∂iθ − (1− α) ui,

∂ju
†
j = 0,

∂tθ
† +Uj∂jθ

† + Pe−1∂jjθ
† = 0.

 (A 10)

Many simplifications can be made in the boundary terms thanks to the direct
boundary and initial conditions. After these simplifications, we find the following
boundary conditions:

u† (x±, t)= 0, ∂yθ
† (x±, t)= 0. (A.11a,b)

No boundary condition is found for the pressure, and we thus decide to prescribe a
homogeneous Neumann condition identical to the direct system:

∂yp† (x±, t)= 0. (A 12)

We also find the following equalities for the adjoint variables:

u†
± =∓Re−1∂yu†(x±, t)

u†
0 = u†(x, 0).

}
(A 13)

The adjoint terminal condition is found to be

u†(x, T)= 0,
θ †(x, T)= (−1)βα∇−2βθ(x, T).

}
(A 14)
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We stress here that these formulae do not hold for any value of β, but only for β ∈
J−1, 0, 1K.

Finally, we need to enforce that the terms (δL /δu0, δu0) and [δL /δu±, δu±] are
equal to zero. We easily observe that

δL

δu0
= u†

0 and
δL

δu±
= u†

±. (A.15a,b)

There is no reason why u†
0 and u†

± should be equal to zero. However, by noticing that

∇u0J = δL
δu0

and ∇u±J = δL
δu±

, (A.16a,b)

we can formulate an expression for the gradient of the cost functional with respect to
each of the control variables u0 and u± as

∇u0J = u†
0, (A 17a)

∇u±J = u†
±. (A 17b)

By employing a gradient descent algorithm, we thus are able to reach the optimal
control strategies u0 or u± such that the norm of the gradient projected onto the
normalisation constraint surface vanishes (see Foures et al. 2013). In practice, we do
not reach machine precision, but we do observe a large decrease of the residual as
defined in (4.3).

REFERENCES
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AAMO, O. M. & KRSTIĆ, M. 2004 Feedback control of particle dispersion in bluff body wakes.

Intl J. Control 77, 1001–1018.
AAMO, O. M., KRSTIĆ, M. & BEWLEY, T. R. 2003 Control of mixing by boundary feedback in

2d channel flow. Automatica 39, 1597–1606.
ANNASWAMY, A. M. & GHONIEM, A. F. 1995 Active control in combustion systems. IEEE Control

Syst. 15, 49–63.
AREF, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 1–21.
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