Conformal anodic oxidation of aluminum thin films - Archive ouverte HAL Access content directly
Journal Articles Nano Letters Year : 2005

Conformal anodic oxidation of aluminum thin films

(1) , (1) , (2) , (1) , (2) , (2) , (1) , (1)
1
2

Abstract

Membrane-based synthesis, also called template synthesis, is a very general approach used to prepare arrays of nanomaterials with monodispersed geometrical features. The most commonly used porous templates are track-etched polycarbonate and porous anodic alumina membranes. Common to all these templates is the fact that the pores are perpendicular to the surface of the membrane. Here, a novel approach is presented, where the pores are synthesized parallel to the surface of the membrane. For the first time, the anodic oxidation of an aluminum thin film is performed laterally, i.e., parallel to the surface of the substrate, instead of perpendicular as usually done. For low anodic oxidation voltages (between 3 and 5 V) we obtain highly regular and ordered pore arrays, at least over a few hundred nanometers length, with a minimum pore size of similar to 3 to 4 nm. With such porous alumina structures, the controlled in-plane organization of arrays of template-grown nanowires and carbon nanotubes for reproducible device fabrication should be much easier.
Not file

Dates and versions

hal-01068521 , version 1 (25-09-2014)

Identifiers

Cite

C. S. Cojocaru, J.M. Padovani, T. Wade, C. Mandoli, G. Jaskierowicz, et al.. Conformal anodic oxidation of aluminum thin films. Nano Letters, 2005, 5 (4), pp.675-680. ⟨10.1021/nl050079b⟩. ⟨hal-01068521⟩
106 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More