Phoretic self-propulsion at finite Peclet numbers

Abstract : Phoretic self-propulsion is a unique example of force- and torque-free motion on small scales. The classical framework describing the flow field around a particle swimming by self-diffusiophoresis neglects the advection of the solute field by the flow and assumes that the chemical interaction layer is thin compared to the particle size. In this paper we quantify and characterize the effect of solute advection on the phoretic swimming of a sphere. We first rigorously derive the regime of validity of the thin-interaction-layer assumption at finite values of the Péclet number (Pe). Under this assumption, we solve computationally the flow around Janus phoretic particles and examine the impact of solute advection on propulsion and the flow created by the particle. We demonstrate that although advection always leads to a decrease of the swimming speed and flow stresslet at high values of the Péclet number, an increase can be obtained at intermediate values of Pe. This possible enhancement of swimming depends critically on the nature of the chemical interactions between the solute and the surface. We then derive an asymptotic analysis of the problem at small Pe which allows us to rationalize our computational results. Our computational and theoretical analysis is accompanied by a parallel study of the influence of reactive effects at the surface of the particle (Damköhler number) on swimming.
Type de document :
Article dans une revue
Journal of Fluid Mechanics, Cambridge University Press (CUP), 2014, 747 (may), pp.572-604. 〈10.1017/jfm.2014.158〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger
Contributeur : Denis Roura <>
Soumis le : vendredi 25 juillet 2014 - 16:10:30
Dernière modification le : jeudi 7 février 2019 - 16:58:48
Document(s) archivé(s) le : mardi 11 avril 2017 - 18:18:05


Fichiers éditeurs autorisés sur une archive ouverte




Sébastien Michelin, Eric Lauga. Phoretic self-propulsion at finite Peclet numbers. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2014, 747 (may), pp.572-604. 〈10.1017/jfm.2014.158〉. 〈hal-01050855〉



Consultations de la notice


Téléchargements de fichiers