A geometric theory of selective decay with applications in MHD

Abstract : Modifications of the equations of ideal fluid dynamics with advected quantities are introduced that allow selective decay of either the energy h or the Casimir quantities C in the Lie-Poisson (LP) formulation. The dissipated quantity (energy or Casimir, respectively) is shown to decrease in time until the modified system reaches an equilibrium state consistent with ideal energy-Casimir equilibria, namely d(h + C) = 0. The result holds for LP equations in general, independently of the Lie algebra and the choice of Casimir. This selective decay process is illustrated with a number of examples in 2D and 3D magnetohydrodynamics. © 2014 IOP Publishing Ltd & London Mathematical Society.
Type de document :
Article dans une revue
Nonlinearity, IOP Publishing, 2014, 27 (8), pp.1747-1777. 〈10.1088/0951-7715/27/8/1747〉
Liste complète des métadonnées

https://hal-polytechnique.archives-ouvertes.fr/hal-01074223
Contributeur : Denis Roura <>
Soumis le : mardi 28 octobre 2014 - 17:00:02
Dernière modification le : jeudi 11 janvier 2018 - 06:14:25

Identifiants

Collections

Citation

François Gay-Balmaz, D.D. Holm. A geometric theory of selective decay with applications in MHD. Nonlinearity, IOP Publishing, 2014, 27 (8), pp.1747-1777. 〈10.1088/0951-7715/27/8/1747〉. 〈hal-01074223〉

Partager

Métriques

Consultations de la notice

130