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Abstract. Recently, a standard test case suite for 2-D lin- The ensemble of results from a wide variety of schemes
ear transport on the sphere was proposed to assess impresented here helps shed light on the ability of the test case
portant aspects of accuracy in geophysical uid dynam- suite diagnostics and ow settings to discriminate between
ics with a “minimal” set of idealized model con gura- algorithms and provide insights into accuracy in the context
tions/runs/diagnostics. Here we present results from 19 statesf global atmospheric/ocean modeling. A library of bench-
of-the-art transport scheme formulations based on nite-mark results is provided to facilitate scheme intercomparison
difference/ nite-volume methods as well as emerging (in and model development. Simple software and data sets are
the context of atmospheric/oceanographic sciences) Galerkimade available to facilitate the process of model evaluation
methods. Discretization grids range from traditional regularand scheme intercomparison.

latitude—longitude grids to more isotropic domain discretiza-
tions such as icosahedral and cubed-sphere tessellations of

the sphere. The schemes are evaluated using a wide range

of diagnostics in idealized ow environments. Accuracy iS 1 |ntroduction

assessed in single- and two-tracer con gurations using con-

ventional error norms as well as novel diagnostics designediistorically, the regular latitude—longitude grid has been the
for climate and climate—chemistry applications. In addition, preferred discretization grid in global atmosphere models
algorithmic considerations that may be important for com- primarily due to desirable properties such as grid orthogo-
putational ef ciency are reported on. The latter is inevitably nality and simple data structure. It also trivially lends itself
computing platform dependent. to operations such as zonal/meridional averaging routinely
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106 P. H. Lauritzen et al.: Results from standard test case suite

applied in global data analysis. Primarily triggered by re- when using nite-volume type schemes), which is a neces-
quirements for ef cient domain decomposition and minimal sary step in developing a transport scheme for realistic atmo-
data movement between decomposition patches in massivepheric/oceanographic applications.
parallel compute environments, there has been a signi cant The idealized transport scheme testing discussed above
effort to formulate atmospheric models on more isotropic assesses simulation accuracy in a single-tracer setup. For
grids. Other motivations for alternative tessellations of thea range of climate and climate—chemistry problems, it
sphere are the design of models with mesh re nement cais also considered important that schemes do not disrupt
pability, possibly with smoothly varying transitions between pre-existing functional relations in unphysical ways (e.g.,
coarse and ne resolution. This has triggered a renewed interThuburn and Mclintyre, 1997). For example, long-lived trace
estin developing uid ow solvers for non-traditional spher- species in the stratosphere are known to be functionally re-
ical grids. A natural rst step in model development is to lated (Plumb, 2007), and the simulation of cloud—aerosol in-
design schemes that solve the continuity equation, also reteractions depends on accurate preservation of relations be-
ferred to as transport schemes or advection schemes. Numemween tracers (Ovtchinnikov and Easter, 2009). Based on the
ous new algorithms have been developed within the last 10 ytboomerang ow”, Lauritzen and Thuburn (2012) proposed
or so. These encompass nite-volume, nite-difference, and an idealized test to assess how well schemes maintain a non-
Galerkin-based methods. linear relation between two tracers. The amount of mixing,
Despite the growing amount of research in transportessentially introduced by truncation errors, was quanti ed
scheme algorithms, the “mandatory” idealized testing ofusing novel mixing diagnostics.
such algorithms on the sphere is surprisingly little stan- Inan attempt to standardize scheme testing under idealized
dardized. In fact, the only standardized test in global trans-ow settings as well as to reduce the number of tests while
port scheme development is the solid-body advection tesstill assessing a wide range of aspects of accuracy considered
of the widely used shallow-water test case (cf. Williamson important for geophysical applications, LSPT2012 proposed
et al., 1992). Speci ¢ guidelines for the computation of er- a “minimal” test case suite with speci ¢ guidelines on reso-
ror norms and plotting (contour interval and projection) are lution, time step, and accuracy diagnostics. In LSPT2012 it
given in Williamson et al. (1992). However, resolution and was assumed that model developers have already tested their
other transport model settings are not speci ed. In the lit- schemes under simpler ow conditions such as solid-body
erature modelers do not always chose the same resolutiomws. Similarly, LSPT2012 did not ask modelers to report on
and model settings, which can make it dif cult to compare more specialized test cases that may be useful to study cer-
schemes. Even contour plotting of solutions varies acrossain, perhaps more specialized, aspects of accuracy. For ex-
publications despite the specic guidelines of Williamson ample, by running well-known deformational test cases out
et al. (1992). Said colloquially, “apples-to-apples” compari- further in time (Pudykiewicz, 2011), one can study the down-
son is not always straightforward despite the simplicity of the scale cascade from near grid scale to the sub-grid scale (Kent
test (i.e., an analytical solution is known). This, among otheret al., 2012). Similar tests, such as many solid-body revo-
things, motivated Lauritzen et al. (2012, hereafter referredutions of a large constant plateau spanning many cells, can
to as LSPT2012) to propose a standard test case suite withe used for “tuning” shape-preserving lters so that the peak
speci c guidelines for resolution and other transport model tracer abundance does not decay linearly (if applicable) de-
settings. To facilitate this process further, we provide scriptsspite the initial plateau and analytic solution being very well
for contour plots. Model developers are encouraged to useesolved (Appendix A16).
those scripts so that contour plots from different modeling Itis the purpose of this paper to provide a library of bench-
groups can easily be compared. mark results for the LSPT2012 standard test case suite. The
More challenging global idealized tests have been devel-data were provided by the participants of the 2011 workshop
oped since the efforts of Williamson et al. (1992) such ason transport schemes held at the National Center for Atmo-
the highly deformational (moving) vortices on the sphere spheric Research (NCAR) in Boulder (Colorado, USA), 30—
(Nair and Machenhauer, 2002; Nair and Jablonowski, 200831 March 2011. The large ensemble of schemes that partici-
and the “boomerang” ows of Nair and Lauritzen (2010). pated in this intercomparison may help shed light on how the
Despite the high degree of deformation in the (moving) different tests and diagnostics discriminate between schemes
vortex test problem, in particular when simulated beyondand expose particular types of numerical errors. A list of
the original speci cation of simulation length (Kent et al., schemes that participated in this intercomparison and the ac-
2012; Pudykiewicz, 2011), it has an analytical solution. Thecompanying scheme acronyms are given in Table 1.
“boomerang” ows, on the other hand, do not have easily In this study grid spacings are quanti ed in terms of aver-
accessible analytical solutions until the end of the speci-age resolution at the Equator irrespective of the discretization
ed simulation time. Contrary to most idealized tracer trans- grid. Schemes are compared using this de nition of horizon-
port test cases, Nair and Lauritzen (2010) proposed a dital resolution. If the reader is interested in schemes for mesh-
vergent wind eld so that the modeler is forced to consider re nement applications, for example, only a subset of the
the coupling between air density and tracer mass (at leastichemes and grids presented here will have that capability.
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Table 1. A list of acronyms ( rst column), full names (second column), documentation (third column), implementation grid (fourth column),
and formal order of accuracy ( fth column) for schemes in this paper.

Scheme Full scheme name Documentation Implementation grid Formal

acronym order

CAM-FV Community Atmosphere Model — Lin and Rood (1996) Regular latitude—longitude 2
Finite-Volume Lin (2004)

CAM-SE Community Atmosphere Model — Dennis et al. (2012) Gnomonic cubed-sphere 4
Spectral Elements Neale et al. (2010); Guba et al. (2013) (quadrature grid)

CCSRG Conservative cascade scheme for Nair et al. (2002) Reduced latitude—longitude 3
the reduced grid Tolstykh and Shashkin (2012)

CLAW Wave propagation algorithm LeVeque (2002) Two-patch sphere grid 2
on mapped grids

CSLAM Conservative Semi-Lagrangian Lauritzen et al. (2010) Gnomonic cubed-sphere 3
Multi-tracer scheme Erath et al. (2013)

FARSIGHT Departure-point interpolation White and Dongarra (2011) Gnomonic cubed-sphere 2
scheme with a global mass xer

HEL Hybrid Eulerian Lagrangian Kaas et al. (2013) Gnomonic cubed-sphere 3

HEL-ND HEL — Non-Diffusive Kaas et al. (2013) Gnomonic cubed-sphere 3

HOMME High-Order Methods Dennis et al. (2012) Gnomonic cubed-sphere 4and7
Modeling Environment Guba et al. (2013) (quadrature grid)

ICON-FFSL  ICOsahedral Non-hydrostatic model — Miura (2007) Icosahedral-triangular 2
Flux-Form semi-Lagrangian scheme

LPM Lagrangian Particle Method Bosler (2013) Icosahedral-triangular 2

MPAS Model for Prediction Across Scales Skamarock and Gassmann (2011) Icosahedral-hexagonal 3

SBC Spectral Bicubic interpolation scheme Enomoto (2008) Gaussian latitude—longitude 2

SFF-CSLAM  Simpli ed Flux-Form CSLAM scheme Ullrich et al. (2013) Gnomonic cubed-sphere 3and4

SLFV-SL Semi-Lagrangian type Slope Limited Miura (2007) Icosahedral-hexagonal 2

SLFV-ML Slope Limited Finite Volume scheme N/A (see Appendix A14) Icosahedral-hexagonal 2
with method of lines

TTS-I Trajectory-Tracking Scheme — Interfaces Dong and Wang (2013) Spherical centroidal 1

\oronoi tessellation
UCISOM UC Irvine Second-Order Moments scheme  Prather (1986) Regular latitude—longitude 2
UCISOM-CS  UC Irvine Second-Order Moments scheme  — Gnomonic cubed-sphere 2

In other words, it is up to the reader to extract information also made available in the Supplement. Conclusions and a
for speci c applications as only uniform resolution or non- brief summary of results are provided in Sekt.
mesh-re ned grids are considered here.

The paper is organized as follows. In Sect. 2 the schemes
are briey introduced by discussing discretization cate-
gories/methods and grouping the respective schemes into
these categories. In addition to the basic discretization cons - . . .
cepts, this includes discussion of shape-preserving (sp) “m:l'he c_ont|ny|ty equanon for a passive and inert scalauan_
iter uéed (if applicable) and air—tracer mass coupling Spe_be written in various forms such as ux fo_rm or advective

) . . . : . ) form. The choice of the form of the continuous transport
ci ¢ details on time step, native grid resolutions used to

S . X : equation from which the discretized scheme is derived ob-
match test case speci cations on resolution, viscosity coef-

cients (if applicable). etc. are given in the Appendix for viously depends on the numerical method. Below we de-

each scheme. The results for the LSPT2012 test case sui{nethe different categories of discretizations for the schemes

. at participated in this intercomparison. The high-level cat-
are presented in Sect. 3. It has been a challenge to present eﬁ P b P g

fectively and concisely the results graphically given the Iargeegorles are as follows:
number of schemes. We have found it most effective to de- — ux-form nite volume,
pict most of the data in histogram format. The complete his-
togram data sets are made available as supplemental material
for the interested reader. Scripts and data to produce conver- _ (semi-)Lagrangian grid point,
gence plots (Figs. 1 and 2), lament diagnostic plot (Fig. 5), )

contour plots (Figs. 7, 8, 9, 10), scatterplots (Figs. 11, 12, 13 — Lagrangian parcel methods,
and 14), and histogram plots (Figs. 3, 4, 6, 15 and 16) are

Transport equation forms and discretization
categories

— (semi-)Lagrangian nite volume,

— series expansion.
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108 P. H. Lauritzen et al.: Results from standard test case suite

A brief description of the transport schemes that partic-in most nite-volume discretizations when the analytical so-
ipated in this intercomparison is given within the category lution for is not known.
each scheme has been assigned to. Below, the scheme de-Finite-volume schemes based on Eb) (se tracer mass
scriptions are grouped according to scheme category irre- and not mixing ratio as the prognostic variable. Hence
spective of discretization grid. For in-depth details on the must be solved for as well:

algorithms, we refer to their respective publications; speci c Lot 2 3

scheme con gurations used in this intercomparison are given c1 ng '

in the Appendix. 1A ("CLD 1A " 8 v oastd: (5)
nlt @A

2.1 Flux-form nite volume . ) . . )
It is considered important that the coupling between air

Typically, ux-form Eulerian or ux-form semi-Lagrangian ~mass and tracer mass is “free-stream preserving” (also re-

schemes are based on the form ferred to as “consistent tracer transport” in the literature).
This means that the discretization scheme for Eq. (1) reduces
@. / Cr . VIDO: (1) to the discretization scheme for Eq. (2) foD 1 as it triv-
@t ially does in continuous space. Note that free-stream preserv-

ing does not necessarily mean that the spatial and temporal
discretization schemes forand  are identical. In fact, it
{s common practice to solve the tracer transport Bg.oh
longer time steps than the air density Eqg. (2) since tracer
transport schemes are usually only limited by the advec-
@ _ tive CFL (Courant—Friedrichs—Lewy) or Lipschitz criterion
@tCr - VIDO: @) (Pudykiewicz et al., 1985; Kuo and Williams, 1990) rather
. ) o than the more restrictive CFL condition usually imposed on
For Eulerian nite-volume schemes, Eq. (1) is integrated the continuity equation for air by gravity and/or sound waves.

in space over a stationary (Eulerian) control grid volume/cell oy sych an approach the ux of tracer mé&sshrough a cell
Ax and in time over one time stejt , and usually the diver- \yq| is computed as

gence theorem is applied. After re-arranging terms the dis-

where is the uid density,V the ow velocity vector, and
the tracer mixing ratio per unit mass. In nite-volume

schemes the equation of motion is integrated over a contro

volume. Similarly, the equation for air density is given by

cretized continuity equation can be written as EDh i xn E = ©
] — iD1
I, « "D TIA i © ° R
n21/1t2 [ 3 wherem is the number of sub-steps in timg, =™ the
| v/ Imsg dt: 4 “background” ux of air mass through the cell wall in one
" @ sub-stept 2T nC L 1t; nC L 1tyYandh i the aver-
nit @A

age mixing ratio over the tracer time stea@ Thlt;.n C
wheren is the time-level index] A  the area of an Eulerian /1t U Note that the mixing ratid i, is averaged over sev-

grid cell Ay, and@ A the boundary of\y for which ©is the eral s.ub—slteps in. which the air dens?ty is updated. .For a
outward pointing normal vector. The physical interpretation 9raphical illustration of Eq. (6), see Fig. 8.19 in Lauritzen

of the last term on the right-hand side of Eq. (3) is basically €t @l- (2011b). Th? techniq.ue"described by Eq. (6) is usu-
the ux of mass through all cell walls in one time step. This &y referred to as “sub-cycling”, although more appropriate

term is also referred to as thex divergence In one dimen-  t€rminology may be “super-cycling” of tracer uxes with re-

sion the ux divergence is the difference between the ux SPECt (0 air mass ux. _ .
of mass through the left and right wall of the control vol- It is worth noting that Eq. (6) witmD 1 constitutes a

ume. Mass conservation is therefore achieved by evaluatin{;)orm of linearization of the ux where non-linear coupling
the ux through a cell wall shared by two control volumes PetWeen tracer mixing ratio and air mass is neglected. For ex-

in an identical way. In that case, the amount of mass ow- 2Mple, assume that tracer mixing ratio;y/ is represented
ing into a control volume through a cell wall will be exactly through a higher order polynomial of degréeand similarly

balanced by the out ow through the face shared by the neighfor air density .x;y/, wherex andy denote the longitu-
boring control volume. Hence any reasonable approximatior{j'nal and latitudinal directions, respectively. Then the ux

to the ux will trivially lead to conservation of tracer mass.  trough the cell wall involve& .x;y/  .x;y/ i (Dukowicz
There are several approaches to approximating the ux di-and Baumgardner, 2000), which would require integrating a

. 2 . .
vergence, and they are discussed in separate sub-sections l2lynomial of degre& “. Instead, the ux is approximated

low in the context of the schemes that participated in this in-°Y
tercomparison project. Before that, however, we briey dis- hy x:y/  x;y/ i hxy/ i hxyl i; 7)
cuss the coupling between air and tracer mass that is inherent
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which eliminates the non-linear interaction between non-during the nal Runge—Kutta stage within a given time step.
constant terms in the polynomials ofand . This simpli - Tracer and air mass coupling is through super-cycling.
cation reduces the order of the polynomial: instead of having

to integrate a polynomial of degrée?, only integration of ~ 2.1.2 “Swept-area” approach

polynomials of degre& is needed.

For most applications it is important that the progno- An alternative and perhaps more physically intuitive ap-
sis of mixing ratio does not introduce spurious oscilla- proach to approximating the ux divergence is to trace the
tions and/or unphysical values such as negative mixing raarea that is “swept” through an Eulerian cell wall in one
tios. Schemes that guarantee “physical” solutions in thistime step — hence the name “swept area” approach, also re-
sense are referred to as “shape-preserving” (sp). The erferred to as incremental remapping method (Dukowicz and
forcement of shape preservation in ux-form schemes canBaumgardner, 2000), or semi-Lagrangian ux-form nite-
be done by adjusting the uxes. A very popular algorithm volume method (Lin and Rood, 1996). These methods are
is FCT (ux-corrected transport by Zalesak, 1979) where ausually based on Euler forward time differencing (two-time-
monotone low-order ux is blended with the non-monotone level schemes). Several schemes in this intercomparison are
higher order ux to provide a shape-preserving solution. An- based on that approach, and they differ in area approxima-
other approach that can be used in the context of a ux-formtion, reconstruction method, and implementation grid (for a
discretization is to ensure that the reconstruction functiondetailed discussion on area approximations and reconstruc-
which is usually an integral part of a nite-volume scheme, tion methods, see, for example, Lauritzen et al., 2011b). Un-
is constrained so that it does not introduce new extrema otess stated otherwise the schemes based on “swept areas” use
expand the range of the cell-averaged values. This methothe super-cycling technique for coupling tracer and air mass.
is referred to aslope-limiting(e.g., van Leer, 1977). For an The most rigorous approach in this intercomparison, in
overview of shape-preserving lters used for the schemes interms of area approximation, is the Simplied Flux-Form
this intercomparison, see Table 2. The following subsection®CSLAM scheme (SFF-CSLAM, Lauritzen etal., 2011a; Ull-
provide brief descriptions of the models that fall into the ux- rich et al., 2013). For each cell the ux areas are approxi-
form nite-volume category. mated by tracing the end points (vertices) of each cell face
upstream. The upstream translation of these points and the
face vertices can be connected with straight lines (e.g., Harris
et al., 2010) or parabola (in the latter case also the midpoint
of the cell faces is traced upstream; Ullrich et al., 2013) to
The scheme of Skamarock and Gassmann (2011), here rele ne the swept area (aka ux area). This area will by de ni-
ferred to as MPAS as it was implemented in the “Model tion be swept through the cell wall in one time step and hence
for Prediction Across Scales” framework (Skamarock et al.,can be used to approximate the mass uxes in and out of con-
2012; Ringler et al.,, 2011), is a generalization of one-trol volumes by integrating reconstruction functions of tracer
dimensional Taylor series approximations to the ux op- mass over the swept areas. The “Simpli ed” in the SFF-
erators (Wicker and Skamarock, 2002; Hundsdorfer et al. CSLAM scheme acronym refers to the simpli cation intro-
1995) for a Voronoi tessellation of the sphere. Speci cally, duced by Hirt et al. (1974), in which the ux integral is sim-
these operators are generalizations of third- and fourth-ordepli ed so that only the sub-grid-scale reconstruction imme-
operators currently used in atmospheric models employ-diately upstream of the cell edge is used even though the ux
ing regular, orthogonal rectangular meshes as, for examarea may overlap more than one Eulerian cell. As discussed
ple, the Weather Research and Forecasting (WRF) modeln Lauritzen et al. (2011a), this simpli cation may lead to
which is documented in Skamarock and Klemp (2008).some cancellation of errors for suf ciently small CNs. The
Two-dimensional least-squares- t polynomials are used tointegration of the ux region in SFF-CSLAM is performed
evaluate the higher order spatial derivatives needed to canvia fourth-order Gaussian quadrature of third- and fourth-
cel the leading-order truncation error terms of the stan-order accurate reconstruction polynomial functions (Ullrich
dard second-order centered formulation. As in Wicker andetal., 2013) referred to as SFF-CSLAM3 and SFF-CSLAM4,
Skamarock (2002), the third-order formulation is equivalentrespectively. Shape preservation in SFF-CSLAM is enforced
to the fourth-order formulation plus an additional diffusion by reconstruction function-limiting (slope-limiting); more
term that is proportional to the Courant number (CN). An speci cally the maxima and minima are identi ed within
optimal value for the coef cient scaling this diffusion term each element, and the reconstruction function is scaled to
based on qualitative evaluation of results from other tests ist within the minimum and maximum of the neighboring
used (se&kamarock and Gassmann, 2011). cell-average valueB@arth and Jespersen, 1989). Since sim-

The time stepping is based on a three-stage Runge—Kuttpli ed ux-area integration is used, reconstruction functions
method. Hence the ux operators are evaluated at three interare effectively extrapolated in the parts of the ux areas (if
mediate time levels for a full tracer time step update. Shapeny) that are not limited to the immediate upstream cell with
preservation is obtained by applying the FCT limiter/ lter which the control volume shares a face. Since slope-limiting

2.1.1 Taylor series approach
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Table 2. A list of shape-preserving lter information: scheme acronym (rst column), scheme category (second column), lter category
(third column), whether the scheme is strictly shape-preserving in terms of not expanding the range of the initial data (fourth column), and
the reason for non-shape-preservation (if applicable, fth column).

Scheme “Category” Shape-preserving Strictly shape-  Reason for “non-strict”
acronym lter category preserving shape preservation
CAM-FV Flux-form nite volume Dimensionally split No 1-D limiter
CAM-SE Spectral element Quasi-monotone limiter  Yes -
(series expansion) based on minimization;
hyperviscosity
CCSRG Semi-Lagrangian nite volume — - -
CLAW Wave propagation Wave limiter No 1-D wave limiter
CSLAM Semi-Lagrangian nite volume  Slope-limited Yes -
Rigorous ux
FARSIGHT Grid-point semi-Lagrangian Fixer Yes -
HEL Semi-Lagrangian nite volume Lagrangian xer Yes -
HEL-ND Semi-Lagrangian nite volume Lagrangian xer Yes -
HOMME Spectral element Quasi-monotone limiter  Yes -
(series expansion) based on minimization;
hyperviscosity
ICON-FFSL  Flux-form nite volume FCT Yes -
LPM Fully Lagrangian Lagrangian Yes -
MPAS Flux-form nite volume FCT Yes -
SBC Semi-Lagrangian grid point Fixer Yes -
SFF-CSLAM  Flux-form nite volume Slope-limited No “Extrapolation” in
simpli ed ux simpli ed ux
SLFV-SL Flux-form nite volume Slope-limited No “Extrapolation” in
simplied ux simplied ux
SLFV-ML Flux-form nite volume Slope-limited No “Extrapolation” in
simpli ed ux simpli ed ux
TTS-I Lagrangian nite volume None needed Yes -
UCISOM Flux-form nite volume Moment-limiting No Shape-preserving constraints
relaxed
UCISOM-CS  Flux-form nite volume Moment-limiting No Shape-preserving constraints
relaxed

is only enforced within each Eulerian cell and not throughout The simpli ed ux integration, as used in SFF-CSLAM, is
the ux area, SFF-CSLAM is not strictly shape-preserving also applied in ICON-FFSL. Hence the maximum stable CN
but only approximately so. SFF-CSLAM could be renderedis limited; the theoretical stable CN limitation for linear re-
strictly shape-preserving by using FCT, possibly at the ex-construction functions is 0.5 (Fig. 3 middle; Lauritzen et al.,

pense of increased computational cost.
A further simpli cation to SFF-CSLAM is to approxi-

2011a). However, in practice ICON is stable up to CN of
approximately 0.8. The reconstruction polynomial is rst-

mate the swept area with just one degree of freedom in-order (linear), and the coef cients are estimated using a con-
stead of two or three as described above. For example, ongervative and weighted least squares reconstruction method
may use just one velocity vector at the center of each edg€Ollivier-Gooch and van Altena, 2002). Shape preservation
to trace the ux area so that the swept area is a rhom-in ICON-FFSL is obtained by using FCT, and tracer—air-
boid instead of a quadrilateral with straight (Miura, 2007) mass coupling is through “super-cycling”.

or curved edges (Ullrich et al., 2013). This approach is A similar approach has been taken in the scheme of SLFV-
taken in the transport scheme implemented in the IcosaheSL developed at LMD (Laboratoire de Météorologie Dy-
dral Nonhydrostatic Model (ICON); ICON is currently be- namique, Paris, France) for a hexagonal icosahedral grid-
ing developed in a joint effort by the Max Planck Institute based model. It uses simpli ed swept areas with simpli ed
for Meteorology (MPI-M) and the German Weather Service integration of linear reconstruction functions as in ICON-
(DWD). The scheme is referred to as ICON-FFSL (Flux- FFSL. Contrary to ICON-FFSL, the SLFV schemes base
Form Semi-Lagrangian). The swept area approximation intheir reconstruction on averaging six gradients (or ve for
ICON-FFSL is rst-order in space and second-order in time. the pentagons) rather than a least-squares t. SLFV-SL uses a
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slope limiter for shape preservation — more precisely, a multi-applies successive applications of rst-order advection and
dimensional extension of the Van Leer-type slope limiter dis-PPM (piecewise parabolic method; Colella and Woodward,
cussed in Dukowicz and Kodis (1987). LMD also presented1984) ux-divergence operators that are carefully combined
another scheme, SLFV-ML, which is similar to SLFV-SL, to minimize splitting errors. To render CAM-FV, approxi-

but instead of forward Euler the Runge—Kutta third-order to- mately shape-preserving slope limiters and curvature lim-
tal variational diminishing (TVD) time-integration method iters are applied in the one-dimensional PPM reconstruc-
is used (e.g., Nair et al., 2005). For details on the SLFVtions. Since the limiters are applied to the PPM operators that

schemes, see Appendix Al4. are one-dimensional, over- and undershoots are only elimi-
nated along coordinate directions and not in the transverse
2.1.3 Wave-propagation algorithm direction. Hence, CAM-FV is only approximately shape-

preserving. Air—tracer coupling is through “super-cycling”.

Related to the “swept area” approaches described above, iRor a stability analysis of the Lin and Rood (1996) scheme,
the sense that this algorithm has some conceptual similarsee Lauritzen (2007).
ities, is the wave-propagation algorithm of LeVeque (2002). Another dimensionally split transport scheme in Eulerian
The speci ¢ version of this algorithm is referred to as CLAW ux form that participated in this intercomparison is an im-
as it is implemented in the general Clawpack package (LeVproved version (Prather et al., 2008) of the original second-
eque, 2006). The wave-propagation algorithm can be viewearder moment (SOM) scheme (Prather, 1986), which is here
as a scheme that propagates information (i.e., waves) rsreferred to as UCISOM (UC Irvine Second-Order Moments
in a direction normal to a given cell interface, and then in scheme). It applies the same operators/algorithm in all co-
a direction transverse to this interface effectively approxi-ordinate directions (via dimensional splitting) and hence is
mating “swept area” uxes (see, e.g., Fig. 5.22 in Durran, trivially extensible to three dimensions. In addition to the
2010). CLAW is based on a rst-order donor cell upwind one prognostic variable (cell-averaged tracer mass) that all
method ( rst-order waves) composed of one-dimensionalthe schemes discussed so far use, the SOM method carries
ux-divergence operators with “correction” terms to take ve prognostic variables. The extra forecasted variables are
into account traverse ow of waves and/or higher order moments of the tracer distribution. The UCISOM scheme
waves. CLAW used here is formally second-order accuratehas been implemented on a regular latitude—longitude grid
A TVD monotonized central-difference limiter (LeVeque, and on an equiangular gnomonic cubed-sphere (referred to
2002; van Leer, 1977) is used for shape preservation, buas UCISOM and UCISOM-CS, respectively).
other TVD type ux limiters can also be applied.

Clawpack supports the advective and ux form of the 2.2 (Semi-)Lagrangian nite volume
transport equation. The version of CLAW used here is based ) _ _ ) )
on the advective form. For non-divergent winds the average® (S€mi-)Lagrangian nite-volume scheme is typically based
normal velocity at mesh cell edges is obtained by differenc-0n the form
ing a stream function evaluated at mesh cell corners. Con-p z
sequently, a constant density eld in a non-divergent ow —- dA DOQ; (8)
is preserved in the discretized CLAW scheme based on the™ ",
advective form. Clawpack is not strictly a transport code,
but is designed to solve more general non-linear hyperboliovhere D=Dt is the total or material derivative anél.t/
problems. The problems presented here are ideally suitets a Lagrangian volume for which, by de nition, there
for AMRClaw, the spatially adaptive version of Clawpack is no ux of mass across its boundaries. Lagrangian and

(http://www.clawpack.org). semi-Lagrangian nite-volume schemes are also referred to
as cell-integrated schemes (Nair and Machenhauer, 2002).
2.1.4 Dimensional splitting approach In semi-Lagrangian nite-volume schemes, the same La-

grangian areas are only traced/retained for one time step,
Instead of approximating swept area uxes rigorously in whereas for fully Lagrangian schemes the cells move with
two dimensions, one may take an operator split approachthe ow throughout the integration or at least for multiple
which has been successfully applied for orthogonal (Lintime steps. Each sub-category of (semi-)Lagrangian nite-
and Rood, 1996) and quasi-orthogonal grids (Putman andolume schemes is discussed in a separate section below.
Lin, 2007). The advantage of such an approach is that only Conservation of mass in (semi-)Lagrangian nite-volume
one-dimensional operators are needed. The formal accuracgchemes is based on the physical constraint that the integral
however, is limited to second-order with the splitting. The of mass over the Lagrangian areas at time levehdn C 1
Lin and Rood (1996) scheme is used in NCAR's Com- must match. This physical constraint is more rigorous than
munity Atmosphere Model Finite-Volume version (CAM- the requirement for mass conservation in ux-form schemes,
FV, Neale et al., 2010) and implemented on a regularfor which any ux leads to mass conservation as long as iden-
latitude—longitude grid. The transport scheme in CAM-FV tical uxes with opposite signs are used for each cell face.
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Contrary to ux-form schemes, the reconstruction functions ef ciency of the CSLAM algorithm. The coupling between
must integrate to the cell-averaged value in each Eulerian and is by using the following reconstruction function
control volume, and the Lagrangian areas must span the erfer tracer mass in each Eulerian control volume:

tire domain without cracks or overlap between them. For a _

fuller discussion, see Lauritzen et al. (2011b) and Erath etal. -x;y/ C . .x;y/ 7/; 9)

(2013). . . . —
Since (semi-)Lagrangian nite-volume schemes trace La-(Appendix B of Nair and Lauritzen, 2010) wheré refers to
the cell-averaged value. Note that fox;y/ D 1 Eq. (9) re-

grangian volumes rather than uxes through cell walls, shape

preservation cannot be ensured using FCT and FCT—typéjuceS to the reconstruction function forand hence Eq. (9)

limiters. Shape preservation in semi-Lagrangian nite vol- IS free-stream preserving. Also, the _higher order terms in the
ume (not ux form) can be accomplished via slope-limiting Product x;y/ —.x;y/ have been eliminated so that the re-

where the reconstruction function is limited to avoid spurious cONstruction function for tracer mass is of degree two. One
under- and overshoots could also simply use a reconstruction function based on

tracer masS instead of reconstructingand separately.
However, shape preservation should only be applied &3
is conserved following parcel trajectories and not tracer
mass . Hence the separation ofand in the reconstruc-
) tion step is preferable.

2.2.1 Fully two-dimensional semi-Lagrangian
nite volume

The Conservative Semi-Lagrangian Multi-tracer (CSLAM
scheme, which has been implemented in NCAR's High-
Order Methods Modeling Environment (HOMME; Erath

etal., 2012), is based on upstream tracing of cells and subsgysteaq of approximating the upstream area with a fully two-
quent integration over overlap areas between the Lagrangiagimensional approach, it may be approximated using a di-

cell apd Eu_lerian grid cells. Speci cally, the vertices of the mensionally split approach. This is similar to splitting for Eu-
Eulerian grid .control _volumes/cells are traced upstream angejan yxes. However, the dimensional splitting is not along
connepted with straight 'Ilr'1es to d_e ne the upstream L"’," coordinate axes but along Lagrangian translations of coordi-
grangian area. Note that it is essential for mass conservatiofate axes. Hence we refer to this approach as ow-dependent

that the upstream areas collectively span the entire domaigmensional splitting. The upstream area is then effectively

and that the recons;ruction functipn int.egrates to the Ce"'approximated using line segments that are parallel to the co-
averaged value within each Eulerian grid cell (Erath et al.

- - 'ordinate axes (see, for example, Fig. 2 in Lauritzen et al.,
2013). Mass conservation in ux-form schemes is not sub-0g) so that the two-dimensional remapping problem is cast
ject to these constraints.

i into one-dimensional “sweeps” (one sweep along a coordi-
~ The CSLAM scheme may also be castin ux form (Har- a¢e axis and one sweep along the upstream translation of the
ris et al., 2010) to produce schemes that are identical evefiner coordinate axis); such schemes are referred tass
when the slope limiter for shape preservation is applied.caqeschemes and were originally introduced by Purser and
Note that casting the scheme in ux form allows for ux | ggjie (1991) for non-conservative semi-Lagrangian interpo-
limiters such as FCT that can obviously not be used inj4tion. Later, conservative versions of the cascade method
the Lagrangian form (e.g., Lauritzen et al., 2011b). Sinceyere proposed, e.g., the conservative cascade scheme (CCS;
CSLAM integrates over fewer overlap areas than its ux- nair et al., 2002). In each cascade sweep, PPM-based opera-
form version, it is more ef cient in its Lagrangian form. The ¢ (similarly to CAM-FV) are used.

CSLAM version used in this.comparison was im_plemented A scheme based on CCS and implemented on the reduced
on an equiangular gnomonic cubed-sphere grid. CSLAM|asitde_longitude grid (for details on the reduced latitude—

uses fully two-dimensional polynomial-based reconstructionbngitude grid used here, see Fadeev, 2013) participated in

functions of degree two for air densityx;y/ and tracer  ihis'intercomparison and is referred to as CCSRG (Tolstykh

mixing ratio .x;y/ . Shape preservation is obtained with 54 shashkin, 2012). The version of CCSRG used here does
fully two-dimensional slope-limiting Barth and Jespersen, not have a limiter implemented. Tracer-mass coupling is

1989). Integration over overlap areas on the cubed-sphere i§;5ed on reconstructing tracer mass, and not on the re-

performed via line integrals in gnomonic cubed-sphere co-.ynstruction of mixing ratio and density separately.
ordinates. In Lauritzen et al. (2010) line integrals along co-

ordinate lines were computed using exact line-integral for-2 2.3 Lagrangian nite volume

mulas (Ullrich et al., 2009). However, it was later found that

these may become ill-conditioned at high resolution: switch-A scheme for which the Lagrangian areas are retained for
ing to Gaussian quadrature makes the algorithm robust but dbnger than one time step is the trajectory-tracking scheme
the cost of mass conservation unless mass consistency is e(@ong and Wang, 2012) based on tracking interfaces (TTS-I,
forced locally using the consistency enforcement algorithmDong and Wang, 2013). The advantage of tracing interfaces
by Erath et al. (2013), which does not affect the locality andis that large gradients or even discontinuities are preserved.

2.2.2 Flow-dependent dimensional splitting
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The initial grid in TTS-1 is based on polygons generated by The scheme uses the same coupling between uid density
using a spherical centroidal Voronoi tessellation (Du et al.,and tracer mass as the CSLAM scheme, although the nudg-
1999; Ringler et al., 2008; Ju et al., 2011), where the densitying of Eulerian cell averages is done separately for density
function that controls the distribution of polygons is set to and mass, but constrained by monotonicity in tracer mixing
unity. The polygons are then traced throughout the integraratio. The HEL scheme is general in the sense that any shape-
tion. Due to the large deformation of the background ow, preserving and mass-conservative scheme can be used for the
the edges of the polygons will inevitably cross. To avoid this Eulerian forecast. The HEL scheme has also been tested suc-
ill-conditioned problem, a novel curvature-guard algorithm cessfully in a dynamic shallow water model with strongly
(CGA) has been developed that splits and merges edges awvarying surface topographKéas et al., 2013).

cording to deformation criteria. The details are explained in

Dong and Wang (2013). For the computation of diagnos-2.3 (Semi-)Lagrangian grid point

tics, the elds are mapped to a regular latitude—longitude - ) . )
grid (which is also done for coupling with physical param- S°0Me schemes, such as traditional grid-point semi-
eterizations). This mapping is rst-order, mass-conservative-2drangian schemes, are based on the advective form of the
and shape-preserving. Note that the prognostic elds are al€ontinuity équation for mixing ratio,

ways retained in Lagrangian space, so the mapping is only,

for computing diagnostics (and tendencies from the physi-—- D O: (10)

cal parameterizations). Coupling between tracer mass and air

mass is trivial since the scheme retains Lagrangian volumes The FARSIGHT scheme (White and Dongarra, 2011)

for tracer mass and air mass throughout the integration. is based on Eq. (10) and discretized on an equiangu-
lar gnomonic cubed-sphere grid. It is an upstream semi-
2.2.4 Hybrid Eulerian—Lagrangian Lagrangian scheme that computes departure points for each

grid point using backward trajectories based on numerical
An alternative approach is to retain both a fully Lagrangian derivatives of the wind eld at the later time. The scheme
and Eulerian representation of all prognostic variables aghen sets at each grid point to the interpolated value (third-
done in the hybrid Eulerian—Lagrangian (HEL) schemeorder for FARSIGHT) at its departure point. The scheme
(Kaas et al., 2013). In HEL the Lagrangian solution, based orallows for long time steps as long as the trajectory algo-
tracing Lagrangian parcels (effectively solvibg=Dt D 0), rithm converges (Lipschitz criterion). FARSIGHT performs
is used to nudge the Eulerian solution toward the Lagrangiarbest at Courant numbers of 10-20 and has large errors at
solution that exactly preserves tracer correlations and trackfow Courant numbers (White and Dongarra, 2011). Schemes
gradients very accurately. In the Lagrangian solution, mixingbased on Eq. (10) are usually not inherently mass conserva-
between neighboring parcels is done using directionally bi-tive, and it is common practice to apply global mass xers
ased diffusion based on the local deformation rate of the ow.that “ad hoc” restore global mass conservation. FARSIGHT
The mixing is introduced to prevent long-term developmentuses a global mass xer that also locally constrains the mix-
of unresolvable deformation into parcel laments, which one ing value to remain within a prede ned interval. Hence the
may also describe as aliasing in Lagrangian space. The Euscheme is not necessarily locally shape-preserving. The par-
lerian solution is simply a rst-order forecast; in this case, a allel implementation uses dynamic communication to al-
rst-order version of CSLAM is used. Hence HEL is cate- low arbitrarily ne domain decomposition regardless of time
gorized under nite-volume semi-Lagrangian schemes, andstep. However, it does incur the expense of a global synchro-
the Lagrangian parcel part of the algorithm is viewed as anization at each time step, and the mass xer uses global re-
shape-preserving limiter in the context of this intercompari- ductions. For this class of schemes, free-stream preservation
son. Lagrangian parcel values are used to nudge the shapis trivial since a constant will remain constant through-
preserving low-order Eulerian solution using an algorithm out the simulation and does not appear in the transport
that ensures mass conservation and shape preservation. Eg. (10).

For comparison the scheme has also beenrunin an aliased, The spectral bicubic interpolation scheme (SBC,
and therefore unphysical, setup without the directional dif-Enomoto, 2008) is a traditional semi-Lagrangian grid-point
fusion (abbreviated HEL-ND; No Diffusion); thus, the La- scheme in Eq. (10) based on spectral transforms on a
grangian parcels retain their initial values throughout thelatitude—longitude Gaussian grid (Ritchie, 1987). The zonal,
simulation. If using exact trajectories, HEL-ND has no er- meridional, and cross derivatives are calculated using the
rors at the end of the simulation since the parcels will havespectral transform method and are then fed into the bicubic
returned to their initial position without altering their initial interpolation formula providing a fully two-dimensional
value. In the test cases presented here, the trajectories are riaterpolant (no directionally splitting that is commonly
exact, and the error norms are therefore non-zero. Note thaipplied in traditional semi-Lagrangian schemes). The
this is not the case for HEL since the mixing/diffusion is ir- number of zonal grid points is about twice the truncation
reversible. wave number (linear Gaussian grid) rather than about three
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times (quadratic Gaussian grid) since the nonlinear terms arecheme. In this intercomparison one scheme (with several
hidden in the interpolation (C6té and Staniforth, 1988). Thevariants) under this category participated and is referred
linear Gaussian grid (thus larger truncation wave numbero as HOMME (High-Order Methods Modeling Environ-
gives better accuracy for the same number of grid pointsment). HOMME is a dynamical core framework that cur-
especially at low resolutions. rently accommodates spectral element (Thomas and Loft,
Trajectories are computed using the traditional method2005; Dennis et al., 2005), discontinuous Galerkin meth-
based on bilinear interpolation along great circles (Stani-ods (Nair, 2005; Nair et al., 2009), and nite-volume meth-
forth and C6té, 1991). A two-time-level scheme (Temper-ods (Erath et al., 2012) on conforming quadrilateral grids
ton and Staniforth, 1987) is implemented for ef ciency. It on a sphere. A gnomonic cubed-sphere grid de nes the el-
is con rmed that the two-time-level scheme gives exactly the ements, and each element is populated with Gauss—Lobatto—
same results as the three-time-level scheme used by Enomotaegendre nodes for integral evaluations used in the transport
(2008). The time extrapolation is not used since the windoperators.
elds are known analytically at any time Time integration The HOMME version used here is a continuous Galerkin
is conducted in spectral space with the unlimited scheme.nite element method that relies on globally continuous
In physical space, it is conducted with the shape-preservingolynomial basis functions of order (here withp D 3 and
scheme. p D 6). Although HOMME has the capability to solve the
This scheme does not formally conserve mass and is notransport equation in advective form, it is solved in ux form
inherently shape-preserving although the interpolation it-(one equation for and one for ) for exact conservation.
self is very accurate; overshoots and undershoots are much compatible discretization method is used that guarantees
smaller compared to traditional quasi-cubic interpolation mass conservation (Taylor and Fournier, 2010). Time step-
(Ritchie et al., 1995). A simple global mass x scheme basedping in HOMME is via an explicit three-stage strong sta-
on a variational formulation by Sun and Sun (2004) is used bility preserving Runge—Kutta method. For shape preserva-
Shape preservation is enforced by a quasi-monotone schem@n D —'— is recovered after each Euler time step in the
by Nair et al. (1999). The quasi-monotone scheme is an imRunge—Kutta method. The quasi-monotone limiter (shape-
proved version of Sun et al. (1996) that applies the Bermejopreserving lter) for is based on an optimization problem

and Staniforth (1992) lter. with equality and inequality constraint$gylor et al., 2009;
Guba et al., 2013).
2.4 Lagrangian parcel methods There is a signi cant dependency of the simulation quality

on the choice of the fourth-order hyperviscosity coef cient
Instead of periodically (every time step for FARSIGHT for low-resolution simulations with HOMME. For speci ¢
and SBC) remapping between a Lagrangian and Euleriathoices used in HOMME, see Appendix A8.
mesh, one may also trace the Lagrangian parcels through- HOMME has been incorporated as a dynamical core op-
out the integration (e.g., Chorin and Marsden, 2000; Cottetion in NCAR's Community Atmosphere Model (CAM,
and Koumoutsakos, 2000) similar to the Lagrangian nite- Evans et al., 2013). The con guration using the HOMME
volume method described above (TTS-I). This method is re-spectral element dynamical core in CAM is referred to as
ferred to as the Lagrangian particle method, and its imple-CAM-SE (Dennis et al., 2012). The test case suite was also
mentation in this intercomparison will be referred to as LPM run with CAM-SE (equivalent to HOMME-p3) but using the
(Bosler, 2013). Apart from different remapping to Eulerian fourth-order hyperviscosity coef cients for climate simula-
grids, LPM is similar to HEL without diffusion (i.e., HEL- tion in CAM (see Appendix A2 for details).
ND). Obviously, any set of parcels can be traced. LPM traces
quadrilaterals of a cubed-sphere mesh or the triangles of an
icosahedral triangular mesh by both tracing the centers an@ Results
vertices of the control volumes. The parcel trajectories are

computed using a fourth-order Runge—Kutta method. In this section the results for the transport schemes that par-
ticipated in this comparison are presented and discussed.
2.5 Series-expansion methods Horizontal resolutions are speci ed in terms of average grid

spacing at the Equator. The test case suite works with three
Transport scheme algorithms in which the solution is pro-resolutionsl V1.5, 0:75, and1l , (the latter is scheme
jected onto a set of basis functions through a minimizationdependent and de ned in Sect. 3.2), wherenotes the lon-
procedure are broadly referred to as series-expansion metlgitude. The identical grid spacing is also selected for the lat-
ods as for example explainedDurran (2010). The spectral itudinal direction. The native grid parameters corresponding
transforms used in the SBC scheme are also based on s& these three average grid spacings at the Equator can be
ries expansions (global). However, since the expansions areound in the Appendix for the respective schemes. In addi-
only used to provide gradients for the Lagrange interpolanttion, we make extensive use of CNs, which are also speci ed
the SBC scheme is not categorized as a series-expansidn terms ofl , so local CNs may differ from the “global”
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CN for schemes implemented on non-isotropic grids. Again3.1 Numerical convergence rates: Gaussian hills

the reader is referred to the scheme-speci ¢ Appendix to nd

time stepslt corresponding to specic CNs at any of the The goal of this test is to estimate numerical convergence

three resolutions. Data used to make histograms are avaiFates for the normalized error norms which are referred to

able as supplemental material. The test case speci catiomsK " for the unlimited scheme and (if applicablé)Sp for

consists of two analytical ow elds (one non-divergent and the shape-preserving version of the scheme, whbrg; 1 .

one divergent) designed to deform initially well-resolved ini- Gaussian hills and the non-divergent ow eld are used for

tial conditions into thin laments half way through the sim- the initial conditions. Normalized error norms are computed

ulation ¢ D T =2, whereT is the period). Thereafter the de- after one period¥) when the analytical solution is readily

formational part of the ow reverses so that the tracer dis- available. The initial condition is in nitely smooth® ) so

tributions return to their initial condition atD T. The de-  that the smoothness of the initial condition is not a limiting

formational ow is superimposed on a constant zonal ow factor for numerical convergence rates. Wathinitial condi-

to challenge the schemes further and to guarantee that etions, for example, one cannot necessarily expect to achieve

rors do not cancel when the deformational ow reverses. Thenumeral convergence rates matching the formal order of ac-

initial conditions are based on distributions ranging from in- curacy for higher order schemes (see, for example, Harris

nitely smooth surfaces to discontinuous slotted cylinders. et al., 2010). The meridional component of the velocity eld

The distributions are placed into the western and easteriw is not in nitely smooth at the poles. However, since all

hemisphere, respectively, so that model developers can inveselds are constant at the poles (and in the vicinity of the

tigate the symmetry of the computed solutions. A series of di-poles) and since all metrics are based on mixing ratsnd

agnostics are used to assess various aspects of accuracy. Fat tracer mass, this lack of smoothness in the derivative of

speci ¢ details on the test suite setup, we refer to LSPT2012has not been found to in uence the results. Hence this setup
Not all models provided a complete data set and/or rarwas designed to assess “optimal” convergence rates given the

the suite exactly complying with the test case speci cations.smoothness of the initial condition ard

When data are missing or non-existent in histograms, the The numerical convergence rates are computed using a

value is set to 1. In scatterplots it will be clearly marked least-squares linear regression of the form

“NO DATA' if the data are missing. If modelers have diverted

slightly from the exact test case descriptions, it will be notedlog.” i/ D A; Kjlog.1/; i D21 ; (11)

in the text. We have chosen not to exclude models that did

not submit a complete data set as the data they did submivhereK; denotes constants for the resolution range approx-

do, in our opinion, provide meaningful insights. It should be imately 3 to 0:3 (a Gnuplot script was made available as

noted that for schemes that are inherently shape-preservingupplemental material in LSPT2012 to perform the least-

(HEL, LPM, TTS), i.e., for schemes for which there does not squares regression). Note that the resolution range has de-

exist an unlimited version, the unlimited data are marked adiberately been chosen to include a rarffe 3 U where

“NO DATA"or “ 1", 1 > 01 . with the 3 grid spacing, the mixing ratio dis-
The tests are grouped into six categories assessing the fotributions may be marginally resolved. The main interest
lowing: is not asymptotic convergence rates, which should be close

to the theoretical convergence rate, but rather the effect of
1. numerical order of convergence using smooth Gausmarginally resolved features in the convergence rate compu-
sian hills initial conditions, tations.
o ) ] ) o ) Convergence plots for;, i D 2;1 , for the unlimited and
2. “minimal” resolution using cosine bell initial condi- - ghape-preserving versions of the schemes are given in Figs. 1
tions, and 2. The schemes have been grouped according to imple-
mentation grid. An accompanying histogram (Fig. 3, middle)
depicts the convergence rate for i D 2;1 . The ordering
of the data in the histogram will become clear as we discuss
“minimal” resolution in the next section. For the convergence
study the CN is held xed. The labels on the convergence
plots and histograms include the CN appended to the scheme

3. ability of the transport scheme to preserve laments
using cosine bells,

4. ability of the transport scheme to transport “rough”
distributions using slotted cylinder initial conditions,

5. ability of the transport scheme to preserve pre-existing?cronym- , _
functional relations between tracers The histogram graphically depicts the range of conver-

gence rates represented by the ensemble of models. They
6. ability of the transport scheme to deal with divergent SPan from rst-order convergence rates to sixth-order for the
ows (Nair and Lauritzen, 2010). unlimited schemes. Hence, the ensemble of models that par-
ticipated in this intercomparison span a signi cant range of
These topics are discussed in separate sections below. formal accuracies. Several observations are made regarding

www.geosci-model-dev.net/7/105/2014/ Geosci. Model Dev., 7, 105-145, 2014



116 P. H. Lauritzen et al.: Results from standard test case suite

Gaussian hills, unlimited Gaussian hills, shape-preserving
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Fig. 1. Convergence plots for, ( rst and third rows) and 1 (second and fourth rows) for the unlimited ( rst column) and shape-preserving
(second column) versions of schemes based on cubed-sphere and two-patch grids. Optimal convergence rates are based on linear least-squ
regressions to this data. Thin grey lines on each plot show slopes of second- and third-order convergence (top and bottom, respectively).
Initial conditions are the in nitely smooth Gaussian hills, and the normalized error norms are computedtaDtime

“optimal” convergence rates and will be discussed in sepa-order for ", already at the lower end of the resolution

rate sections below. range for which we assess numerical convergence (e.g.,
CAM-FV, CCSRG, CSLAM, HEL, HEL-ND, FARSIGHT-

whereas other schemes reach “optimal” convergence rates

Together with the absolute errors that will be commented®t Ner resolutions (e.g., CLAW, CAM-SE, FARSIGHT-
on in the discussion of “minimal” resolution, perhaps the CN1.0, HOMME, SFF-CSLAM4, SLFV-ML/SL, MPAS,

most striking observation to be made regarding the con-'CﬁN)h- Con;]monr:or the lsqhemes th{:lt %onvcre]rge asymptoti-
vergence plots (Figs. 1 and 2) is that models transition®@Y throughout the resolution range Is that they converge at

from sub-optimal convergence to asymptotic convergencd@t€S €qual to or less than twi, 2, except for the third-
rates at different resolutions. Some models converge at fuIPrder CSLAM, SFF-CSLAMS3, and CCSRG schemes that
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Fig. 2. Same as Fig. 1 but for schemes de ned on a regular latitude—longitude grid (rows 1 and 2) and icosahedral/Voronoi meshes (rows 3
and 4). Note that the LPM scheme was run with xed time step and not with xed Courant number; therefore no CN value is appended to
the LPM label. For easier comparison thexes are identical on all optimal convergence gures.

converge asymptotically already at approximately&solu-  3.1.2 Shape-preserving lIters and convergence rates

tion. Other higher order schemes that are formally third-order

(MPAS), fourth-order (HOMME-p3, SFF-CSLAMA4), and \yhen examining the histograms for “optimal” convergence
seventh-order (HOMME-p6) do not converge at the asymp-ates for , and*; (Fig. 3 middle and lower, respectively), it
totic rate at the lower end of the resolution range. The effectis immediately apparent (with the exception of CLAW, FAR-
of hyperviscosity cgef cient on convergence rates for SPEC-g|GHT, SBC), and not surprising, that shape-preserving I-
tral element advection can be observed by comparing CAM+g(g reduce convergence rates. The most striking reductions
SE and HOMME-p3 (Figl). Another fact contributing to the K, are for the higher order schemes such as HOMME-p6,

discrepancy is the fact that in CAM-SE the transport test iSHOMME-p3 and SFF-CSLAM4 for which the convergence
implemented using theffline_dyn  optionforwhichthe (5105 are reduced by four, two, and two, respectively. The for-

winds are held xed throughout the tracer time step, Whereasma”y third-order schemes CSLAM. MPAS. SEF-CSLAM3
in HOMME the winds are updated at every Runge-Kuttagee vequction of convergence rates of about 0.5. Schemes

step. that are approximately second-order accurate are less af-
fected (in an absolute sense) by shape-preserving lters. The
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observations made faf, also hold in a qualitative sense for errors (number of ux evaluations increases with decreased
K1 . We also note that a posteriori shape-preservation |- CN).
ters/ xers do not affect convergence rates (FARSIGHT and
SBC). 3.2 “Minimal” resolution 1 : cosine bells
3.1.3 Time step and convergence
Rather than assessing convergence rates, this test focuses on

LSPT2012 encouraged modelers to provide data for differ-absolute errors. In other words, we ask at what resolution
ent CNs (the CN here refers to the maximum zonal CN;modelers need to run their model to achieve a certain so-
see Eqg. 24 in LSPT2012), especially for schemes allow-ution quality. The solution quality is quanti ed in terms of
ing for long time steps (CN 1) such as (semi-)Lagrangian the 2 error norm for solutions using the same non-divergent
schemes. CSLAM, for example, was run with ONL.O and ow eld as above but with less smooth@?) initial condi-
CND 5.5. It is observed that as the time step is reducedtions. A less smooth initial condition is chosen to challenge
with CSLAM, the absolute errors increase since an increasethe schemes with a more realistic (in terms of smoothness)
number of remappings implies increased spatial errors untiinitial condition compared to the in nitely smooth Gaussian
the distribution can be represented by the polynomial reconhills. This is similar to the setup used in Williamson et al.
struction functions (Fig. 1, row 1 and 2). Since the CSLAM (1992) where both the advection test and shallow water to-
scheme was run with semi-analytic trajectories, temporalpography (test 5) use! functions for mass distribution and
errors (due to trajectory computations) are minimal. Thesurface height, respectively.
asymptotic convergence rates for CSLAM are not affected Basically, the modelers repeated the numerical conver-
by time step in this setup. Similar observations are made foilgence test (Sect. 3.1) with cosine bell initial conditions. The
the CCSRG. “minimum” resolution is de ned as the resolution (speci-

The SBC scheme is also a semi-Lagrangian scheme, anded in terms of average grid spacing at the Equator) for
contrary to the CSLAM setup, inexact trajectories were usedwhich the normalized, error norm is approximately 0.033.
At lower resolutions the spatial errors dominate so the ab-This threshold was chosen based on CSLAM experiments for
solute errors increase with a decreased time step (similawhich the laments were resolved in the sense that asymp-
to CSLAM). However, at high resolution the temporal er- totic convergence is reached; for CSLAM-CN5.5 asymptotic
rors start to dominate the standard error norms; withBCN  convergence with cosine bell initial conditions is reached at
SBC solutions become more accurate than theDON5 so-  approximatelyl D 1:5 for which “> 0:033. The mini-
lutions when the resolution is ner than approximatély D mum resolution is estimated from a convergence plot (see
0:375 . In other words, the temporal errors start to dominateFig. 4 in LSPT2012) and should be computed without and
as the distributions are very well represented by the basigif applicable) with shape-preserving lters. The “minimal”
functions used in SBC at high resolution. resolution used in the remainder of the test case suite should

The Eulerian scheme used in the ICON model was runbel ., for the unlimited scheme.
at CND 0.2 and CND 0.6 (Fig. 2, row 3 and 4). Contrary The “minimal” resolutions for the different schemes are
to the semi-Lagrangian schemes, the solutions achieved witdepicted graphically in the histogram in Fig. 3 (top row).
longer time steps have larger errors throughout the resoluFirst of all, thel  range is from approximately=10 to
tion range. Since ICON-FFSL is based on a low-order spa-over 2 resolution. This is a remarkable difference in reso-
tial reconstruction function, it is unlikely that the error is lution to achieve the same “quality” solution. In Fig. 3 the
dominated by time-truncation errors throughout the resolu-same ordering is used for the histograms, making it easier
tion range. Rather it appears more likely that the larger CNto compare “optimal” convergence rates visually with “min-
errors are due to the simpli ed ux approximation for which imal” resolutions. The histograms fé; do not constitute a
errors increase with larger CNs due to more of the ux-areamonotonically increasing quantity going from left to right in
integrations being based on extrapolation of reconstructiorthe histogram plots. In other words, high-order convergence
functions. rates do not necessarily result in coarser “minimal” resolu-

For CAM-FV it is observed that the large CN solution tions or vice versa; in fact there seems to be no clear corre-
(CND 1.2) has smaller absolute errors than the EZBL2 lation betweerK; and1l n, in the resolution range consid-
simulations (Fig. 2, row 1 and 2). Although the splitting ered here. This is perhaps even more apparent in the “scatter-
errors in the dimensionally split CAM-FV scheme increase like” plot in Fig. 4. In fact, some of the schemes that are
with CN, these errors do not dominate for this test case setupamong the best performing schemes regarding, (e.g.,
Semi-analytic “trajectories” were used (analytic wind evalu- UCISOM, LPM) perform poorly in terms of convergence
ations atn C 1=2 were used in the simulations), so, as for rate. Had the test been run in a (high-resolution) asymptotic
CSLAM, the temporal errors due to “trajectories” can be ex- convergent regimel; and1 , would most likely be in-
pected to be small. In conclusion, the absolute errors for theversely related. However, as mentioned the test is designed
two-time-level CAM-FV solutions are dominated by spatial to challenge schemes near the resolution limit rather than
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Fig. 3. Histogram of minimal resolutiod m (upper),Kj, i D 2;1 , which are the “optimal” convergence rates for (middle) and’ 1

(lower), for the unlimited (“un”, red) and shape-preserving (“sp”, green) versions of the schemes. The histogram is ordered monotonically
according tol m for the unlimited schemes so that decreases from left to right. For schemes for which unlimited results are not
available,1 n, for the shape-preserving scheme is used for the purpose of ordering (schemes concerned are CAM-FV, HEL, HEL-ND,
UCISOM, UCISOM-CS), and a placeholder value of is used in all histograms. Note that the LPM scheme was run with xed time step
and not with a xed Courant number; therefore no CN value is appended to the LPM label.

focusing on resolutions for which the spatial distributions of ICON/MPAS and CLAW use FCT and TVD-type ux lim-
tracers are well-resolved. iters, whereas CSLAM uses a slope limiter. Results that
Shape-preserving lters (with the exception of CLAW, contrast unlimited and shape-preserving “minimal” resolu-
FARSIGHT and SBC) reduced “optimal” convergence rates.tions are not available for CAM-FV, CCSRG, UCISOM, and
The effect of shape-preserving Iters on the “minimal” res- UCISOM-CS since only shape-preserving data are available
olution seems to go both ways (Fig. 3, top). That is, somefor those models.
schemes increase accuraty , increases) when the shape- In general it is also noted that the “minimal” resolu-
preserving lter is used (most notably with MPAS, ICON, tions for schemes de ned on icosahedral/\Voronoi grids have
SBC, CLAW), whereas other schemes experience a dener 1 | than schemes de ned on cubed-sphere and regu-
crease (HOMME-p3, HOMME-p6, CSLAM). Itis noted that lar latitude—longitude grids. That said, since the measure of
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minimal resolution versus convergence rate preserved the total area for whichs |al’ger than a threshold
N value .

v The cosine bell initial conditions are chosen for this test

as they are quasi-smooth (but not in nitely smooth) and

5 have mixing ratio values that span the entire range from the

background value of:Q to the peak value, D 1:0. Slotted-

ot cylinder initial conditions, for example, only have two val-

Y ues, and simulations using that initial conditions would there-

v fore not give information on how well the scheme maintains

2 ; v 1 continuous and varying gradients.

v V The perfect scheme will have close to 100 for all val-

! ues of . We say “close” to 100 and not exactly equal to 100
0s 1 15 2 25 since for Eulerian/semi-Lagrangian schemes that use a xed

grid one would need to truncate the exact Lagrangian solu-

Fig. 4. “Scatter-like” plot of the data shown as histograms in Fig. 3 tion (for which"¢ D 100 for allt) to the xed Eulerian grid

upper and middle rows. Each scheme is represented by a point ofr the computation of ; however, that truncation error is

the plot with &;y) coordinates] m; K5). For clarity each pointis  likely orders of magnitude below the numerical truncation

not labeled with a scheme acronym. The purpose of this gure is toerrors (numerical diffusion and dispersion errors) introduced

show that there is not necessarily a correlation between “optimal’by the scheme itself. For fully Lagrangian schemes based

convergence rate and “minimal” resolution. on parcels, this test forces modelers to de ne areas associ-
ated with the Lagrangian parcels. Cell-integrated Lagrangian
schemes that track cells throughout the integration can test

resolution is the average resolution at the Equator, the reghow well the scheme preserves areas.

ular latitude—longitude grids have more degrees of freedom As explained in LSPT2012, a highly diffusive scheme

than cubed-sphere and icosahedral grid-based models. In thiends to increasés for lower threshold values (except

discussion we have not considered how amenable spherical D 0:1 for which " decreases) and decreasefor higher

grids and schemes are to mesh-re nement applications.  values of (see Fig. 6ain LSPT2012). In other words, when
the base of the cosine bells is diffused, more area is covered

3.3 “Filament” preservation diagnostic ";: cosine bells by lower values of and less area is covered with higher
(near peak) values of.

All tests above were based on traditional error norms com- The lament diagnostic gives insight into how gradients

puted attime D T when the ow, in the absence of any nu- are distorted in terms of the ability to preserve the area of the

merical errors, has advected the distributions back to theidomain in which the mixing ratio is larger than the thresh-

initial position and shape. As discussed in Lauritzen andold value . If the ;. / curve is smooth and monotonically

Thuburn (2012), the rst half of the simulation, where rel- decreasing as a function of, the schemes diffusive char-

atively well-resolved features collapse in scalet(@T =2 acteristics are smooth and continuous. Schemes that tend to

the initial condition cosine bells have been deformed intosteepen gradients will spuriously for¢ce /> 100 for rel-

thin laments), is typical for atmospheric ow. The second atively large values. Schemes that make use of “ad hoc”

half of the simulationt(2 TT =2; T ) does not resemble typ- xers (that also alter gradients) may produce an oscillatory

ical observed ow patterns, but it is very convenient for ob- “¢. / curve.

taining an analytical solution under complex ow conditions.  Figure 5 shows the lament preservation diagnosti¢at

Partly motivated by that, a series of diagnostics were develt D T =2) using the cosine bell initial condition for the unlim-

oped for which an analytical solution is not needed, and ondted and (if applicable) limited/ ltered schemes at resolutions

can thereby assess accuracy at any point in time. For exant:5 and Q75 . Results for ¢ at the “minimal” resolution

ple, before the “unphysical” ow reversal @D T=2, one 1 , are not shown although requested in LSPT2012. As

could expect the schemes to be most challenged at least fdor the convergence plots, data have been arranged according

semi-Lagrangian and Eulerian schemes. to discretization grid. We also show a “minim&l- lament

One such diagnostic is the lament diagnostic that is de-preservation diagnostics as histograms in Fig. 6. That is, the

signed to diagnose how well the thin laments that develop y axis on the histogram is thevalue for which' s is 80; this

att D T=2 are preserved. It takes advantage of the fact that value is referred to as, and computed by solving

in continuous space the area spanned by tracer values larger

than some threshold value is conserved for a non-divergent;. D /D 80; (12)

ow eld. The lament diagnostic, 't (for a mathematical

de nition of "¢, see LSPT2012), is designed to quantify how which here is computed by tting a polynomial through the

well laments are preserved in terms of how well a scheme data points near the crossingef / and™ ¢ D 80. Note that
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Fig. 5. Filament preservation diagnostig. / at 15 (rst column) and 075 (second column) resolution, respectively, for the unlimited
(thick lines) and shape-preserving (thin lines) versions of the schemes. Note that TTS-I, LPM, HEL, and HEL-ND are inherently shape-
preserving and therefore only have “unlimited” data displayed. The LPM scheme was not run with xed CN. The CB fand. Q75 is

1.08 and 2.0, respectively.

the solution to Eq. (12) is not multivalued for the data con- tendency of increasedy, from left to right with some out-
sidered here. For example, if, D 0:6, then 80 % of the area liers. For example, UCISOM-CN1.0/5.5 performs exception-
associated with mixing ratios larger than 0.6 is preserved. Irally well compared to the schemes with similar “minimal
other words, the largen, is, the better the scheme preserves resolution”. Similarly, but in a opposite sense, HEL-CN1.0
the “peaks” of the cosine bells. performs worse than its “neighbors” in the histogram.

The histogram in Fig. 6 is mainly shown to investigate vi- Perhaps more interesting in the context efis to focus
sually if there is a relationship between “minimal resolution” on the shape ofs as a function of . First of all, the more
and . Had there been a simple linear relationship, the val-diffusive schemes tend to collapse toward a straight line with
ues of , would decrease/increase from the left to right in the negative slope for approximately inf0:2 \0:8U whereas the
histogram. As for the numerical convergence rates (Fig. 4)Jess diffusive schemes tend toward a straight line with no or
there is no simple relationship indicating thatmeasures small negative slope. The smoothness of theurve may in-
other aspects of accuracy than . That said, there is a dicate non-physical “ad hoc” xers or anti-diffusive aspects
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Fig. 6. A histogram of threshold value for which the lament preservation diagnostig. / is approximately 80.0 at resolution5l for the
unlimited (red) and shape-preserving (green) versions of the schemes. Above each column the valueitten (if D 1, there are no
data for that scheme con guration).

of a scheme. For example, the FARSIGHT scheme uses athe contour plots (the error norms are available in the supple-
“ad hoc” xer for mass conservation and shape preserva-mental material for the interested reader). So in the interest
tion. The s curves, in particular for FARSIGHT-CN10.4, of reducing the number of gures/tables, erroes and™ 1 ,

are oscillatory and non-monotone. The SFF-CSLAM4 andas well as the minimum and maximum norms, are not shown.
CAM-FV0.2 schemes have a rather wide range ofalues All contour plots use the same coloring scale and contour
(approximately 2 T0:6 V0:81) for which "¢ exceeds 100.0, interval making it straightforward to compare schemes vi-
which is likely due to steepening of gradients. In conclusion, sually. It is immediately apparent, most notably in the areas
there are indications that this metric is most useful for test-away from the slotted cylinders where the eld should be
ing schemes employing “ad hoc” xers or schemes with anti- constant, whether a scheme is not strictly shape-preserving
diffusive terms or other mechanisms that may steepen gradiflight blue contour lling). Almost all unlimited schemes
ents. Note that this metric will not capture if the location of show “ripples” in this area. Similarly, overshoots over the

the laments is incorrect (phase errors). slotted cylinders are immediately visible (dark red contour
lling). The wavelength of the spurious oscillations is related
3.4 Transport of “rough” distribution: slotted cylinder to the formal order of the schemes. For example, the oscilla-

tions for HOMME-p6 have a much shorter wavelength than

To assess how schemes perform with a rough (discontinughose observed for ICON.
OUS) initial Condition, we show contour plOtS of solutions at This test, however, was speci Ca”y designed to assess
t D T=2 for slotted-cylinder initial conditions and the same whether shape-preserving lIters truly eliminate undershoots
non-divergent ow as used in all tests above. The slottedand overshoots while still preserving extrema. Finite-volume
cylinder has been used extensively in the solid-body ad-scheme based on rigorous ux computations and/or FCT lim-
vection test case to demonstrate that shape-preserving limters completely eliminate undershoots/overshoots (CSLAM,
iters effectively eliminate spurious grid-scale oscillations. |CON, MPAS). For schemes based on simpli ed uxes and
Contrary to traditional speci cations of the slotted-cylinder not using FCT limiters, small undershoots are visible (SFF-
initial condition, we have chosen to overlay it by a back- csLAM3/4, CAM-FV1.2). The UCISOM scheme has a
ground value of D 0:1 instead of a zero background value. strictly shape-preserving limiting option. However, to avoid
Again, this is motivated by typical conditions found in the at- “excessive diffusion, the limiter has been relaxed, which ex-
mosphere where structures in tracer distributions frequentl;b|ains the undershoots with that scheme. If a scheme shows
Overlay some smooth baCkgrOUnd distribution. In that Caseripp|es with a stricﬂy Shape-preserving Iter, then it may be
positivity preserving limiters will not eliminate undershoots due to inconsistent coupling between the air mass and tracer
near the discontinuity. mass elds when the mixing ratio is extracted. For example, a

Contour plots for mixing ratio at D T=2 based on slot-  scheme that is not “free-stream”-preserving will suffer from
ted cylinder initial conditions are shown in Figs. 7, 8, 9, and thjs de ciency.
10 (again, data are grouped according to the discretization The ability of the scheme to preserve the “plateau” of
grid). Inthe LSPT2012 test case, speci cation modelers werehe slotted cylinders seems to be closely related to “mini-
asked to report on conventional error normst@tT) inad-  mal” resolution in a qualitative sense except for the UCI-
dition to showing contour plots (atD T=2). Here we have  SOM and HEL scheme that perform better than would be

chosen not to depICtIIISt the conventional error norms as W%Xpected from theit m ranking_ Not Surprising|y the more
did not nd any qualitative insights that were not visible in
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Fig. 7. Contour plot of att D T=2 using “rough” initial condition at approximately3 (columns 1 and 2) and:?5 (columns 3 and 4)
resolution without (columns 1 and 3) and with (columns 2 and 4) shape-preserving lter for a subset of transport schemes implemented on a
cubed-sphere grid. The scheme acronym is shown in the lower left corner of each plot.

diffusive schemes that have a smaller, also diffuse the 3.5 Preservation of pre-existing functional relation:

slotted cylinders. The pure Lagrangian schemes obviously cosine bells and correlated cosine bells

maintain the discontinuities in the slotted cylinder better than

the Eulerian/semi-Lagrangian schemes. All known tests for linear transport on a sphere consider as-
pects of accuracy in a single-tracer setup. As discussed in
detail in Lauritzen and Thuburn (2012), the accuracy with
which schemes maintain relations between tracers is of sig-
ni cant interest in chemistry—climate and climate model-
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Fig. 8.Same as Fig. 7 for the remaining scheme de ned on a cubed-sphere grid and two-patch grid (CLAW). For plots showing “CONSTANT
FIELD — VALUE IS 0.1", no data are available.

ing. To assess how well interrelated tracers are simulatedimulation progresses. In a purely Lagrangian scheme with
in an idealized setup, we use the same ow eld as before.no explicitly added mixing (for example, contour surgery)
Two cosine bell distributions, with mixing ratio and ac-  where parcels are traced throughout the simulation, any re-
companying “correlated” mixing ratio, are advected sep- lation between tracers is maintained, and hence the scatter
arately. The latter is related to the former initial condition points are stationary in the correlation plots.

through a non-linear (polynomial) relation (black curve on  The way in which scatter points deviate from the poly-
the scatterplots; Figs. 11, 12, 13, and 14). For any Eulerian onomial curve has consequences for the physical realizability
semi-Lagrangian scheme known to the authors, scatter pointsf the mixing introduced by the scheme. When mixing oc-
will deviate from the pre-existing functional curve as the curs in the atmosphere, scatter points (for example, located in
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Fig. 9. Same as Figs. 7 and 8 but for regular latitude—longitude grid-based models.

two different air masses) will move toward each other alongthat is not the convex hull, the mixing that the scheme in-
straight lines in the scatterplot. These lines are called mixtroduces is unphysical unmixing. Following Lauritzen and
ing lines. The area spanned by all possible mixing lines isThuburn (2012), this unmixing is categorized into two types
referred to as the “convex hull” and is the bow-shaped aregfor graphical illustration see Fig. C1 in LSPT2012) —range-
on the scatterplots. If the scatter point moves into any aregreserving unmixing that is unmixing within the range of the
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Fig. 10.Same as Figs. 7, 8, and 9 but for icosahedral grid-based models. (LPM resolution for 1.5 and 0.75 is 2.16 and 1.8.)

range of the initial condition. Note that in the scatterplots Associated with each area are mixing diagnostics that
(Figs. 11, 12, 13, and 14), only the upper part of the range-quantify the mixing in terms of normalized distances from
preserving unmixing area is marked with solid black lines; the pre-existing functional curve (Fig. B1 in LSPT2012):
the triangular area below the convex hull also belongs to theor “real mixing”, *, for range-preserving unmixing, ang
range-preserving unmixing area and “overshooting” that isfor overshooting (for de nitions of, i D “r", “u”, and “0”,
the remaining area on the scatterplot. When scatter pointsee Lauritzen and Thuburn, 2012). Following LSPT2012 the
shift into the convex hull, the mixing is categorized as “real” *; is computed half way through the simulatianD T =2,
mixing. when the initial distributions are most deformed. As for
the lament diagnostic f, the mixing diagnostics; do not

require any knowledge of the analytical solution. In fact,
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Fig. 11. Scatterplots (for subset of cubed-sphere modelspal =2 for the cosine bell and correlated cosine bell initial conditions fand

, respectively. First and third columns are for the unlimited schemes, and second and fourth columns are for the shape-preserving schemes
The rst two columns are for simulations at 1:5 , and the last two columns are fbr ~ 0:75 . The scheme acronym is shown in the
lower left corner of each scatterplot with the maximum Courant number (CN) appended. Above the scheme acronym the mixing diagnostics
(“real” mixing "y, range-preserving unmixing;, overshooting o) are given.
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Fig. 12.Same as Fig. 11 for the remaining cubed-sphere models.
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Fig. 13.Same as Fig. 11 for models de ned on a regular latitude—longitude grid.
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Fig. 14.Same as Fig. 11 for models de ned on an icosahedral/Voronoi mesh.

and contrary to the lament diagnostic, which relied on the  The values for the mixing diagnostics for each scheme

wind eld being non-divergent, the mixing diagnostics can are shown in the lower left corner of each scheme's scatter-

be applied in any ow setting and is hence more generally plot. The mixing data are also shown in histogram format in

applicable. For a three-dimensional extension of this testrig. 15, where ; has been normalized with CSLAM values

case, see Kent et al. (2013). to provide a reference. Before discussing the quanti cation
of the mixing, it is insightful to analyze the scatter data qual-
itatively.
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Mixing diagnostics at resolution DI » 1.5°

111" (CSLAM-CN5.5, DI » 1.5°)

L

]

|
|

i g i

0 Hi\‘ — Mw’ﬁ'\: e E R \3‘\3‘\\‘\3 7\73‘\\‘\ e - :
7
gty Xy, 75 L0, C0p 0 C“W C“W% C‘% oygon, S S5 % 0, 24 RS, qu;c‘s,? SN %/’Q /1/’54 /’Q 5< S@o <’°/14

Cog, S
St Q) So “So, /‘144 Q) Sea el g Oy Moo 0. s
7Gxy /%stme@kpkp ﬂ/e AL On, 8446‘624/ 201, eV . N N
7 Ny Koy locy R0 6‘4 84 4 ‘o S, Ko c /:3 1,5, A, 20 S, 5.> n,Cr s 2o So
", 095 Ny Ny N c /v /I/o 26 N SG Vs, g o Vs No 4/1 6.0 4/ 4/
7, 050, /I/ "’1.04/ 04/00 ,VQ@ /quj 28 2o 4/ 25

Mixing diagnostics at resolution DI » 0.75°

a

S——

T

|
I — ‘T““TJ ‘

1

s lay Sy, Sy % 075,50y o Cop, gy Ca ", 04 c, ) C‘c Skp 86 M4 C‘o &, "c, ey ’Ys e ’Y@ S5, %
R R IR R NN A ) 44,7 SO o S O%%‘?/eff 6.5 017 Af %46( 04/ 0,500
S S 4//v0f-‘4/0s"6’44 Ny N
O RENCE ¢ N, S T 26 4,1 Ss %o
’VO 0g %4 23

L

11" (CSLAM-CN5.5, DI » 1.5°)
~
[

C/V C/V

Mixing diagnostics at resolution DI ,

EHE ‘ ‘
S S/ S, ) 4, VN S S [ S (
Ryl L, <ku s, %0004/ 0y o, 4 444k°/s*’%,,fk qcc% NI @s %; Csnclsg %/’Q &OMA/;Q é’Q ,f@ foc%o
S, C4/044< o g Wy sy 85 ¥ 4/6% W0, L8 m /1/7 A/G S<4 SISO 04,4404//" 5 S5 .0 O 4,0 4,4’5 i4
/,/ N 050 5 ‘C/VQQC/V g 0 0578 W, 04/ 3%1 % 'Vosq 4/013 20

m o= =

11" (CSLAM-CN5.5, DI » DI, » 1.5°)
-

Fig. 15. A histogram of mixing diagnostics (stacked) at resolutibns 1.5 (upper),1 0:75 (middle), andL 1 m (lower). The

ordering is according to minimal resolutidn n, for the respective unlimited schemes (see Fig. 3 rst row). Above each scheme acronym
there are two columns of data. The left column is for the unlimited scheme, and the right column contains data for the shape-preserving
version of the scheme (if applicable). The height of each colored column (gregellow ", red” o) is the ratio between;, i 2 T'r", “u”,

“0"] for the scheme in question normalized by thefor CSLAM (CN5.5) atl D 1:5 . Note that they axis scale are different. The stacked
histograms for SLFV-ML and CLAW exceed the plotting range. If no data are available, the mixing data are negative (ajtbatmlvere

not submitted for FARSIGHT, there are some mixing diagnostics givéthite and Dongarra, 2011). The numerical values faare listed

in the scatterplots in Figs. 11, 12, 13 and 14.

3.5.1 Scatter shape on the scatterplot. Obviously, diffusive schemes will damp

the extrema, which, in terms of the scatterplot, cause scat-
ter points to shift toward the background scatter point value
.0:1;0:892 and away from the lower right corner of the

ing up the extrema of the cosine bells and correlated coSONVeX hull. This is particularly apparent in almost all low-
sine bells. The opposite extreme of the convex hull (uppe rreso_lunon ¢ 15) sc_atte_rplots for the shape-preserving
left corner. ; / D .0:1;0:892) contains the majority of the VESIoN of the schemes in Figs. 11-14 (second column).

data points as that is where the background value is located

Scatter pomts located near the lower right corner of the con-
vex hull. ; / D .1:0;0:1 are the mixing ratio values mak-
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Considering nite-volume schemesat 1.5, itis ob- Quanti cation of mixing
served that the scatter points make up a bow shape (ex-
cept CSLAM-CNS5.5). In addition to all being nite-volume- The quanti cation of mixing,”i, i D “r", “u”, “0”, is de-
based schemes, shape preservation is enforced either througifted in Fig. 15 using a histogram. The purpose of this
FCT or by constraining the reconstruction function. When gure is to show how'; varies among schemes at the res-
the resolution is increased to/® (fourth columnin Figs. 11 olutions 15 and 075 as well as to observe how shape-
and 14), most of these schemes no longer have a bow_shap(meserving Iters affect; for each individual scheme. The
scatter, but the lower boundary is curved so that the scattefistogram is ordered according to “minimal” resolutibnm
points “track”/follow the pre-existing functional curve much (see Sect. 3.2) from high value df m (left) to low value of
more closely with the majority of the scatter points inside 1 m (right). The numerical value of; is normalized with
the convex hull. Some schemes (FARSIGHT-CN1.026Q i for CSLAM with CN5.5 ( “"(CSLAM)) at resolution
ICON-CNO.6 at 075 , MPAS-CNO0.8 at /5, SBC-1.0 at 1 1:5. The reason for a graphical representation of “nor-
1:5 ) tend to lift the tail of the scatter data indicating that malized” data; ;="""(CSLAM), rather than; is to give the
some steepening of the gradients is taking place. reader a reference for the amount of mixing. The mixing di-

If a scheme is not shape-preserving, scatter points mawgnostic is relatively new, and numerical values pimay
shift outside the convex hull either into the range-preservingbe less meaningful to the reader than normalized data. The
unmixing or overshooting area. Probably the most detrimen-actual values of; for a particular scheme can be found in
tal type of unmixing is overshooting unmixing or equiva- the scatterplots (Figs. 11, 12, 13, and 14). Schemes with no
lently range-expanding unmixing, which in this experimental data are listed with; D 1. Note that the spread among the
setup is manifested by scatter points shifting beyond the upschemes for =‘i(””)(CSLAM) spans a large range (for ex-
per left corner of the convex hull into the overshooting area.ample, at 15 the total mixing is more than 20 times the
If a scheme is shape-preserving, no scatter points will becSLAM reference mixing).
shifted into the overshooting unmixing area. In other words, To show the |arge amount of data Concise|y, the histograms
the scheme is guaranteed not to expand the range of the inre stacked so that the total height of each rectangle is total
tial condition mixing ratios. Note that non-zero background normalized mixing,
values have been chosen foso that a positivity-preserving . . .
limiter (positive de nite) will not prevent undershooting. r C u C ° . (13)
That said, a scheme may still exhibit non-shape-preserving “V.csLam/  ~U".csLam/ ¥V .csLamy/

behavior inside the range of the initial conditions that will and the colors show the breakdown into the different cate-
not. b? accoun.ted for ino but rather in . As expecteq, all . gories of mixing. For example, the histogram for CSLAM-
unlimited versions of the schemes show overshooting mix-~\5 5 (unlimited) is of exactly height three, and each col-
ing of varying amounts. For all the nite-volume schemes, ored section is height one

the scatter points in the overshooting mixing category seem The speci ¢ choice of CSLAM for the normalization is
to gather around the extension of the straight line making up,qtivated by the “minimal” resolution. Thatis, &t  1:5

the lower boundary of the convex hull, almost as an exteNiha |aments are marginally resolved for CéLAM-CNS 5

sion of the convex hull shape towards the upper left corner OfThe CSLAM scheme performs, in general, a little above av-
the scatterplot. The FARSIGHT and CLAW schemes resulty pq6 compared to the other schemes in this collection, and

in a much different shape that differs from an “extension” of j; is"therefore more suitable for reference purposes than, for
the conl:/e(;( Zu” shspe. L diatelv visible in th example, the “best” or “worst” performing schemes. In ad-
As a ude “to above, itis |mrr1e lately visible in the scat- gition it is based on a traditional nite-volume approach and
terplots if the shape-preservmg versions of the scheme; aBence is a suitable benchmark for schemes based on emerg-
strictly shape-preserving. For example, CAM-FV has slight;, 1, merical methods and untraditional designs that wish to

over_sho_otlng mixing even though the dmenspnally split compare with “traditional” transport formulations. Neverthe-
application of one-dimensional operators is strictly shape-agq it is noted that similar “traditional” schemes could also
preserving. The overshooting/undershooting occurs Sinc‘ﬁave been used for this purpose

shape-preservation is not guaranteed in the direction traverse
to the coordinate directions. Mixing diagnostics at xed resolution and “minimal”

As can be proven mathematically, only schemes that argesoplution
monotone according to the de nition by Harten et al. (1987)
will guarantee that no range-preserving unmixing occursAn apparent rst question about the histograms in Fig. 15
(Thuburn and Mcintyre, 1997). Unfortunately only rst- (upper and middle) is whether the amount of “real” mixing
order schemes are monotone according to this de nitionfor the unlimited schemes decreases with increased “mini-
(Godunov, 1959). In all schemes where the diffusive errormal” resolution { ), which is used for the ordering of
is not dominating, we indeed see that the shape-preservinthe mixing data. In general that is the case; there is a gen-
schemes produce range-preserving unmixing. eral trend for a monotonic decrease ‘ingoing from left
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to right in the two histograms shown in Fig. 15. While the (see, for example, Sect. 2.1 in Nair and Lauritzen, 2010).
relation between “minimal” resolution andl is, in general,  Hence this test case forces the modeler to consider such cou-
as expected (the highdr , the smaller’,), it is perhaps pling that may otherwise not be considered when the ow
more interesting to focus on the schemes that do not folis non-divergent. That said, even for the non-divergent ow
low this trend and potentially provide insights thhat eld, the non-preservation of a constant mixing ratio could
does not. Perhaps the biggest outlier in this ensemble i®e a result of inconsistent coupling between air and tracer
UCISOM-CNS5.5, which has at least one order of magni- mass (at least for nite-volume type schemes). In addition to
tude less real mixing and unmixing compared to schemesssessing the consistency of the coupling, that accuracy of
with similar “minimal” resolution. Another “outlier” is the the coupling between air and tracer mass is assessed.
unlimited HOMME-p6-CNO.13, which has higher levels of Normalized error norms 6, "1 , min, max) atl 1.5
"y and’ than schemes with similar “minimal” resolutions, resolutions are shown in the histogram in Fig. 16. The min-
which is due to spurious grid-scale oscillations. HEL, like imum ( min) and maximum norms (nhax) are de ned in
UCISOM, is an outlier, and it clearly shows that HEL was LSPT2012. Although LSPT2012 also requested these error
speci cally designed to minimize numerical mixing as the norms atl 0:75 and1 m, we did not nd intrigu-
mixing diagnostics are much smaller than for schemes withing insights by analyzing these data, and for brevity the his-
similar “minimal” resolutions. tograms for this data are omitted (the data are available in
In the last row of Fig. 15, the normalized mixing diagnos- the supplemental material). Except for CAM-FV and FAR-
tics at the “minimal” resolution for the respective schemesSIGHT, the divergent data are ordered similarlyltoy, in
are shown. Had r, been a proxy for mixing, all histograms terms of magnitude (Fig. 3, top). Note that schemes based
would have had the same height. Here the outliers describedn FCT limiting in general improve accuracy when shape
above are very apparent. This shows that the amount of nupreservation is enforced, whereas schemes based on recon-
merical mixing varies signi cantly even though the error  struction limiting degrade the error norms.
norms are the same. This behavior was well described by
Thuburn and Mclintyre (1997): “Shaping two tracer eldsthe 3.7 Algorithmic considerations
same way does not imply shaping them the right way”. In
other words, the mixing diagnostics emphasize a differentGeneral properties of the algorithms are given in Table 3.
aspect of accuracy than normalized error norms (in this caséirst of all, the width of the computation halo used to update

speci ed withl ). cell/grid-point value is listed. For example, if only the imme-
diate neighboring cell-average or grid-point values are used,
Effect of shape-preserving Iter on mixing the width of the halo is one. This width should give an indi-

cation of message sizes in parallel computing environments.
For all schemes, is zero or close to zero when the shape- The number of communications needed per time step is in-
preserving lter is applied (as expected). With the excep- dicated through the number of stages used in the scheme.
tion of SBC-CN5.2 (atL D1 ), all schemes see a re- The minimum number of communications needed to com-
duction in”, when using a shape-preserving limiter. Shape-plete a simulation can, in general, be deduced from the stable
preserving limiters usually degrade conventional error normgime step limitations of the scheme. Here that is speci ed in
compared to the unlimited scheme. On the contrary, the “unterms of maximum Courant number. For schemes that are not
mixing” diagnostic, which accounts for spurious unmixing, Courant-number-limited but rather limited by the shear of the
improves. ow, we list “Lipschitz”, which refers to the criterion for sta-

The effect of shape-preserving Iters on “real” mixing bility for many trajectory algorithms in (semi-)Lagrangian

varies among the schemes. Some schemes see a reducti®ghemes. To indicate possible multi-tracer ef ciency, it is
in "y, and some see an increase in “real” mixing compared toalso listed what parts of the algorithm can be reused for each

the unlimited versions of the schemes. additional tracer. Of course for a given number of tracers, the
ef ciency is dependent on all parameters in this table and not
3.6 Divergent ow experiment just on the amount of information that can be reused.

Here we repeat the experiment described in Sect. 3.2 but re-

place the non-divergent wind eld (used in all prior tests) 4 Summary and conclusions

with the divergent wind eld de ned in LSPT2012. All other

settings are the same: time step, cosine bell initial condi-Results from a wide range of schemes that have exercised
tions, etc. The purpose of this test case is to have modela recently proposed test case suitayritzen et al., 2012)

ers demonstrate that their scheme is well-behaved also foare presented and analyzed. It is the purpose of this paper to
divergent ow elds. For some classes of schemes, such agrovide a catalog of results for an ensemble of state-of-the-
nite-volume schemes, the coupling between air mass andart transport schemes for global atmosphere/ocean modeling
tracer mass must be considered in divergent ow settingsas well as to investigate what aspects of accuracy different
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Fig. 16. Histogram of normalized error normsx( "1 , min,» maxin rst, second, third, and fourth row, respectively) for the divergent

ow eld test case for the unlimited (“un”) and shape-preserving (“sp”) versions of the schemes, respectidely, at:5. The ordering is
according to minimal resolutioh 1, (see Fig. 3 rst row). The value “1” indicates that no data are available. The appended CNs are for
the non-divergent ow eld (for consistency with the other histograms); this test was run with the same time step as for the non-divergent
ow tests. However, the maximum velocities are smaller than for the non-divergent ow, and hence the actual CNs are smaller.
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Table 3. Data potentially relevant for computational ef ciency. Columns are scheme acronym, width of halo or computational stencil to
update tracer value, number of stages for multi-step time-stepping algorithms (right-hand side evaluations), CN time step restriction (“Lips-
chitz” is a ow-dependent time step limitation), and what information can be reused for each additional tracer.

Scheme Width of halo  # stages Max.CN Reuse

CAM-FV 3 1 Lipschitz ~ Trajectories
CAM-SE 1 3 0.26 None

CCSRG 2 1 Lipschitz  Weights

CLAW 2 1 1.0 None

CSLAM 3 1 Lipschitz  Weights

FARSIGHT 2 1 Lipschitz  Weights

HEL 3 1 Lipschitz  Weights

HEL-ND 3 1 Lipschitz  Weights

HOMME-p3 1 3 0.26 None

HOMME-p6 1 3 0.13 None

ICON-FFSL 2 1 0.8 Weights

LPM 1 4 Lipschitz  Trajectories

MPAS (sp) 2 3 1.0(1.7) None

SBC (sp) 1(9) 1 Lipschitz  Trajectories
SFF-CSLAM3 3 1 1 Weights
SFF-CSLAM4 4 1 1 Weights

SLFV-SL 2 2 1 Coef cients for gradients
SLFV-ML 2 2 1 Coef cients for gradients
TTS-I 1 1 Lipschitz  Trajectories, weights
UCISOM 3 1 Lipschitz  None

UCISOM-CS 3 1 Lipschitz  None

diagnostics assess and their usefulness. This could provide certain level of accuracy (de ned in terms of a root mean
guidance for future transport scheme developers and facilisquare error norm). This resolution was referred to as “min-
tate their development process. Below is a list of the differ-imal resolution” ¢ ). The range ofL. varied from ap-
ent tests and a short summary of what aspects of accuracy th@roximately 01 to more than 2 The schemes have been

test/diagnostics shed light on. ordered according to increasiig m when other accuracy
diagnostics were depicted as histograms. Doing that with
4.1 Numerical order of convergence (Gaussian hills convergence rates showed no clear relationship between
initial condition) 1 m and numerical convergence rates. In fact some of the

- o . lowest order schemes performed best with respett tq.
For in nitely smooth initial conditions, convergence data are

examined in the resolution range [:3 ]. This range was 4.3 Ability of the transport scheme to preserve
deliberately chosen so that the elds may only be marginally laments

resolved at the low resolution end of this resolution range.

It was observed how different schemes converge throughouthe lament diagnostict. / was introduced to quantify how
the resolution range at their formal convergence rate and howvell thin laments are preserved. This diagnostic requires the
other schemes reach asymptotic convergence rates at highexw to be non-divergent since it relies on the fact that, for
resolutions. The effect of shape-preserving Iters on conver-a non-divergent ow eld, the area of the sphere for which
gence rates was also examined. The convergence rates atite mixing ratio distribution is above a threshold values
effect of shape-preserving Iters varied signi cantly among invariant. Measuré; quanti es how much of the initial con-
the schemes that participated in this intercomparison. Thelition area, for which the mixing ratio is larger than , is
greatest reductions in convergence rates were seen for fopreserved. By plottings as a function of , one can examine
mally high-order schemes for which rates dropped by severahow gradients are diffused or steepened and how uniform that
orders to about second-order. damping of gradients is. This test was found particularly use-
ful to identify how some lIters, and limiters tend to perturb
gradients non-monotonically (e.g., “ad hoc” and “a posteri-

ori” Iters/limiters).
To assess absolute errors and to challenge the schemes with )

a slightly less smooth initial conditiorC&), modelers were
asked which resolution was needed to provide solutions at

4.2 “Minimal” resolution (cosine bell initial condition)
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4.4 Ability of the transport scheme to transport There are no explicit diffusion parameters in the CAM-FV
“rough” distributions transport scheme. However, there is implicit diffusion from
the PPM algorithm used with the Lin—Rood scheri@ @énd

Discontinuous initial conditions were used to expose shapeRood, 1996). CAM-FV also makes use of a lling algorithm

preserving limiters as most unlimited schemes produce sigto ensure positivity.

ni cant unphysical oscillations (under- and overshoots).

Contour plots were shown for all schemes to compareA2 CAM-SE

schemes easily and visually. Note that the same contour in-

terval and coloring is used for all schemes! This test exposed he resolution in CAM-SE is speci ed through the number

any non-shape-preservation in lters intended to enforceOf elements (NE) in each coordinate direction on one cubed-

shape preservation and how the in nite gradients become -sphere panel and the number of quadrature points (NP) in

nite. It is also directly visible how diffusive the scheme is. ~ €ach coordinate direction of an element. The average resolu-
tion (in degrees) near the Equator is

90
NENP 1/

This test is used to assess how schemes perturb a pre-existing CAM-SE, NP is set to 4.

non-linear functional relation between tracers and quanti- The hyperviscosity coefcients are:® 10m?s 1,
es the mixing that the scheme introduces. The mixing is 3.3 10%m?*s 1,38 104m*s !, and18 10%m?s !
classied into different categories to quantify the amount for resolutions N 10 (I mD3), NED20 (I m
of physical realizable mixing and spurious unmixing. The 1:5) NED40 (1 ,, 0:75), and NED100 I D

shapes of the scatterplots were examined, and large difg:3 ), respectively. The hyperviscosity coef cients are com-
ferences between the schemes have been discovered. A'?ﬂlted so that at NB 30 the coefcientis 10 10%m#s 1

shape-preserving limiters affect the scatter shape in differenyng scales with resolution as

ways. It was observed that minimal resolutibn , is not

necessarily a good proxy for how well a scheme maintains 1/ D 1_ 10 mts 1 (A2)
pre-existing functional relations between tracers. From the

results it is quite clear that the mixing diagnostics measurgyhere 3.2 was chosen to match CAM-SE default set-
a different aspect of accuracy compared to conventional ertings, which is similar to values used in the literature (e.g.,
ror norms. In particular, they may be used assess if a shaperakahashi et al., 2006). At resolutiohs D 3:0 ; 1.5 ; 0:75
preserving Iter makes the solution more physically realiz- 5nq 030 , the time step i€t D 900s, 450, 225s and 90's,
able (overshooting unmixing should be exactly zero; rangeyespectively.

preserving unmixing should decrease) and how much real Tne jdealized test cases are implemented in CAM-SE us-
mixing the lter introduces. ing the offline_dyn option. In that con guration the
winds are constant throughout the Runge—Kutta time step-
ping and not updated at every stage (as is done in HOMME).

4.5 Ability of the transport scheme to preserve

pre-existing functional relations between tracers 1 D (A1)

4.6 Ability of transport scheme to deal with divergent
ows

. . . A3 CCSRG
To force the modeler to consider density of air and tracer

mass coupling (at least for nite-volume type schemes), acCSRG is implemented on a latitude—longitude reduced

divergent ow eld is considered. grid. The presented CCSRG results are obtained on the grids

with 20% reduction (20 % fewer points than on a regular

latitude—longitude grid with the same resolution at the Equa-

tor). The grids are constructed with the algorithm of Fadeev

(2013). The grid reduction starts from approximately MBS

(see Tolstykh and Shashkin, 2012, for grid statistics and

Al CAM-EV pictures). Semi-analytical trajectories (Nair and Lauritzen,
2010) are used. For the5l and Q75 resolutions, a non-

CAM-FV uses the regular latitude—longitude grid, and asdimensional time step of =110 andT =220, respectively, is

such the number of zonal grid points is 3@0 . For the 15 used forthe CN 5:7 simulations. The time steffs600 and

grid resolution, time steps 6f 2400 andT 480 are used T=1200, respectively, are used for CNL:0 runs.

forthe CN 0:2and CN 1:2 simulations, respectively. For

the Q75 grid resolution, the time steps=7200 andT =960 A4 CLAW

are used for the CN 0:2 and CN 1:2 simulations, respec-

tively.

Appendix A

Exact experimental settings

The sphere grid used for the computations is described in
Calhoun et al. (2008) and is based on a novel mapping
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that transforms a single logically rectangular uniform was used for the CN 5:5 simulations, respectively. For
Cartesian grid to the sphere. Our grid is similar to the CN 1.0 runs, the time steps werE=600 and T =1200,
cubed-sphere grid in that it is made uphdof N grid patches  respectively. The shape-preserving lter is the fully two-
stretched to t the sphere. Whereas the cubed-sphere usetimensional limiter by Barth and Jespersen (1989) that scales
six square patches, our grid consists of two square patcheshe fully two-dimensional reconstruction polynomial of de-
one for each hemisphere, as shown in Fig. Al. For allgree two so that its extrema are within the range of the sur-
tests, we usedN N grids with resolutions in the range rounding cell-averaged values.
N D .30;60; 120 240,480 960, corresponding to angles

D 90=ND .3:0 ;1:5;0:75 ;0:375;0:1875 ; 0:09375/. A6 FARSIGHT
For the tests involving a minimum effective angle, we used
N D 640 ( o D 0:28125) for the shape preserving case See White and Dongarra (2011) for scheme details.
and N D 960 ( ¢ D 0:1875) for the unltered case. To
generate the sphere grid, we map the computational domaiA7 HEL(-ND)
T 3;1U T 1;21Uusing a simple mapping . ; / described
in Calhoun et al. (2008). The resulting nite volume mesh HEL and HEL-ND use the same settings as for CSLAM. The
cells are nearly uniform in size. The computational mesh ter parameters are the same in HEL and HEL-ND: both
width for a given resolution i&x D 1y D 2=N. are run without Iters in the underlying rst-order version of

Clawpack uses a variable time-stepping scheme andSLAM. The number of Lagrangian parcels are equal to the

mum CN number max is computed as centers with the same area and value as the corresponding
S Eulerian grid cell.
max D 1t1x maxM' (A3)
i Ajj ’ A8 HOMME

whereAj is the area of mesh cell, 1t the time step just  {oMME and CAM-SE use the same numerical model with

taken,uj andvj; speeds at the andy faces of meshcell , oy 4 difference in the choice of orderD NP 1 of polyno-
and1x the (constant) computational mesh width. Under the i1 basis functions, hyperviscosity coef cientand hyper-

assumption that the wave speeds do not change dramaticallyscqsity scaling . The resolution is obtained via Eq. (Al).
from one time step to the next, we can sa_t|sfy a desired CFlggr HomMME simulations, we choose D 3 because of its
condition Nin the next time step by choosing a nét as common use (see CAM-SE default parameters)mad6 to

demonstrate performance for the higher order scheme. If one
1t (A4) uses NE as in Eq. (A1) for the D 3 setting, then NE2 for

max p D 6 corresponds to the equal equatorial resolutions in both
For the results presented here, we N&t 0:95. Clawpack  5ces.

does not make use of any explicit diffusion parameters or Thg fylly collocated formulation of the spectral element
arti cial viscosity. _ _ method used in HOMME and CAM-SE has a grid-scale com-
The Fortran code and Python scripts for running thetational mode that must be controlled with some type of
benchmark examples, and Matlab scripts for visual-gapijization (Ainsworth and Wajid, 2009). Here for stabiliza-
ization can all be downloaded from the author's web 4, \we use well-tested hyperviscosity (Dennis et al., 2012).
page (http://math.boisestate.edu/~calhoun/www_personal, nractice, hyperviscosity coef cientis tuned for one reso-
research/NCAR_workshop/). lution1 o. Then for other resolutions the hyperviscosity co-
ef cient is calculated similarly to Eq. (A2). Note thatis not
tuned for every single simulation in this study. In more de-

CSLAM is implemented on an equiangular cubed-sphereta”’ afterp is de ned, we specify scaling and whether the

ltnewD

A5 CSLAM

grid. The average resolution at the Equator is given by shape-preserving Iirr_liter is_us_ed._For the reasons explained
below (Sect. A8.1), if the limiter is off, we setD p C 1.
1 p. (A5)  Limited simulations are con gured with D 3:0 for p D 3
Ne' and D 4.0 for p D 6. Next, the bestg is chosen for one

whereN: N¢ is the number of control volumes on each simulat.io.n With resolqtiorl o. For this, we use sFanda'lrd er-
face/panel of the cube. Semi-analytical trajectories are usefrs: mixing diagnostics, and lament preservation diagnos-
(Nair and Lauritzen, 2010). The diagnostics do not changdiCs: Finally, for any given resolutioh ,

signi cantly when using non-analytic trajectories (C. Erath,

personal communication, 2013). For th® land Q75 reso- 1/ D o 1

lutions, a non-dimensionless time steplofl20 andT =240 1o
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Fig. Al. The two-patch sphere grid used by the CLAW scheme.

Contrary to the CAM-SE setup, the winds are updated inwherelx is the average distance between neighboring cell

time at each stage of the Runge—Kutta time stepping. centers and. is the earth radius. In Table A2 the applied
. ) ) grids are listed together with their effective resolutions and
A8.1 More on hyperviscosity scaling applied time steps. The wind vector used to de ne the swept

| f d ion. diff ¢ arti cial di ux areas is computed by evaluating the analytical wind vec-
n case of tracer advection, different amounts of arti cial dis- . -+ the center of the cell side at time 1=2.

sipation affect performance of the scheme in various ways.
For example, with D p C 1, the theoretical spatial conver- a10 LpMm
gence orderip C 1. If <p C1, convergence rates are ex-
pected to be of the order of Bigger amounts of hypervis- The Lagrangian particle method relies on the ow map,
cosity raise standard errors but improve preservation of prex. ;t/, giving the trajectory of uid particles, where is
existing functional relations and lament preservation diag- a Lagrangian parametdrtime, andx position (Chorin and
nostics to a certain degree. It is natural to chooBep C 1 to Marsden, 2000; Cottet and Koumoutsakos, 2000). The ow
recover the higher order method and demonstrate its propeimap satis es
ties; to explore the scheme in applications, smaller values of

should be used. In addition, the use of the shape-preservin&xl ‘t/Du.x. ‘t/t) x. ‘0D
limiter leads to smaller orders of spatial convergence (GubaDt ™~ ' T o
et al., 2013). Therefore, for the unlimited simulations we
set D p C1 to maintain characteristics of the higher or-
der method. For the limited simulations, we takB 3:0 for
p D3 and D 4:.0 for p D 6. We call the former “conver- D
gence regime” and the latter “mixing regime”. Chosen pa- p; - *- U DO (A7)
rameters are summarized in Table Al.

; (A6)

whereu is the given uid velocity, and the scalar is advected
along particle trajectories,

The sphere is represented as a union of disjoint panels,
A9 ICON-FFSL SD[ N,,Pi. We present results in which the panels are ei-
ther the quadrilaterals of a cubed-sphere mesh, or the tri-
The ICON grld is derived from a Spherical icosahedron that iSang|eS of an icosahedral triangu|ar mesh. The mesh corre-
made up of 20 equilateral spherical triangles. This base gridsponds to a discretization of the Lagrangian parameter. The
is further re ned in a multi-step procedure, until the desired scheme tracks two sets of particles, at the centers and vertices

edges of each base triangle are divided imequal sections  number of panels anil the number of vertices. Each par-
(termed Rn)z. Connecting the new edge points by great circlgicle has a Lagrangian parameter valug, position,x; .t/,
arcs yields~ spherical triangles within the original triangle. and scalar value,j . We employ Cartesian coordinates for

This step is followed bk bisection steps (termed Bk), where the Lagrangian parameter and position. The particles are ad-
each triangle is consecutively subdivided into four smalleryected in the ow,

triangles. This results in a so-called RnBk grid. The inter-
me_dlate grlds_ and the. nal grid are furthgr opt|m|z¢d using S xj .t/ D u.x; it (A8)
spring dynamics (Tomita et al., 2001), with the spring coef- dt

cient setto D 0:9. For a given resolution RnBk, the total

number of cells can be computed from using fourth-order Runge—Kutta, with initial condition

E’i .0/D j. The total scalar is computed by./
nc D 20n%4%: iNDl iAj, where j is the scalar value at the center of panel

The average resolution at the Equator was computed abi @ndAi is its area. To maintain accuracy, a remeshing
scheme is applied at regular intervals. At a remeshing step,

follows: .
— sayt D tm, new particle data are de neds; ; b; ; 0 /, where
Ix . ;j is a grid point on either the cubed-sphere or icosahedral
1 aveD 360 ; ! _ : py
21 e meshp; the corresponding Lagrangian parameter satisfying
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Table A1. HOMME hyperviscosity parameters.

Reason p Limiter Resolution Hyperviscosity scaled 1t
coefcient [m#s 1 as [s]
Convergence 3 No limiter 1.5 6.6 1014 Fourth order 432
Convergence 3 No limiter 0.75 4 1088 Fourth order 216
Mixing 3 Optim. limiter 1.5 3.2 1015 Third order 432
Mixing 3 Optim. limiter 0.75 4 10 Third order 216
Convergence 6 No limiter 15 1 104 Seventh order 216
Convergence 6  No limiter 0.75 7.8 1011 Seventh order 108
Mixing 6  Optim. limiter 15 1.3 10t Fourth order 216
Mixing 6  Optim. limiter 0.75 8 1012 Fourth order 108
For eff. res.
Convergence 3 No limiter 0.9 8.9 103 Fourth order  259.2
Mixing 3 Optim. limiter 0.8 47 104 Third order ~ 230.4
Convergence 6  No limiter 1.7 2.1 104 Seventh order 240
Mixing 6  Optim. limiter 1.2 46 1013 Fourth order  172.8

Table A2. Target resolution in degrees (column 1), grid identi er (column 2), average resollitigge (column 3), total number of cells.
(column 4), and the time step applied to achieve a Courant number of Al (column 5).

Target resolutiom U Applied grid 1 avel ] Ne 1t forCN 04 [g]
15 R13B1 1.54 13520 720
0.75 R13B2 0.77 54080 360
1m R3B5 0.416 184320 192

Rj D x.bj;trm/, andP; D . bj;0/ the scalar value. To de- on spherical centroidal Voronoi meshes (Ringler etal., 2011).
termineb; , the panel of the distorted mesh containigis The meshes used in these tests are generated by subdividing
located andb; is computed from the data in that panel by lin- icosahedral meshes. That is, the Voronoi meshes are com-
ear interpolation. Results reported here remesh every 20 timposed of hexagons plus 12 pentagons. The scheme uses
steps. The scheme is under development, and further detais third-order Runge—Kutta time integration scheme and a
will be reported in Bosler (2013). nite-volume ux divergence calculation using Eq. (11) in
Note that the remeshing scheme interpolates the LaSkamarock and Gassmann (2011) with the upwinding pa-
grangian parameter rather than the scalar. Hence LPM avoideameter D 0:25. It uses the FCT shape-reserving limiter
introducing overshoots and undershoots in the scalar, andescribed in Zalesak (1979); no additional explicit diffusion
there is no arti cial mixing (the error normsmax and min is used in these tests. The Voronoi meshes describerbas 1
are zero throughout all test cases, and the mixing errors fo0:75 , and 067 refer to the average cell-center spacing rel-
test case 5 are also zero). ative to an arc length at the Equator, and these meshes use
Note also that mesh size is not well-de ned since the par-21506, 86 018, and 107 522 cells, respectively, to tile the
ticles are moving, so instead we report the average angusphere. The tests are performed using CK:8, which cor-
lar variation1 in the Lagrangian parameter. Discretiza- responds to 768, 1536, and 1800 time steps to complete the
tions with N D 5120 20 480 81 920 98 304 correspond to test-case integrations on thes1, 0:75 and Q67 meshes;
1 D433,216,1:08;0:65 . Thetime stedt D 0:0125  for reference this corresponds to time steps of 1350s, 675s
was used for all computations; this value ensures that theand 576 s on the earth radius sphere. For the divergent ow
time discretization error is smaller than the spatial discretiza-test case, second-order centered uxes are used for density.
tion error. Using the test case CN de nition with , we
have CND 0.54, 1.08, 2.16, 3.59.
Al12 SBC
All MPAS

MPAS (Skamarock et al., 2012) uses the transport schem&he SBC scheme is implemented on a regular latitude—
described in Skamarock and Gassmann (2011) implementeldngitude grid where the number of zonal grid poinhisD
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360=1 and the corresponding truncation wave number is Table A3. Icosahedral resolutiol , average grid spacing at the
Equatorl ave and time steplt used for schemes SLFV-SL and

ntruncD nx=2 1 (A9) SLFV-ML.
Thus, the linear grid is used (rather than the quadratic grid N Approximatel ave Nr Timestep {t)
where ntrun® nx=3 1). o4 30 5762 0.01285
For the 15 simulations the truncation wave number is 48 15 23042 0.00642
TL119, and dimensionless time step size#$ 20 and 5600 96 Q75 92162 0.00321
for CND 5.2 and CND 1.0, respectively. Similarly, for:@5 192 Q375 368642 0.00161

the truncation wave number is TL239, ahidis 5/240 (CND

5.2) and 51200 (CND 1.0). For the minimal resolutions,
1 D225 (for CND5.2) andl D 2:25 (CND 1.0),

the truncation wave number is TL79 and TL159, respec-
tively, with 1t D 5=80 and1t D 5=800.

fact, this grid correction is equivalent to a single step Lloyd's
optimization.

For a unit sphere, the length of a basic spherical triangle is
I D 1:1071. The arc length at a resolutibinis calculated as

Al3 SFF-CSLAM ,'\I— The average grid spacing at the Equdtoris calculated

SFF-CSLAM uses an equiangular gnomonic cubed-spher@s

projection. The scheme is available for either a third-order 2

or fourth-order reconstruction, in both cases using a nite- 1D SW:

volume stencil of width 5. The:® and Q75 grids corre-

spond to 60 60 and 120 120 elements per cubed-sphere  We presented results of all the test cases for xed maxi-
panel. The equivalent resolution runs a3 (fourth-order ~ mMum Courant number (CN 0:8). Table A3 lists the icosa-
reconstruction) and:02 (third-order reconstruction) cor- hedral resolutioMN , average grid spacing at the Equator
respond to 86 86 and 98 98 elements per cubed-sphere and time step of the simulatidit .

panel. The time steps a5l and 075 (at CN Q8) areT =720 The wind vector used to approximate the ux area is com-
and T =1440, respectively. As with CSLAM, the Barth and puted by evaluating the analytical wind eld at the midpoint
Jespersen (1989) Iter was used for positivity preservation.of the cell side at timeé D n 1t . For shape preservation,

No additional diffusive terms were added. SLFV-SL and SLFV-ML employ a multi-dimensional exten-
sion of Van Leer-type slope limiter discussed in Dukowicz

Al4 SLFV-SL/ML and Kodis (1987).

Al14.1 Spherical grid generation Al14.2 SLFV scheme description

The schemes SLFV-SL and SLFV-ML are implemented on aSince there is currently no publication documenting the
spherical icosahedral-hexagonal grid (Sadourny et al., 1968)SLFV schemes, a brief description is given here. The
We start with a spherical icosahedron, consisting of 20 equisschemes are based on the ux-form continuity Eq. (1) in-
lateral spherical triangles. To achieve the desired resolutionegrated over a control volume:

the edges of these 20 spherical triangles are divided into - |

N equal parts. Connecting these new points with great cir-, @ .
cle arcs results in 202 spherical triangles. To construct the Al ot D v do: (AL0)
dual grid of the spherical triangular grid, we connect the cen- 0

troids of the triangles with great circle arcs. The resulting Here " is the average of over a control volume , 0
dual grid consists of spherical hexagons except 12 pentagor}%e boundary of the control volume aAd/ the area 01: the
corresponding to the 12 starting points of the spherical icosa-

hedron. The total number of grid cells for resolutiinis control volume.

NRr D 10N 2C 2. For the resulting dual grid, the centroids
of grid cells do not coincide with the vertices of the spherical

triangular grid. Indeed the cell-averaged value of a function|y £q. (A10), decomposing the boundaByinto Ny edges

is a second-order accurate approximation of its point-wisezng integrating Eq. (A10) with respect to time, one gets
value taken at the cell centroid. This motivates one to employ

LFV-SL

some grid adjustment or grid optimization to design higher —tC1  —t k )
order nite volume schemes. Instead of using any sophisti—A-' : k k/ D _ h Vii ®1t do (A11)
cated optimization (for instance spring dynamics or Lloyd's « b1
: . ; ) . )
algorithm), we use centroids of the grid cells as our compu , hihi; VE;(i:z 91t do: (A12)

tational points and adjust the triangular mesh accordingly. In D1
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Hereh i; is the value of averaged in time from to the point diagonally opposite . The projected centroids
de ne ve or sixtriangles ri; P.ri:i/; P.rg.ic1/ , foreach
of which we compute a gradient; de ned by its compo-
nentsr I><(;i andr E(’;i in local x andy directions, which we
obtain by solving

1
tC1t and over theéth edge composing. VE(I: 2 is the veloc-

ity eld attime t, C % evaluated at the midpoimi; of the

ith edge of celk. Approximation Eq. (A12) is second-order
accurate in time and in space. Finallyj is approximated in _ _
a semi-Lagrangian fashion: i dyCr E(’;i dyD i o (A17)
nC% 1t r I)<(;i d )i(C1Cr |)</;i d )i,Cl D ic1 0; (A18)

hiD tUrep V. — (A13)
) k;i 2

whered' D P.rk:il rg is the position vector of the pro-

This approximation is second-order accurate in space anégcted neighboring centroid;; relative tory, and ; (resp.

time (Miura, 2007). A similar formula is used fdri. In o) is the value of the scalar eld atry;; (respri). The gra-
dientsr «;; are then averaged to gek . We have veri ed

that this yields a rst-order approximation of the gradient on
non-optimized grids.

. . nC3 .
practice we us¥}.; instead olV,.; *, which introduces some
temporal error for a time-varying velocity eld.

SLFV-ML Al14.4 Slope limiting

In Eqg. (A10), decomposing the boundadyinto Ny edges,

o . In general this gradient construction will not lead to a
we get a semi-discrete equation:

positivity-preserving scheme. For this we use a multidimen-

@ Wk sional extension of Van Leer-type slope limiter (Dukowicz
Ae —D i iVi lt do: (A14) and Kodis, 1987). In Egs. (A15)-(A16) we replace the gra-
@ iD1 dientr by amodi ed gradientQ D r ¢ . The limiting

coef cient  is determined for each cedlsuch as to enforce
local monotonicity. Dukowicz and Kodis (1987) show that a
6possible choice of is

Here i, i andV; are the values of, and velocity
vectorV overith edge o at timet. We evaluate these edge
quantities at the midpoint of the corresponding edge to get
second-order spatial approximation at time D min.1: Min. max.

T . . min. 1, ; 1 Al19

The semi-discrete Eq. (A14) is then marched forward in k k k (A19)
time using the Runge—Kutta third-order total variational di- \ynere

minishing time integration scheme. This choice of time inte- ( )
gration helps to damp the unphysical oscillation due to time . "ﬂ“ax N _
discretization. kD max Ilzmax N (A20)
A14.3 Linear reconstruction and
To evaluate the right-hand side of Egs. (A13) and (A14), we _ ( [\ﬁnin N )
de ne a linear reconstruction of and in each control vol- ¢ D min Tkmn N : (A21)
ume: k
kI/D™Cry .1 ry; (A15) Here N"& and N"n are the maximum and minimum val-
/D Cre .1 1y (A16)  ues of Nin the neighboring cells, andf™® and ™ are
the maximum and minimum values ofin cell k according
respectively, wherey is the centroid of théth control vol-  to the non-slope-limited linear reconstruction in Eq. (A16).

ume. Indeed the area average of a quantity coincides with the For each edge entering the sum on the right-hand side of
value of that quantity at the centroid of the control volume, Eq. (A12) (resp. Eg. A14), the reconstruction used to evalu-
with second-order accuracy in space. As a consequence

cl .
ate  t;ry; V:.i 2% (resp. ) is the one based on the

= control volume situated upwind to the edge. We present re-
sults obtained with a CN equal to8) but the scheme seems

) to work up to maximum CFL equal to 1.0.
with the same accuracy.

To compute the discrete gradignt of any scalar eld A15 TTS
for a cellk, we work in the plane tangent to the cell centroid
rg. Vectors in the tangent plane are decomposed on a localhe TTS-I scheme operates on a fully Lagrangian mesh. The
basis.ey; ey/ pointing west and north. We project the cen- initial grid is a centroidal Voronoi tessellation of the sphere,
troids of the neighboring cells.:; to the tangent plane from and its resolution is given in terms of number of polygons.
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The Voronoi grid is then deformed by the ow and modi ed simple test of UCISOM is done with a constant plateau of
by a curvature-guard algorithm (CGA) that splits and mergestracer value (110 tracer units in 1212 cells) embedded in
edges according to deformation criteria. The speci ¢ con g- a background (10 units on a cylinder of circumference 32
uration of the CGA is given in Table 1 in Dong and Wang cells) and moving diagonally round the cylinder. After sev-
(2013). For display and computation of diagnostics (and cou-eral rotations, the tracer distribution stabilizes (along with
pling with physical parameterizations in full model setup), a the ripples and error) at a preferred shape and then evolves
regular latitude—longitude grid is used. For the experimentsvery slowly. Overshoot ripples in the tracer plateau are +12 %
two resolution con gurations are chosen for the two meshesfor LD O orL D 1, 5% forL D 2, and< 0:2% forL D 3.
Forl 1.5 andl 0:75 , the number of polygons on (Treatment of cross term momenss;, produces some rip-
the initial Voronoi grid is 10000 and 20 000, respectively. ples.) Undershoot ripples in the background near the plateau
The associated regular latitude—longitude grid spacings arare 8%, 2:5% and< 0:2 %, respectively. Only witth D

1.5 and Q75 . A non-dimensionless time step a@f=300 3 the entire 12 12 block decays uniformly, 1% per rev-
and T =600 was used for the coarser and higher resolutionsplution for CN 1. The cases in this paper are equivalent to
respectively. Trajectories are computed using fourth-ordemany revolutions in this test case, and results for UCISOM

Runge—Kutta integration. look like some of the worst cases in Fig. with peak tracer
< 0:8. After results were completed for this study, a variant
Al16 UCISOM(-CS) of L D 3 was tested, whereby the minimum-maximum crite-

rion for the daughter cell is relaxed: the tracer is allowed to
UCISOM uses a regular latitude—longitude grid, and overshoot the parent min—-max by a percentage. For large al-
UCISOM-CS uses a gnomonic cubed sphere with resoludowances (i.e., 3%) the D 3 case begins to look like D 2
tion de ned as in Eq. A5). The CN 5.5 simulations use with C4% and 1% ripples, no decay of the plateau val-
non-dimensional time stepgd D 5=T whereT D 120 and  ues, and no increase ip error over successive rotations. For
T D 240 for 5 and Q75 resolutions, respectively; for small overshoot allowance:@%), however, we regain some
CN 1.0, the time steps ar€ D 624 andT D 1248; and  of the desired properties (i.e., the ripples are smallérs %
for CN 0.8, the time steps aré D 780 andT D 1560. and 1%), but the plateau tracer does not decay. In general
The mass ux across grid edges is integrated exactly in lati-the" , errors are similar fot D 0; 1; 2, butincrease fdr D 3
tude or longitude from the equations for the regular latitude—except for CN< 0:2.
longitude grid, and with nine-point Romberg integration for
the cubed-sphere grid (preserves mass convergence in each
grid cell to single-precision accuracy or better). The ux over Supplementary material related to this article is
each time step is integrated analytically from the equationsavailable online at http://www.geosci-model-dev.net/7/
UCISOM uses a single forward time step for any CN value, 105/2014/gmd-7-105-2014-supplement.zip.
and is thus only rst-order accurate in time (i.e., forward
Euler). The rate of convergence with increasing resolution
(Figs. 1-2) is actually the convergence with time step, as the
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