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Abstract. Recently, a standard test case suite for 2-D lin-
ear transport on the sphere was proposed to assess im-
portant aspects of accuracy in geophysical �uid dynam-
ics with a “minimal” set of idealized model con�gura-
tions/runs/diagnostics. Here we present results from 19 state-
of-the-art transport scheme formulations based on �nite-
difference/�nite-volume methods as well as emerging (in
the context of atmospheric/oceanographic sciences) Galerkin
methods. Discretization grids range from traditional regular
latitude–longitude grids to more isotropic domain discretiza-
tions such as icosahedral and cubed-sphere tessellations of
the sphere. The schemes are evaluated using a wide range
of diagnostics in idealized �ow environments. Accuracy is
assessed in single- and two-tracer con�gurations using con-
ventional error norms as well as novel diagnostics designed
for climate and climate–chemistry applications. In addition,
algorithmic considerations that may be important for com-
putational ef�ciency are reported on. The latter is inevitably
computing platform dependent.

The ensemble of results from a wide variety of schemes
presented here helps shed light on the ability of the test case
suite diagnostics and �ow settings to discriminate between
algorithms and provide insights into accuracy in the context
of global atmospheric/ocean modeling. A library of bench-
mark results is provided to facilitate scheme intercomparison
and model development. Simple software and data sets are
made available to facilitate the process of model evaluation
and scheme intercomparison.

1 Introduction

Historically, the regular latitude–longitude grid has been the
preferred discretization grid in global atmosphere models
primarily due to desirable properties such as grid orthogo-
nality and simple data structure. It also trivially lends itself
to operations such as zonal/meridional averaging routinely
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106 P. H. Lauritzen et al.: Results from standard test case suite

applied in global data analysis. Primarily triggered by re-
quirements for ef�cient domain decomposition and minimal
data movement between decomposition patches in massive
parallel compute environments, there has been a signi�cant
effort to formulate atmospheric models on more isotropic
grids. Other motivations for alternative tessellations of the
sphere are the design of models with mesh re�nement ca-
pability, possibly with smoothly varying transitions between
coarse and �ne resolution. This has triggered a renewed inter-
est in developing �uid �ow solvers for non-traditional spher-
ical grids. A natural �rst step in model development is to
design schemes that solve the continuity equation, also re-
ferred to as transport schemes or advection schemes. Numer-
ous new algorithms have been developed within the last 10 yr
or so. These encompass �nite-volume, �nite-difference, and
Galerkin-based methods.

Despite the growing amount of research in transport
scheme algorithms, the “mandatory” idealized testing of
such algorithms on the sphere is surprisingly little stan-
dardized. In fact, the only standardized test in global trans-
port scheme development is the solid-body advection test
of the widely used shallow-water test case (cf. Williamson
et al., 1992). Speci�c guidelines for the computation of er-
ror norms and plotting (contour interval and projection) are
given in Williamson et al. (1992). However, resolution and
other transport model settings are not speci�ed. In the lit-
erature modelers do not always chose the same resolution
and model settings, which can make it dif�cult to compare
schemes. Even contour plotting of solutions varies across
publications despite the speci�c guidelines of Williamson
et al. (1992). Said colloquially, “apples-to-apples” compari-
son is not always straightforward despite the simplicity of the
test (i.e., an analytical solution is known). This, among other
things, motivated Lauritzen et al. (2012, hereafter referred
to as LSPT2012) to propose a standard test case suite with
speci�c guidelines for resolution and other transport model
settings. To facilitate this process further, we provide scripts
for contour plots. Model developers are encouraged to use
those scripts so that contour plots from different modeling
groups can easily be compared.

More challenging global idealized tests have been devel-
oped since the efforts of Williamson et al. (1992) such as
the highly deformational (moving) vortices on the sphere
(Nair and Machenhauer, 2002; Nair and Jablonowski, 2008)
and the “boomerang” �ows of Nair and Lauritzen (2010).
Despite the high degree of deformation in the (moving)
vortex test problem, in particular when simulated beyond
the original speci�cation of simulation length (Kent et al.,
2012; Pudykiewicz, 2011), it has an analytical solution. The
“boomerang” �ows, on the other hand, do not have easily
accessible analytical solutions until the end of the speci-
�ed simulation time. Contrary to most idealized tracer trans-
port test cases, Nair and Lauritzen (2010) proposed a di-
vergent wind �eld so that the modeler is forced to consider
the coupling between air density and tracer mass (at least

when using �nite-volume type schemes), which is a neces-
sary step in developing a transport scheme for realistic atmo-
spheric/oceanographic applications.

The idealized transport scheme testing discussed above
assesses simulation accuracy in a single-tracer setup. For
a range of climate and climate–chemistry problems, it
is also considered important that schemes do not disrupt
pre-existing functional relations in unphysical ways (e.g.,
Thuburn and Mclntyre, 1997). For example, long-lived trace
species in the stratosphere are known to be functionally re-
lated (Plumb, 2007), and the simulation of cloud–aerosol in-
teractions depends on accurate preservation of relations be-
tween tracers (Ovtchinnikov and Easter, 2009). Based on the
“boomerang �ow”, Lauritzen and Thuburn (2012) proposed
an idealized test to assess how well schemes maintain a non-
linear relation between two tracers. The amount of mixing,
essentially introduced by truncation errors, was quanti�ed
using novel mixing diagnostics.

In an attempt to standardize scheme testing under idealized
�ow settings as well as to reduce the number of tests while
still assessing a wide range of aspects of accuracy considered
important for geophysical applications, LSPT2012 proposed
a “minimal” test case suite with speci�c guidelines on reso-
lution, time step, and accuracy diagnostics. In LSPT2012 it
was assumed that model developers have already tested their
schemes under simpler �ow conditions such as solid-body
�ows. Similarly, LSPT2012 did not ask modelers to report on
more specialized test cases that may be useful to study cer-
tain, perhaps more specialized, aspects of accuracy. For ex-
ample, by running well-known deformational test cases out
further in time (Pudykiewicz, 2011), one can study the down-
scale cascade from near grid scale to the sub-grid scale (Kent
et al., 2012). Similar tests, such as many solid-body revo-
lutions of a large constant plateau spanning many cells, can
be used for “tuning” shape-preserving �lters so that the peak
tracer abundance does not decay linearly (if applicable) de-
spite the initial plateau and analytic solution being very well
resolved (Appendix A16).

It is the purpose of this paper to provide a library of bench-
mark results for the LSPT2012 standard test case suite. The
data were provided by the participants of the 2011 workshop
on transport schemes held at the National Center for Atmo-
spheric Research (NCAR) in Boulder (Colorado, USA), 30–
31 March 2011. The large ensemble of schemes that partici-
pated in this intercomparison may help shed light on how the
different tests and diagnostics discriminate between schemes
and expose particular types of numerical errors. A list of
schemes that participated in this intercomparison and the ac-
companying scheme acronyms are given in Table 1.

In this study grid spacings are quanti�ed in terms of aver-
age resolution at the Equator irrespective of the discretization
grid. Schemes are compared using this de�nition of horizon-
tal resolution. If the reader is interested in schemes for mesh-
re�nement applications, for example, only a subset of the
schemes and grids presented here will have that capability.
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Table 1.A list of acronyms (�rst column), full names (second column), documentation (third column), implementation grid (fourth column),
and formal order of accuracy (�fth column) for schemes in this paper.

Scheme Full scheme name Documentation Implementation grid Formal
acronym order

CAM-FV Community Atmosphere Model – Lin and Rood (1996) Regular latitude–longitude 2
Finite-Volume Lin (2004)

CAM-SE Community Atmosphere Model – Dennis et al. (2012) Gnomonic cubed-sphere 4
Spectral Elements Neale et al. (2010); Guba et al. (2013) (quadrature grid)

CCSRG Conservative cascade scheme for Nair et al. (2002) Reduced latitude–longitude 3
the reduced grid Tolstykh and Shashkin (2012)

CLAW Wave propagation algorithm LeVeque (2002) Two-patch sphere grid 2
on mapped grids

CSLAM Conservative Semi-Lagrangian Lauritzen et al. (2010) Gnomonic cubed-sphere 3
Multi-tracer scheme Erath et al. (2013)

FARSIGHT Departure-point interpolation White and Dongarra (2011) Gnomonic cubed-sphere 2
scheme with a global mass �xer

HEL Hybrid Eulerian Lagrangian Kaas et al. (2013) Gnomonic cubed-sphere 3
HEL-ND HEL – Non-Diffusive Kaas et al. (2013) Gnomonic cubed-sphere 3
HOMME High-Order Methods Dennis et al. (2012) Gnomonic cubed-sphere 4 and 7

Modeling Environment Guba et al. (2013) (quadrature grid)
ICON-FFSL ICOsahedral Non-hydrostatic model – Miura (2007) Icosahedral-triangular 2

Flux-Form semi-Lagrangian scheme
LPM Lagrangian Particle Method Bosler (2013) Icosahedral-triangular 2
MPAS Model for Prediction Across Scales Skamarock and Gassmann (2011) Icosahedral-hexagonal 3
SBC Spectral Bicubic interpolation scheme Enomoto (2008) Gaussian latitude–longitude 2
SFF-CSLAM Simpli�ed Flux-Form CSLAM scheme Ullrich et al. (2013) Gnomonic cubed-sphere 3 and 4
SLFV-SL Semi-Lagrangian type Slope Limited Miura (2007) Icosahedral-hexagonal 2
SLFV-ML Slope Limited Finite Volume scheme N/A (see Appendix A14) Icosahedral-hexagonal 2

with method of lines
TTS-I Trajectory-Tracking Scheme – Interfaces Dong and Wang (2013) Spherical centroidal 1

Voronoi tessellation
UCISOM UC Irvine Second-Order Moments scheme Prather (1986) Regular latitude–longitude 2
UCISOM-CS UC Irvine Second-Order Moments scheme – Gnomonic cubed-sphere 2

In other words, it is up to the reader to extract information
for speci�c applications as only uniform resolution or non-
mesh-re�ned grids are considered here.

The paper is organized as follows. In Sect. 2 the schemes
are brie�y introduced by discussing discretization cate-
gories/methods and grouping the respective schemes into
these categories. In addition to the basic discretization con-
cepts, this includes discussion of shape-preserving (sp) lim-
iter used (if applicable) and air–tracer mass coupling. Spe-
ci�c details on time step, native grid resolutions used to
match test case speci�cations on resolution, viscosity coef-
�cients (if applicable), etc. are given in the Appendix for
each scheme. The results for the LSPT2012 test case suite
are presented in Sect. 3. It has been a challenge to present ef-
fectively and concisely the results graphically given the large
number of schemes. We have found it most effective to de-
pict most of the data in histogram format. The complete his-
togram data sets are made available as supplemental material
for the interested reader. Scripts and data to produce conver-
gence plots (Figs. 1 and 2), �lament diagnostic plot (Fig. 5),
contour plots (Figs. 7, 8, 9, 10), scatterplots (Figs. 11, 12, 13
and 14), and histogram plots (Figs. 3, 4, 6, 15 and 16) are

also made available in the Supplement. Conclusions and a
brief summary of results are provided in Sect.4.

2 Transport equation forms and discretization
categories

The continuity equation for a passive and inert scalar� can
be written in various forms such as �ux form or advective
form. The choice of the form of the continuous transport
equation from which the discretized scheme is derived ob-
viously depends on the numerical method. Below we de-
�ne the different categories of discretizations for the schemes
that participated in this intercomparison. The high-level cat-
egories are as follows:

– �ux-form �nite volume,

– (semi-)Lagrangian �nite volume,

– (semi-)Lagrangian grid point,

– Lagrangian parcel methods,

– series expansion.
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A brief description of the transport schemes that partic-
ipated in this intercomparison is given within the category
each scheme has been assigned to. Below, the scheme de-
scriptions are grouped according to scheme category irre-
spective of discretization grid. For in-depth details on the
algorithms, we refer to their respective publications; speci�c
scheme con�gurations used in this intercomparison are given
in the Appendix.

2.1 Flux-form �nite volume

Typically, �ux-form Eulerian or �ux-form semi-Lagrangian
schemes are based on the form

@.��/
@t

C r � .�� V / D 0; (1)

where� is the �uid density,V the �ow velocity vector, and
� the tracer mixing ratio per unit mass. In �nite-volume
schemes the equation of motion is integrated over a control
volume. Similarly, the equation for air density is given by

@�
@t

C r � .� V / D 0: (2)

For Eulerian �nite-volume schemes, Eq. (1) is integrated
in space over a stationary (Eulerian) control grid volume/cell
Ak and in time over one time step1t , and usually the diver-
gence theorem is applied. After re-arranging terms the dis-
cretized continuity equation can be written as

�
� � 1A k

� nC1
D

�
� � 1A k

� n
(3)

�

.nC1/1tZ

n1t

2

6
4

I

@Ak

. �� V / � OndS

3

7
5 dt; (4)

wheren is the time-level index,1A k the area of an Eulerian
grid cell Ak, and@Ak the boundary ofAk for which On is the
outward pointing normal vector. The physical interpretation
of the last term on the right-hand side of Eq. (3) is basically
the �ux of mass through all cell walls in one time step. This
term is also referred to as the�ux divergence. In one dimen-
sion the �ux divergence is the difference between the �ux
of mass through the left and right wall of the control vol-
ume. Mass conservation is therefore achieved by evaluating
the �ux through a cell wall shared by two control volumes
in an identical way. In that case, the amount of mass �ow-
ing into a control volume through a cell wall will be exactly
balanced by the out�ow through the face shared by the neigh-
boring control volume. Hence any reasonable approximation
to the �ux will trivially lead to conservation of tracer mass.

There are several approaches to approximating the �ux di-
vergence, and they are discussed in separate sub-sections be-
low in the context of the schemes that participated in this in-
tercomparison project. Before that, however, we brie�y dis-
cuss the coupling between air and tracer mass that is inherent

in most �nite-volume discretizations when the analytical so-
lution for � is not known.

Finite-volume schemes based on Eq. (1) use tracer mass
�� and not mixing ratio� as the prognostic variable. Hence
� must be solved for as well:

. � 1A k/nC1 D .� 1A k/n �

.nC1/1tZ

n1t

2

6
4

I

@Ak

. � v/ � OndS

3

7
5 dt: (5)

It is considered important that the coupling between air
mass and tracer mass is “free-stream preserving” (also re-
ferred to as “consistent tracer transport” in the literature).
This means that the discretization scheme for Eq. (1) reduces
to the discretization scheme for Eq. (2) for� D 1 as it triv-
ially does in continuous space. Note that free-stream preserv-
ing does not necessarily mean that the spatial and temporal
discretization schemes for� and�� are identical. In fact, it
is common practice to solve the tracer transport Eq. (1) on
longer time steps than the air density Eq. (2) since tracer
transport schemes are usually only limited by the advec-
tive CFL (Courant–Friedrichs–Lewy) or Lipschitz criterion
(Pudykiewicz et al., 1985; Kuo and Williams, 1990) rather
than the more restrictive CFL condition usually imposed on
the continuity equation for air by gravity and/or sound waves.
For such an approach the �ux of tracer massF through a cell
wall is computed as

F D h� i
mX

i D1

F .i=m/ ; (6)

where m is the number of sub-steps in time,F .i=m/ the
“background” �ux of air mass through the cell wall in one

sub-stept 2 T
�
n C i � 1

m

�
1t;

�
n C i

m

�
1t U, andh� i the aver-

age mixing ratio over the tracer time step,t 2 Tn1t; .n C
1/1t U. Note that the mixing ratio,h� i , is averaged over sev-
eral sub-steps in which the air density is updated. For a
graphical illustration of Eq. (6), see Fig. 8.19 in Lauritzen
et al. (2011b). The technique described by Eq. (6) is usu-
ally referred to as “sub-cycling”, although more appropriate
terminology may be “super-cycling” of tracer �uxes with re-
spect to air mass �ux.

It is worth noting that Eq. (6) withm D 1 constitutes a
form of linearization of the �ux where non-linear coupling
between tracer mixing ratio and air mass is neglected. For ex-
ample, assume that tracer mixing ratio�.x;y/ is represented
through a higher order polynomial of degreeK and similarly
for air density�.x;y/ , wherex and y denote the longitu-
dinal and latitudinal directions, respectively. Then the �ux
through the cell wall involvesh�.x;y/ � �.x;y/ i (Dukowicz
and Baumgardner, 2000), which would require integrating a
polynomial of degreeK 2. Instead, the �ux is approximated
by

h�.x;y/ � �.x;y/ i � h�.x;y/ i � h�.x;y/ i ; (7)
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which eliminates the non-linear interaction between non-
constant terms in the polynomials of� and� . This simpli�-
cation reduces the order of the polynomial: instead of having
to integrate a polynomial of degreeK 2, only integration of
polynomials of degreeK is needed.

For most applications it is important that the progno-
sis of mixing ratio� does not introduce spurious oscilla-
tions and/or unphysical values such as negative mixing ra-
tios. Schemes that guarantee “physical” solutions in this
sense are referred to as “shape-preserving” (sp). The en-
forcement of shape preservation in �ux-form schemes can
be done by adjusting the �uxes. A very popular algorithm
is FCT (�ux-corrected transport by Zalesak, 1979) where a
monotone low-order �ux is blended with the non-monotone
higher order �ux to provide a shape-preserving solution. An-
other approach that can be used in the context of a �ux-form
discretization is to ensure that the reconstruction function,
which is usually an integral part of a �nite-volume scheme,
is constrained so that it does not introduce new extrema or
expand the range of the cell-averaged values. This method
is referred to asslope-limiting(e.g., van Leer, 1977). For an
overview of shape-preserving �lters used for the schemes in
this intercomparison, see Table 2. The following subsections
provide brief descriptions of the models that fall into the �ux-
form �nite-volume category.

2.1.1 Taylor series approach

The scheme of Skamarock and Gassmann (2011), here re-
ferred to as MPAS as it was implemented in the “Model
for Prediction Across Scales” framework (Skamarock et al.,
2012; Ringler et al., 2011), is a generalization of one-
dimensional Taylor series approximations to the �ux op-
erators (Wicker and Skamarock, 2002; Hundsdorfer et al.,
1995) for a Voronoi tessellation of the sphere. Speci�cally,
these operators are generalizations of third- and fourth-order
operators currently used in atmospheric models employ-
ing regular, orthogonal rectangular meshes as, for exam-
ple, the Weather Research and Forecasting (WRF) model,
which is documented in Skamarock and Klemp (2008).
Two-dimensional least-squares-�t polynomials are used to
evaluate the higher order spatial derivatives needed to can-
cel the leading-order truncation error terms of the stan-
dard second-order centered formulation. As in Wicker and
Skamarock (2002), the third-order formulation is equivalent
to the fourth-order formulation plus an additional diffusion
term that is proportional to the Courant number (CN). An
optimal value for the coef�cient scaling this diffusion term
based on qualitative evaluation of results from other tests is
used (seeSkamarock and Gassmann, 2011).

The time stepping is based on a three-stage Runge–Kutta
method. Hence the �ux operators are evaluated at three inter-
mediate time levels for a full tracer time step update. Shape
preservation is obtained by applying the FCT limiter/�lter

during the �nal Runge–Kutta stage within a given time step.
Tracer and air mass coupling is through super-cycling.

2.1.2 “Swept-area” approach

An alternative and perhaps more physically intuitive ap-
proach to approximating the �ux divergence is to trace the
area that is “swept” through an Eulerian cell wall in one
time step – hence the name “swept area” approach, also re-
ferred to as incremental remapping method (Dukowicz and
Baumgardner, 2000), or semi-Lagrangian �ux-form �nite-
volume method (Lin and Rood, 1996). These methods are
usually based on Euler forward time differencing (two-time-
level schemes). Several schemes in this intercomparison are
based on that approach, and they differ in area approxima-
tion, reconstruction method, and implementation grid (for a
detailed discussion on area approximations and reconstruc-
tion methods, see, for example, Lauritzen et al., 2011b). Un-
less stated otherwise the schemes based on “swept areas” use
the super-cycling technique for coupling tracer and air mass.

The most rigorous approach in this intercomparison, in
terms of area approximation, is the Simpli�ed Flux-Form
CSLAM scheme (SFF-CSLAM, Lauritzen et al., 2011a; Ull-
rich et al., 2013). For each cell the �ux areas are approxi-
mated by tracing the end points (vertices) of each cell face
upstream. The upstream translation of these points and the
face vertices can be connected with straight lines (e.g., Harris
et al., 2010) or parabola (in the latter case also the midpoint
of the cell faces is traced upstream; Ullrich et al., 2013) to
de�ne the swept area (aka �ux area). This area will by de�ni-
tion be swept through the cell wall in one time step and hence
can be used to approximate the mass �uxes in and out of con-
trol volumes by integrating reconstruction functions of tracer
mass over the swept areas. The “Simpli�ed” in the SFF-
CSLAM scheme acronym refers to the simpli�cation intro-
duced by Hirt et al. (1974), in which the �ux integral is sim-
pli�ed so that only the sub-grid-scale reconstruction imme-
diately upstream of the cell edge is used even though the �ux
area may overlap more than one Eulerian cell. As discussed
in Lauritzen et al. (2011a), this simpli�cation may lead to
some cancellation of errors for suf�ciently small CNs. The
integration of the �ux region in SFF-CSLAM is performed
via fourth-order Gaussian quadrature of third- and fourth-
order accurate reconstruction polynomial functions (Ullrich
et al., 2013) referred to as SFF-CSLAM3 and SFF-CSLAM4,
respectively. Shape preservation in SFF-CSLAM is enforced
by reconstruction function-limiting (slope-limiting); more
speci�cally the maxima and minima are identi�ed within
each element, and the reconstruction function is scaled to
�t within the minimum and maximum of the neighboring
cell-average values (Barth and Jespersen, 1989). Since sim-
pli�ed �ux-area integration is used, reconstruction functions
are effectively extrapolated in the parts of the �ux areas (if
any) that are not limited to the immediate upstream cell with
which the control volume shares a face. Since slope-limiting
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Table 2. A list of shape-preserving �lter information: scheme acronym (�rst column), scheme category (second column), �lter category
(third column), whether the scheme is strictly shape-preserving in terms of not expanding the range of the initial data (fourth column), and
the reason for non-shape-preservation (if applicable, �fth column).

Scheme “Category” Shape-preserving Strictly shape- Reason for “non-strict”
acronym �lter category preserving shape preservation

CAM-FV Flux-form �nite volume Dimensionally split No 1-D limiter
CAM-SE Spectral element Quasi-monotone limiter Yes –

(series expansion) based on minimization;
hyperviscosity

CCSRG Semi-Lagrangian �nite volume – – –
CLAW Wave propagation Wave limiter No 1-D wave limiter
CSLAM Semi-Lagrangian �nite volume Slope-limited Yes –

Rigorous �ux
FARSIGHT Grid-point semi-Lagrangian Fixer Yes –
HEL Semi-Lagrangian �nite volume Lagrangian �xer Yes –
HEL-ND Semi-Lagrangian �nite volume Lagrangian �xer Yes –
HOMME Spectral element Quasi-monotone limiter Yes –

(series expansion) based on minimization;
hyperviscosity

ICON-FFSL Flux-form �nite volume FCT Yes –
LPM Fully Lagrangian Lagrangian Yes –
MPAS Flux-form �nite volume FCT Yes –
SBC Semi-Lagrangian grid point Fixer Yes –
SFF-CSLAM Flux-form �nite volume Slope-limited No “Extrapolation” in

simpli�ed �ux simpli�ed �ux
SLFV-SL Flux-form �nite volume Slope-limited No “Extrapolation” in

simpli�ed �ux simpli�ed �ux
SLFV-ML Flux-form �nite volume Slope-limited No “Extrapolation” in

simpli�ed �ux simpli�ed �ux
TTS-I Lagrangian �nite volume None needed Yes –
UCISOM Flux-form �nite volume Moment-limiting No Shape-preserving constraints

relaxed
UCISOM-CS Flux-form �nite volume Moment-limiting No Shape-preserving constraints

relaxed

is only enforced within each Eulerian cell and not throughout
the �ux area, SFF-CSLAM is not strictly shape-preserving
but only approximately so. SFF-CSLAM could be rendered
strictly shape-preserving by using FCT, possibly at the ex-
pense of increased computational cost.

A further simpli�cation to SFF-CSLAM is to approxi-
mate the swept area with just one degree of freedom in-
stead of two or three as described above. For example, one
may use just one velocity vector at the center of each edge
to trace the �ux area so that the swept area is a rhom-
boid instead of a quadrilateral with straight (Miura, 2007)
or curved edges (Ullrich et al., 2013). This approach is
taken in the transport scheme implemented in the Icosahe-
dral Nonhydrostatic Model (ICON); ICON is currently be-
ing developed in a joint effort by the Max Planck Institute
for Meteorology (MPI-M) and the German Weather Service
(DWD). The scheme is referred to as ICON-FFSL (Flux-
Form Semi-Lagrangian). The swept area approximation in
ICON-FFSL is �rst-order in space and second-order in time.

The simpli�ed �ux integration, as used in SFF-CSLAM, is
also applied in ICON-FFSL. Hence the maximum stable CN
is limited; the theoretical stable CN limitation for linear re-
construction functions is 0.5 (Fig. 3 middle; Lauritzen et al.,
2011a). However, in practice ICON is stable up to CN of
approximately 0.8. The reconstruction polynomial is �rst-
order (linear), and the coef�cients are estimated using a con-
servative and weighted least squares reconstruction method
(Ollivier-Gooch and van Altena, 2002). Shape preservation
in ICON-FFSL is obtained by using FCT, and tracer–air-
mass coupling is through “super-cycling”.

A similar approach has been taken in the scheme of SLFV-
SL developed at LMD (Laboratoire de Météorologie Dy-
namique, Paris, France) for a hexagonal icosahedral grid-
based model. It uses simpli�ed swept areas with simpli�ed
integration of linear reconstruction functions as in ICON-
FFSL. Contrary to ICON-FFSL, the SLFV schemes base
their reconstruction on averaging six gradients (or �ve for
the pentagons) rather than a least-squares �t. SLFV-SL uses a
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slope limiter for shape preservation – more precisely, a multi-
dimensional extension of the Van Leer-type slope limiter dis-
cussed in Dukowicz and Kodis (1987). LMD also presented
another scheme, SLFV-ML, which is similar to SLFV-SL,
but instead of forward Euler the Runge–Kutta third-order to-
tal variational diminishing (TVD) time-integration method
is used (e.g., Nair et al., 2005). For details on the SLFV
schemes, see Appendix A14.

2.1.3 Wave-propagation algorithm

Related to the “swept area” approaches described above, in
the sense that this algorithm has some conceptual similar-
ities, is the wave-propagation algorithm of LeVeque (2002).
The speci�c version of this algorithm is referred to as CLAW
as it is implemented in the general Clawpack package (LeV-
eque, 2006). The wave-propagation algorithm can be viewed
as a scheme that propagates information (i.e., waves) �rst
in a direction normal to a given cell interface, and then in
a direction transverse to this interface effectively approxi-
mating “swept area” �uxes (see, e.g., Fig. 5.22 in Durran,
2010). CLAW is based on a �rst-order donor cell upwind
method (�rst-order waves) composed of one-dimensional
�ux-divergence operators with “correction” terms to take
into account traverse �ow of waves and/or higher order
waves. CLAW used here is formally second-order accurate.
A TVD monotonized central-difference limiter (LeVeque,
2002; van Leer, 1977) is used for shape preservation, but
other TVD type �ux limiters can also be applied.

Clawpack supports the advective and �ux form of the
transport equation. The version of CLAW used here is based
on the advective form. For non-divergent winds the average
normal velocity at mesh cell edges is obtained by differenc-
ing a stream function evaluated at mesh cell corners. Con-
sequently, a constant density �eld in a non-divergent �ow
is preserved in the discretized CLAW scheme based on the
advective form. Clawpack is not strictly a transport code,
but is designed to solve more general non-linear hyperbolic
problems. The problems presented here are ideally suited
for AMRClaw, the spatially adaptive version of Clawpack
(http://www.clawpack.org).

2.1.4 Dimensional splitting approach

Instead of approximating swept area �uxes rigorously in
two dimensions, one may take an operator split approach,
which has been successfully applied for orthogonal (Lin
and Rood, 1996) and quasi-orthogonal grids (Putman and
Lin, 2007). The advantage of such an approach is that only
one-dimensional operators are needed. The formal accuracy,
however, is limited to second-order with the splitting. The
Lin and Rood (1996) scheme is used in NCAR's Com-
munity Atmosphere Model Finite-Volume version (CAM-
FV, Neale et al., 2010) and implemented on a regular
latitude–longitude grid. The transport scheme in CAM-FV

applies successive applications of �rst-order advection and
PPM (piecewise parabolic method; Colella and Woodward,
1984) �ux-divergence operators that are carefully combined
to minimize splitting errors. To render CAM-FV, approxi-
mately shape-preserving slope limiters and curvature lim-
iters are applied in the one-dimensional PPM reconstruc-
tions. Since the limiters are applied to the PPM operators that
are one-dimensional, over- and undershoots are only elimi-
nated along coordinate directions and not in the transverse
direction. Hence, CAM-FV is only approximately shape-
preserving. Air–tracer coupling is through “super-cycling”.
For a stability analysis of the Lin and Rood (1996) scheme,
see Lauritzen (2007).

Another dimensionally split transport scheme in Eulerian
�ux form that participated in this intercomparison is an im-
proved version (Prather et al., 2008) of the original second-
order moment (SOM) scheme (Prather, 1986), which is here
referred to as UCISOM (UC Irvine Second-Order Moments
scheme). It applies the same operators/algorithm in all co-
ordinate directions (via dimensional splitting) and hence is
trivially extensible to three dimensions. In addition to the
one prognostic variable (cell-averaged tracer mass) that all
the schemes discussed so far use, the SOM method carries
�ve prognostic variables. The extra forecasted variables are
moments of the tracer distribution. The UCISOM scheme
has been implemented on a regular latitude–longitude grid
and on an equiangular gnomonic cubed-sphere (referred to
as UCISOM and UCISOM-CS, respectively).

2.2 (Semi-)Lagrangian �nite volume

A (semi-)Lagrangian �nite-volume scheme is typically based
on the form

D
Dt

Z

A.t/

� � dA D 0; (8)

where D=Dt is the total or material derivative andA.t/
is a Lagrangian volume for which, by de�nition, there
is no �ux of mass across its boundaries. Lagrangian and
semi-Lagrangian �nite-volume schemes are also referred to
as cell-integrated schemes (Nair and Machenhauer, 2002).
In semi-Lagrangian �nite-volume schemes, the same La-
grangian areas are only traced/retained for one time step,
whereas for fully Lagrangian schemes the cells move with
the �ow throughout the integration or at least for multiple
time steps. Each sub-category of (semi-)Lagrangian �nite-
volume schemes is discussed in a separate section below.

Conservation of mass in (semi-)Lagrangian �nite-volume
schemes is based on the physical constraint that the integral
of mass over the Lagrangian areas at time leveln andn C 1
must match. This physical constraint is more rigorous than
the requirement for mass conservation in �ux-form schemes,
for which any �ux leads to mass conservation as long as iden-
tical �uxes with opposite signs are used for each cell face.
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Contrary to �ux-form schemes, the reconstruction functions
must integrate to the cell-averaged value in each Eulerian
control volume, and the Lagrangian areas must span the en-
tire domain without cracks or overlap between them. For a
fuller discussion, see Lauritzen et al. (2011b) and Erath et al.
(2013).

Since (semi-)Lagrangian �nite-volume schemes trace La-
grangian volumes rather than �uxes through cell walls, shape
preservation cannot be ensured using FCT and FCT-type
limiters. Shape preservation in semi-Lagrangian �nite vol-
ume (not �ux form) can be accomplished via slope-limiting
where the reconstruction function is limited to avoid spurious
under- and overshoots.

2.2.1 Fully two-dimensional semi-Lagrangian
�nite volume

The Conservative Semi-Lagrangian Multi-tracer (CSLAM)
scheme, which has been implemented in NCAR's High-
Order Methods Modeling Environment (HOMME; Erath
et al., 2012), is based on upstream tracing of cells and subse-
quent integration over overlap areas between the Lagrangian
cell and Eulerian grid cells. Speci�cally, the vertices of the
Eulerian grid control volumes/cells are traced upstream and
connected with straight lines to de�ne the upstream La-
grangian area. Note that it is essential for mass conservation
that the upstream areas collectively span the entire domain
and that the reconstruction function integrates to the cell-
averaged value within each Eulerian grid cell (Erath et al.,
2013). Mass conservation in �ux-form schemes is not sub-
ject to these constraints.

The CSLAM scheme may also be cast in �ux form (Har-
ris et al., 2010) to produce schemes that are identical even
when the slope limiter for shape preservation is applied.
Note that casting the scheme in �ux form allows for �ux
limiters such as FCT that can obviously not be used in
the Lagrangian form (e.g., Lauritzen et al., 2011b). Since
CSLAM integrates over fewer overlap areas than its �ux-
form version, it is more ef�cient in its Lagrangian form. The
CSLAM version used in this comparison was implemented
on an equiangular gnomonic cubed-sphere grid. CSLAM
uses fully two-dimensional polynomial-based reconstruction
functions of degree two for air density�.x;y/ and tracer
mixing ratio �.x;y/ . Shape preservation is obtained with
fully two-dimensional slope-limiting (Barth and Jespersen,
1989). Integration over overlap areas on the cubed-sphere is
performed via line integrals in gnomonic cubed-sphere co-
ordinates. In Lauritzen et al. (2010) line integrals along co-
ordinate lines were computed using exact line-integral for-
mulas (Ullrich et al., 2009). However, it was later found that
these may become ill-conditioned at high resolution: switch-
ing to Gaussian quadrature makes the algorithm robust but at
the cost of mass conservation unless mass consistency is en-
forced locally using the consistency enforcement algorithm
by Erath et al. (2013), which does not affect the locality and

ef�ciency of the CSLAM algorithm. The coupling between
�� and� is by using the following reconstruction function
for tracer mass in each Eulerian control volume:

� � .x;y/ C � . �.x;y/ � � / ; (9)

(Appendix B of Nair and Lauritzen, 2010) where.�/ refers to
the cell-averaged value. Note that for� .x;y/ D 1 Eq. (9) re-
duces to the reconstruction function for� , and hence Eq. (9)
is free-stream preserving. Also, the higher order terms in the
product�.x;y/ � � .x;y/ have been eliminated so that the re-
construction function for tracer mass is of degree two. One
could also simply use a reconstruction function based on
tracer mass� � instead of reconstructing� and� separately.
However, shape preservation should only be applied to� as
� is conserved following parcel trajectories and not tracer
mass�� . Hence the separation of� and� in the reconstruc-
tion step is preferable.

2.2.2 Flow-dependent dimensional splitting

Instead of approximating the upstream area with a fully two-
dimensional approach, it may be approximated using a di-
mensionally split approach. This is similar to splitting for Eu-
lerian �uxes. However, the dimensional splitting is not along
coordinate axes but along Lagrangian translations of coordi-
nate axes. Hence we refer to this approach as �ow-dependent
dimensional splitting. The upstream area is then effectively
approximated using line segments that are parallel to the co-
ordinate axes (see, for example, Fig. 2 in Lauritzen et al.,
2006) so that the two-dimensional remapping problem is cast
into one-dimensional “sweeps” (one sweep along a coordi-
nate axis and one sweep along the upstream translation of the
other coordinate axis); such schemes are referred to ascas-
cadeschemes and were originally introduced by Purser and
Leslie (1991) for non-conservative semi-Lagrangian interpo-
lation. Later, conservative versions of the cascade method
were proposed, e.g., the conservative cascade scheme (CCS;
Nair et al., 2002). In each cascade sweep, PPM-based opera-
tors (similarly to CAM-FV) are used.

A scheme based on CCS and implemented on the reduced
latitude–longitude grid (for details on the reduced latitude–
longitude grid used here, see Fadeev, 2013) participated in
this intercomparison and is referred to as CCSRG (Tolstykh
and Shashkin, 2012). The version of CCSRG used here does
not have a limiter implemented. Tracer–mass coupling is
based on reconstructing tracer mass,� � , and not on the re-
construction of mixing ratio and density separately.

2.2.3 Lagrangian �nite volume

A scheme for which the Lagrangian areas are retained for
longer than one time step is the trajectory-tracking scheme
(Dong and Wang, 2012) based on tracking interfaces (TTS-I,
Dong and Wang, 2013). The advantage of tracing interfaces
is that large gradients or even discontinuities are preserved.
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The initial grid in TTS-I is based on polygons generated by
using a spherical centroidal Voronoi tessellation (Du et al.,
1999; Ringler et al., 2008; Ju et al., 2011), where the density
function that controls the distribution of polygons is set to
unity. The polygons are then traced throughout the integra-
tion. Due to the large deformation of the background �ow,
the edges of the polygons will inevitably cross. To avoid this
ill-conditioned problem, a novel curvature-guard algorithm
(CGA) has been developed that splits and merges edges ac-
cording to deformation criteria. The details are explained in
Dong and Wang (2013). For the computation of diagnos-
tics, the �elds are mapped to a regular latitude–longitude
grid (which is also done for coupling with physical param-
eterizations). This mapping is �rst-order, mass-conservative
and shape-preserving. Note that the prognostic �elds are al-
ways retained in Lagrangian space, so the mapping is only
for computing diagnostics (and tendencies from the physi-
cal parameterizations). Coupling between tracer mass and air
mass is trivial since the scheme retains Lagrangian volumes
for tracer mass and air mass throughout the integration.

2.2.4 Hybrid Eulerian–Lagrangian

An alternative approach is to retain both a fully Lagrangian
and Eulerian representation of all prognostic variables as
done in the hybrid Eulerian–Lagrangian (HEL) scheme
(Kaas et al., 2013). In HEL the Lagrangian solution, based on
tracing Lagrangian parcels (effectively solvingD�=Dt D 0),
is used to nudge the Eulerian solution toward the Lagrangian
solution that exactly preserves tracer correlations and tracks
gradients very accurately. In the Lagrangian solution, mixing
between neighboring parcels is done using directionally bi-
ased diffusion based on the local deformation rate of the �ow.
The mixing is introduced to prevent long-term development
of unresolvable deformation into parcel �laments, which one
may also describe as aliasing in Lagrangian space. The Eu-
lerian solution is simply a �rst-order forecast; in this case, a
�rst-order version of CSLAM is used. Hence HEL is cate-
gorized under �nite-volume semi-Lagrangian schemes, and
the Lagrangian parcel part of the algorithm is viewed as a
shape-preserving limiter in the context of this intercompari-
son. Lagrangian parcel values are used to nudge the shape-
preserving low-order Eulerian solution using an algorithm
that ensures mass conservation and shape preservation.

For comparison the scheme has also been run in an aliased,
and therefore unphysical, setup without the directional dif-
fusion (abbreviated HEL-ND; No Diffusion); thus, the La-
grangian parcels retain their initial values throughout the
simulation. If using exact trajectories, HEL-ND has no er-
rors at the end of the simulation since the parcels will have
returned to their initial position without altering their initial
value. In the test cases presented here, the trajectories are not
exact, and the error norms are therefore non-zero. Note that
this is not the case for HEL since the mixing/diffusion is ir-
reversible.

The scheme uses the same coupling between �uid density
and tracer mass as the CSLAM scheme, although the nudg-
ing of Eulerian cell averages is done separately for density
and mass, but constrained by monotonicity in tracer mixing
ratio. The HEL scheme is general in the sense that any shape-
preserving and mass-conservative scheme can be used for the
Eulerian forecast. The HEL scheme has also been tested suc-
cessfully in a dynamic shallow water model with strongly
varying surface topography (Kaas et al., 2013).

2.3 (Semi-)Lagrangian grid point

Some schemes, such as traditional grid-point semi-
Lagrangian schemes, are based on the advective form of the
continuity equation for mixing ratio� ,

D�
Dt

D 0: (10)

The FARSIGHT scheme (White and Dongarra, 2011)
is based on Eq. (10) and discretized on an equiangu-
lar gnomonic cubed-sphere grid. It is an upstream semi-
Lagrangian scheme that computes departure points for each
grid point using backward trajectories based on numerical
derivatives of the wind �eld at the later time. The scheme
then sets� at each grid point to the interpolated value (third-
order for FARSIGHT) at its departure point. The scheme
allows for long time steps as long as the trajectory algo-
rithm converges (Lipschitz criterion). FARSIGHT performs
best at Courant numbers of 10–20 and has large errors at
low Courant numbers (White and Dongarra, 2011). Schemes
based on Eq. (10) are usually not inherently mass conserva-
tive, and it is common practice to apply global mass �xers
that “ad hoc” restore global mass conservation. FARSIGHT
uses a global mass �xer that also locally constrains the mix-
ing value to remain within a prede�ned interval. Hence the
scheme is not necessarily locally shape-preserving. The par-
allel implementation uses dynamic communication to al-
low arbitrarily �ne domain decomposition regardless of time
step. However, it does incur the expense of a global synchro-
nization at each time step, and the mass �xer uses global re-
ductions. For this class of schemes, free-stream preservation
is trivial since a constant� will remain constant through-
out the simulation and� does not appear in the transport
Eq. (10).

The spectral bicubic interpolation scheme (SBC,
Enomoto, 2008) is a traditional semi-Lagrangian grid-point
scheme in Eq. (10) based on spectral transforms on a
latitude–longitude Gaussian grid (Ritchie, 1987). The zonal,
meridional, and cross derivatives are calculated using the
spectral transform method and are then fed into the bicubic
interpolation formula providing a fully two-dimensional
interpolant (no directionally splitting that is commonly
applied in traditional semi-Lagrangian schemes). The
number of zonal grid points is about twice the truncation
wave number (linear Gaussian grid) rather than about three
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times (quadratic Gaussian grid) since the nonlinear terms are
hidden in the interpolation (Côté and Staniforth, 1988). The
linear Gaussian grid (thus larger truncation wave number)
gives better accuracy for the same number of grid points,
especially at low resolutions.

Trajectories are computed using the traditional method
based on bilinear interpolation along great circles (Stani-
forth and Côté, 1991). A two-time-level scheme (Temper-
ton and Staniforth, 1987) is implemented for ef�ciency. It
is con�rmed that the two-time-level scheme gives exactly the
same results as the three-time-level scheme used by Enomoto
(2008). The time extrapolation is not used since the wind
�elds are known analytically at any timet. Time integration
is conducted in spectral space with the unlimited scheme.
In physical space, it is conducted with the shape-preserving
scheme.

This scheme does not formally conserve mass and is not
inherently shape-preserving although the interpolation it-
self is very accurate; overshoots and undershoots are much
smaller compared to traditional quasi-cubic interpolation
(Ritchie et al., 1995). A simple global mass �x scheme based
on a variational formulation by Sun and Sun (2004) is used.
Shape preservation is enforced by a quasi-monotone scheme
by Nair et al. (1999). The quasi-monotone scheme is an im-
proved version of Sun et al. (1996) that applies the Bermejo
and Staniforth (1992) �lter.

2.4 Lagrangian parcel methods

Instead of periodically (every time step for FARSIGHT
and SBC) remapping between a Lagrangian and Eulerian
mesh, one may also trace the Lagrangian parcels through-
out the integration (e.g., Chorin and Marsden, 2000; Cottet
and Koumoutsakos, 2000) similar to the Lagrangian �nite-
volume method described above (TTS-I). This method is re-
ferred to as the Lagrangian particle method, and its imple-
mentation in this intercomparison will be referred to as LPM
(Bosler, 2013). Apart from different remapping to Eulerian
grids, LPM is similar to HEL without diffusion (i.e., HEL-
ND). Obviously, any set of parcels can be traced. LPM traces
quadrilaterals of a cubed-sphere mesh or the triangles of an
icosahedral triangular mesh by both tracing the centers and
vertices of the control volumes. The parcel trajectories are
computed using a fourth-order Runge–Kutta method.

2.5 Series-expansion methods

Transport scheme algorithms in which the solution is pro-
jected onto a set of basis functions through a minimization
procedure are broadly referred to as series-expansion meth-
ods as for example explained inDurran (2010). The spectral
transforms used in the SBC scheme are also based on se-
ries expansions (global). However, since the expansions are
only used to provide gradients for the Lagrange interpolant,
the SBC scheme is not categorized as a series-expansion

scheme. In this intercomparison one scheme (with several
variants) under this category participated and is referred
to as HOMME (High-Order Methods Modeling Environ-
ment). HOMME is a dynamical core framework that cur-
rently accommodates spectral element (Thomas and Loft,
2005; Dennis et al., 2005), discontinuous Galerkin meth-
ods (Nair, 2005; Nair et al., 2009), and �nite-volume meth-
ods (Erath et al., 2012) on conforming quadrilateral grids
on a sphere. A gnomonic cubed-sphere grid de�nes the el-
ements, and each element is populated with Gauss–Lobatto–
Legendre nodes for integral evaluations used in the transport
operators.

The HOMME version used here is a continuous Galerkin
�nite element method that relies on globally continuous
polynomial basis functions of orderp (here withp D 3 and
p D 6). Although HOMME has the capability to solve the
transport equation in advective form, it is solved in �ux form
(one equation for�� and one for� ) for exact conservation.
A compatible discretization method is used that guarantees
mass conservation (Taylor and Fournier, 2010). Time step-
ping in HOMME is via an explicit three-stage strong sta-
bility preserving Runge–Kutta method. For shape preserva-
tion � D .��/

� is recovered after each Euler time step in the
Runge–Kutta method. The quasi-monotone limiter (shape-
preserving �lter) for � is based on an optimization problem
with equality and inequality constraints (Taylor et al., 2009;
Guba et al., 2013).

There is a signi�cant dependency of the simulation quality
on the choice of the fourth-order hyperviscosity coef�cient
for low-resolution simulations with HOMME. For speci�c
choices used in HOMME, see Appendix A8.

HOMME has been incorporated as a dynamical core op-
tion in NCAR's Community Atmosphere Model (CAM,
Evans et al., 2013). The con�guration using the HOMME
spectral element dynamical core in CAM is referred to as
CAM-SE (Dennis et al., 2012). The test case suite was also
run with CAM-SE (equivalent to HOMME-p3) but using the
fourth-order hyperviscosity coef�cients for climate simula-
tion in CAM (see Appendix A2 for details).

3 Results

In this section the results for the transport schemes that par-
ticipated in this comparison are presented and discussed.
Horizontal resolutions are speci�ed in terms of average grid
spacing at the Equator. The test case suite works with three
resolutions1� V1:5� , 0:75� , and1� m (the latter is scheme
dependent and de�ned in Sect. 3.2), where� denotes the lon-
gitude. The identical grid spacing is also selected for the lat-
itudinal direction. The native grid parameters corresponding
to these three average grid spacings at the Equator can be
found in the Appendix for the respective schemes. In addi-
tion, we make extensive use of CNs, which are also speci�ed
in terms of1� , so local CNs may differ from the “global”
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CN for schemes implemented on non-isotropic grids. Again
the reader is referred to the scheme-speci�c Appendix to �nd
time steps1t corresponding to speci�c CNs at any of the
three resolutions. Data used to make histograms are avail-
able as supplemental material. The test case speci�cation
consists of two analytical �ow �elds (one non-divergent and
one divergent) designed to deform initially well-resolved ini-
tial conditions into thin �laments half way through the sim-
ulation (t D T =2, whereT is the period). Thereafter the de-
formational part of the �ow reverses so that the tracer dis-
tributions return to their initial condition att D T. The de-
formational �ow is superimposed on a constant zonal �ow
to challenge the schemes further and to guarantee that er-
rors do not cancel when the deformational �ow reverses. The
initial conditions are based on distributions ranging from in-
�nitely smooth surfaces to discontinuous slotted cylinders.
The distributions are placed into the western and eastern
hemisphere, respectively, so that model developers can inves-
tigate the symmetry of the computed solutions. A series of di-
agnostics are used to assess various aspects of accuracy. For
speci�c details on the test suite setup, we refer to LSPT2012.

Not all models provided a complete data set and/or ran
the suite exactly complying with the test case speci�cations.
When data are missing or non-existent in histograms, the
value is set to� 1. In scatterplots it will be clearly marked
“NO DATA” if the data are missing. If modelers have diverted
slightly from the exact test case descriptions, it will be noted
in the text. We have chosen not to exclude models that did
not submit a complete data set as the data they did submit
do, in our opinion, provide meaningful insights. It should be
noted that for schemes that are inherently shape-preserving
(HEL, LPM, TTS), i.e., for schemes for which there does not
exist an unlimited version, the unlimited data are marked as
“NO DATA” or “ � 1”.

The tests are grouped into six categories assessing the fol-
lowing:

1. numerical order of convergence using smooth Gaus-
sian hills initial conditions,

2. “minimal” resolution using cosine bell initial condi-
tions,

3. ability of the transport scheme to preserve �laments
using cosine bells,

4. ability of the transport scheme to transport “rough”
distributions using slotted cylinder initial conditions,

5. ability of the transport scheme to preserve pre-existing
functional relations between tracers,

6. ability of the transport scheme to deal with divergent
�ows (Nair and Lauritzen, 2010).

These topics are discussed in separate sections below.

3.1 Numerical convergence rates: Gaussian hills

The goal of this test is to estimate numerical convergence
rates for the normalized error norms` i , which are referred to
asKun

i for the unlimited scheme and (if applicable)Ksp
i for

the shape-preserving version of the scheme, wherei D 2; 1 .
Gaussian hills and the non-divergent �ow �eld are used for
the initial conditions. Normalized error norms are computed
after one period (T) when the analytical solution is readily
available. The initial condition is in�nitely smooth (C1 ) so
that the smoothness of the initial condition is not a limiting
factor for numerical convergence rates. WithC1 initial condi-
tions, for example, one cannot necessarily expect to achieve
numeral convergence rates matching the formal order of ac-
curacy for higher order schemes (see, for example, Harris
et al., 2010). The meridional component of the velocity �eld
v is not in�nitely smooth at the poles. However, since all
�elds are constant at the poles (and in the vicinity of the
poles) and since all metrics are based on mixing ratio� and
not tracer mass, this lack of smoothness in the derivative ofv
has not been found to in�uence the results. Hence this setup
was designed to assess “optimal” convergence rates given the
smoothness of the initial condition andv.

The numerical convergence rates are computed using a
least-squares linear regression of the form

log.` i / D A i � K i log.1�/; i D 2; 1 ; (11)

whereK i denotes constants for the resolution range approx-
imately 3� to 0:3� (a Gnuplot script was made available as
supplemental material in LSPT2012 to perform the least-
squares regression). Note that the resolution range has de-
liberately been chosen to include a rangeTf1�; 3� U, where
f1� > 0:1� . With the 3� grid spacing, the mixing ratio dis-
tributions may be marginally resolved. The main interest
is not asymptotic convergence rates, which should be close
to the theoretical convergence rate, but rather the effect of
marginally resolved features in the convergence rate compu-
tations.

Convergence plots for̀i , i D 2; 1 , for the unlimited and
shape-preserving versions of the schemes are given in Figs. 1
and 2. The schemes have been grouped according to imple-
mentation grid. An accompanying histogram (Fig. 3, middle)
depicts the convergence rate for` i , i D 2; 1 . The ordering
of the data in the histogram will become clear as we discuss
“minimal” resolution in the next section. For the convergence
study the CN is held �xed. The labels on the convergence
plots and histograms include the CN appended to the scheme
acronym.

The histogram graphically depicts the range of conver-
gence rates represented by the ensemble of models. They
span from �rst-order convergence rates to sixth-order for the
unlimited schemes. Hence, the ensemble of models that par-
ticipated in this intercomparison span a signi�cant range of
formal accuracies. Several observations are made regarding
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Fig. 1.Convergence plots for̀2 (�rst and third rows) and̀ 1 (second and fourth rows) for the unlimited (�rst column) and shape-preserving
(second column) versions of schemes based on cubed-sphere and two-patch grids. Optimal convergence rates are based on linear least-square
regressions to this data. Thin grey lines on each plot show slopes of second- and third-order convergence (top and bottom, respectively).
Initial conditions are the in�nitely smooth Gaussian hills, and the normalized error norms are computed at timet D T.

“optimal” convergence rates and will be discussed in sepa-
rate sections below.

3.1.1 Reaching asymptotic convergence

Together with the absolute errors that will be commented
on in the discussion of “minimal” resolution, perhaps the
most striking observation to be made regarding the con-
vergence plots (Figs. 1 and 2) is that models transition
from sub-optimal convergence to asymptotic convergence
rates at different resolutions. Some models converge at full

order for ` 2 already at the lower end of the resolution
range for which we assess numerical convergence (e.g.,
CAM-FV, CCSRG, CSLAM, HEL, HEL-ND, FARSIGHT-
CN10.4, SBC, SFF-CSLAM3, UCISOM, UCISOM-CS),
whereas other schemes reach “optimal” convergence rates
at �ner resolutions (e.g., CLAW, CAM-SE, FARSIGHT-
CN1.0, HOMME, SFF-CSLAM4, SLFV-ML/SL, MPAS,
ICON). Common for the schemes that converge asymptoti-
cally throughout the resolution range is that they converge at
rates equal to or less than two,K2 � 2, except for the third-
order CSLAM, SFF-CSLAM3, and CCSRG schemes that
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Fig. 2. Same as Fig. 1 but for schemes de�ned on a regular latitude–longitude grid (rows 1 and 2) and icosahedral/Voronoi meshes (rows 3
and 4). Note that the LPM scheme was run with �xed time step and not with �xed Courant number; therefore no CN value is appended to
the LPM label. For easier comparison they axes are identical on all optimal convergence �gures.

converge asymptotically already at approximately 3� resolu-
tion. Other higher order schemes that are formally third-order
(MPAS), fourth-order (HOMME-p3, SFF-CSLAM4), and
seventh-order (HOMME-p6) do not converge at the asymp-
totic rate at the lower end of the resolution range. The effect
of hyperviscosity coef�cient on convergence rates for spec-
tral element advection can be observed by comparing CAM-
SE and HOMME-p3 (Fig.1). Another fact contributing to the
discrepancy is the fact that in CAM-SE the transport test is
implemented using theoffline_dyn option for which the
winds are held �xed throughout the tracer time step, whereas
in HOMME the winds are updated at every Runge–Kutta
step.

3.1.2 Shape-preserving �lters and convergence rates

When examining the histograms for “optimal” convergence
rates for̀ 2 and` 1 (Fig. 3 middle and lower, respectively), it
is immediately apparent (with the exception of CLAW, FAR-
SIGHT, SBC), and not surprising, that shape-preserving �l-
ters reduce convergence rates. The most striking reductions
in K2 are for the higher order schemes such as HOMME-p6,
HOMME-p3, and SFF-CSLAM4 for which the convergence
rates are reduced by four, two, and two, respectively. The for-
mally third-order schemes CSLAM, MPAS, SFF-CSLAM3
see reduction of convergence rates of about 0.5. Schemes
that are approximately second-order accurate are less af-
fected (in an absolute sense) by shape-preserving �lters. The
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observations made forK2 also hold in a qualitative sense for
K1 . We also note that a posteriori shape-preservation �l-
ters/�xers do not affect convergence rates (FARSIGHT and
SBC).

3.1.3 Time step and convergence

LSPT2012 encouraged modelers to provide data for differ-
ent CNs (the CN here refers to the maximum zonal CN;
see Eq. 24 in LSPT2012), especially for schemes allow-
ing for long time steps (CN> 1) such as (semi-)Lagrangian
schemes. CSLAM, for example, was run with CND 1.0 and
CND 5.5. It is observed that as the time step is reduced
with CSLAM, the absolute errors increase since an increased
number of remappings implies increased spatial errors until
the distribution can be represented by the polynomial recon-
struction functions (Fig. 1, row 1 and 2). Since the CSLAM
scheme was run with semi-analytic trajectories, temporal
errors (due to trajectory computations) are minimal. The
asymptotic convergence rates for CSLAM are not affected
by time step in this setup. Similar observations are made for
the CCSRG.

The SBC scheme is also a semi-Lagrangian scheme, and,
contrary to the CSLAM setup, inexact trajectories were used.
At lower resolutions the spatial errors dominate so the ab-
solute errors increase with a decreased time step (similar
to CSLAM). However, at high resolution the temporal er-
rors start to dominate the standard error norms; with CND 1
SBC solutions become more accurate than the CND 5.5 so-
lutions when the resolution is �ner than approximately1� D
0:375� . In other words, the temporal errors start to dominate
as the distributions are very well represented by the basis
functions used in SBC at high resolution.

The Eulerian scheme used in the ICON model was run
at CND 0.2 and CND 0.6 (Fig. 2, row 3 and 4). Contrary
to the semi-Lagrangian schemes, the solutions achieved with
longer time steps have larger errors throughout the resolu-
tion range. Since ICON-FFSL is based on a low-order spa-
tial reconstruction function, it is unlikely that the error is
dominated by time-truncation errors throughout the resolu-
tion range. Rather it appears more likely that the larger CN
errors are due to the simpli�ed �ux approximation for which
errors increase with larger CNs due to more of the �ux-area
integrations being based on extrapolation of reconstruction
functions.

For CAM-FV it is observed that the large CN solution
(CND 1.2) has smaller absolute errors than the CND 0.2
simulations (Fig. 2, row 1 and 2). Although the splitting
errors in the dimensionally split CAM-FV scheme increase
with CN, these errors do not dominate for this test case setup.
Semi-analytic “trajectories” were used (analytic wind evalu-
ations atn C 1=2 were used in the simulations), so, as for
CSLAM, the temporal errors due to “trajectories” can be ex-
pected to be small. In conclusion, the absolute errors for the
two-time-level CAM-FV solutions are dominated by spatial

errors (number of �ux evaluations increases with decreased
CN).

3.2 “Minimal” resolution 1� m: cosine bells

Rather than assessing convergence rates, this test focuses on
absolute errors. In other words, we ask at what resolution
modelers need to run their model to achieve a certain so-
lution quality. The solution quality is quanti�ed in terms of
the` 2 error norm for solutions using the same non-divergent
�ow �eld as above but with less smooth (C1) initial condi-
tions. A less smooth initial condition is chosen to challenge
the schemes with a more realistic (in terms of smoothness)
initial condition compared to the in�nitely smooth Gaussian
hills. This is similar to the setup used in Williamson et al.
(1992) where both the advection test and shallow water to-
pography (test 5) useC1 functions for mass distribution and
surface height, respectively.

Basically, the modelers repeated the numerical conver-
gence test (Sect. 3.1) with cosine bell initial conditions. The
“minimum” resolution is de�ned as the resolution (speci-
�ed in terms of average grid spacing at the Equator) for
which the normalized̀2 error norm is approximately 0.033.
This threshold was chosen based on CSLAM experiments for
which the �laments were resolved in the sense that asymp-
totic convergence is reached; for CSLAM-CN5.5 asymptotic
convergence with cosine bell initial conditions is reached at
approximately1� D 1:5� for which ` 2 � 0:033. The mini-
mum resolution is estimated from a convergence plot (see
Fig. 4 in LSPT2012) and should be computed without and
(if applicable) with shape-preserving �lters. The “minimal”
resolution used in the remainder of the test case suite should
be1� m for the unlimited scheme.

The “minimal” resolutions for the different schemes are
depicted graphically in the histogram in Fig. 3 (top row).
First of all, the1� m range is from approximately 1=10� to
over 2� resolution. This is a remarkable difference in reso-
lution to achieve the same “quality” solution. In Fig. 3 the
same ordering is used for the histograms, making it easier
to compare “optimal” convergence rates visually with “min-
imal” resolutions. The histograms forK i do not constitute a
monotonically increasing quantity going from left to right in
the histogram plots. In other words, high-order convergence
rates do not necessarily result in coarser “minimal” resolu-
tions or vice versa; in fact there seems to be no clear corre-
lation betweenK i and1� m in the resolution range consid-
ered here. This is perhaps even more apparent in the “scatter-
like” plot in Fig. 4. In fact, some of the schemes that are
among the best performing schemes regarding1� m (e.g.,
UCISOM, LPM) perform poorly in terms of convergence
rate. Had the test been run in a (high-resolution) asymptotic
convergent regime,K i and 1� m would most likely be in-
versely related. However, as mentioned the test is designed
to challenge schemes near the resolution limit rather than
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Fig. 3. Histogram of minimal resolution1� m (upper),K i , i D 2; 1 , which are the “optimal” convergence rates for` 2 (middle) and` 1
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focusing on resolutions for which the spatial distributions of
tracers are well-resolved.

Shape-preserving �lters (with the exception of CLAW,
FARSIGHT and SBC) reduced “optimal” convergence rates.
The effect of shape-preserving �lters on the “minimal” res-
olution seems to go both ways (Fig. 3, top). That is, some
schemes increase accuracy (1� m increases) when the shape-
preserving �lter is used (most notably with MPAS, ICON,
SBC, CLAW), whereas other schemes experience a de-
crease (HOMME-p3, HOMME-p6, CSLAM). It is noted that

ICON/MPAS and CLAW use FCT and TVD-type �ux lim-
iters, whereas CSLAM uses a slope limiter. Results that
contrast unlimited and shape-preserving “minimal” resolu-
tions are not available for CAM-FV, CCSRG, UCISOM, and
UCISOM-CS since only shape-preserving data are available
for those models.

In general it is also noted that the “minimal” resolu-
tions for schemes de�ned on icosahedral/Voronoi grids have
�ner 1� m than schemes de�ned on cubed-sphere and regu-
lar latitude–longitude grids. That said, since the measure of
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not labeled with a scheme acronym. The purpose of this �gure is to
show that there is not necessarily a correlation between “optimal”
convergence rate and “minimal” resolution.

resolution is the average resolution at the Equator, the reg-
ular latitude–longitude grids have more degrees of freedom
than cubed-sphere and icosahedral grid-based models. In this
discussion we have not considered how amenable spherical
grids and schemes are to mesh-re�nement applications.

3.3 “Filament” preservation diagnostic ` f : cosine bells

All tests above were based on traditional error norms com-
puted at timet D T when the �ow, in the absence of any nu-
merical errors, has advected the distributions back to their
initial position and shape. As discussed in Lauritzen and
Thuburn (2012), the �rst half of the simulation, where rel-
atively well-resolved features collapse in scale (att D T =2
the initial condition cosine bells have been deformed into
thin �laments), is typical for atmospheric �ow. The second
half of the simulation (t 2 TT =2;T U) does not resemble typ-
ical observed �ow patterns, but it is very convenient for ob-
taining an analytical solution under complex �ow conditions.
Partly motivated by that, a series of diagnostics were devel-
oped for which an analytical solution is not needed, and one
can thereby assess accuracy at any point in time. For exam-
ple, before the “unphysical” �ow reversal att D T =2, one
could expect the schemes to be most challenged at least for
semi-Lagrangian and Eulerian schemes.

One such diagnostic is the �lament diagnostic that is de-
signed to diagnose how well the thin �laments that develop
at t D T =2 are preserved. It takes advantage of the fact that
in continuous space the area spanned by tracer values larger
than some threshold value is conserved for a non-divergent
�ow �eld. The �lament diagnostic, ` f (for a mathematical
de�nition of ` f , see LSPT2012), is designed to quantify how
well �laments are preserved in terms of how well a scheme

preserved the total area for which� is larger than a threshold
value� .

The cosine bell initial conditions are chosen for this test
as they are quasi-smooth (but not in�nitely smooth) and
have mixing ratio values that span the entire range from the
background value of 0:1 to the peak value,� D 1:0. Slotted-
cylinder initial conditions, for example, only have two val-
ues, and simulations using that initial conditions would there-
fore not give information on how well the scheme maintains
continuous and varying gradients.

The perfect scheme will havèf close to 100 for all val-
ues of� . We say “close” to 100 and not exactly equal to 100
since for Eulerian/semi-Lagrangian schemes that use a �xed
grid one would need to truncate the exact Lagrangian solu-
tion (for which ` f D 100 for all t) to the �xed Eulerian grid
for the computation of̀ f ; however, that truncation error is
likely orders of magnitude below the numerical truncation
errors (numerical diffusion and dispersion errors) introduced
by the scheme itself. For fully Lagrangian schemes based
on parcels, this test forces modelers to de�ne areas associ-
ated with the Lagrangian parcels. Cell-integrated Lagrangian
schemes that track cells throughout the integration can test
how well the scheme preserves areas.

As explained in LSPT2012, a highly diffusive scheme
tends to increasèf for lower threshold values� (except
� D 0:1 for which ` f decreases) and decrease` f for higher
values of� (see Fig. 6a in LSPT2012). In other words, when
the base of the cosine bells is diffused, more area is covered
by lower values of� and less area is covered with higher
(near peak) values of� .

The �lament diagnostic gives insight into how gradients
are distorted in terms of the ability to preserve the area of the
domain in which the mixing ratio is larger than the thresh-
old value� . If the ` f .� / curve is smooth and monotonically
decreasing as a function of� , the schemes diffusive char-
acteristics are smooth and continuous. Schemes that tend to
steepen gradients will spuriously force` f .� / > 100 for rel-
atively large� values. Schemes that make use of “ad hoc”
�xers (that also alter gradients) may produce an oscillatory
` f .� / curve.

Figure 5 shows the �lament preservation diagnostic` f (at
t D T =2) using the cosine bell initial condition for the unlim-
ited and (if applicable) limited/�ltered schemes at resolutions
1:5� and 0:75� . Results for` f at the “minimal” resolution
1� m are not shown although requested in LSPT2012. As
for the convergence plots, data have been arranged according
to discretization grid. We also show a “minimal-� ” �lament
preservation diagnostics as histograms in Fig. 6. That is, the
y axis on the histogram is the� value for which̀ f is 80; this
� value is referred to as� m and computed by solving

` f .� D � m/ D 80; (12)

which here is computed by �tting a polynomial through the` f
data points near the crossing of` f .� / and` f D 80. Note that
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the solution to Eq. (12) is not multivalued for the data con-
sidered here. For example, if� m D 0:6, then 80 % of the area
associated with mixing ratios larger than 0.6 is preserved. In
other words, the larger� m is, the better the scheme preserves
the “peaks” of the cosine bells.

The histogram in Fig. 6 is mainly shown to investigate vi-
sually if there is a relationship between “minimal resolution”
and� m. Had there been a simple linear relationship, the val-
ues of� m would decrease/increase from the left to right in the
histogram. As for the numerical convergence rates (Fig. 4),
there is no simple relationship indicating that` f measures
other aspects of accuracy than1� m. That said, there is a

tendency of increased� m from left to right with some out-
liers. For example, UCISOM-CN1.0/5.5 performs exception-
ally well compared to the schemes with similar “minimal
resolution”. Similarly, but in a opposite sense, HEL-CN1.0
performs worse than its “neighbors” in the histogram.

Perhaps more interesting in the context of` f is to focus
on the shape of̀ f as a function of� . First of all, the more
diffusive schemes tend to collapse toward a straight line with
negative slope for� approximately inT0:2 V0:8U, whereas the
less diffusive schemes tend toward a straight line with no or
small negative slope. The smoothness of the` f curve may in-
dicate non-physical “ad hoc” �xers or anti-diffusive aspects
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Fig. 6.A histogram of threshold value� for which the �lament preservation diagnostic` f .� / is approximately 80.0 at resolution 1:5� for the
unlimited (red) and shape-preserving (green) versions of the schemes. Above each column the value of� is written (if � D � 1, there are no
data for that scheme con�guration).

of a scheme. For example, the FARSIGHT scheme uses an
“ad hoc” �xer for mass conservation and shape preserva-
tion. The ` f curves, in particular for FARSIGHT-CN10.4,
are oscillatory and non-monotone. The SFF-CSLAM4 and
CAM-FV0.2 schemes have a rather wide range of� values
(approximately� 2 T0:6 V0:8U) for which ` f exceeds 100.0,
which is likely due to steepening of gradients. In conclusion,
there are indications that this metric is most useful for test-
ing schemes employing “ad hoc” �xers or schemes with anti-
diffusive terms or other mechanisms that may steepen gradi-
ents. Note that this metric will not capture if the location of
the �laments is incorrect (phase errors).

3.4 Transport of “rough” distribution: slotted cylinder

To assess how schemes perform with a rough (discontinu-
ous) initial condition, we show contour plots of solutions at
t D T =2 for slotted-cylinder initial conditions and the same
non-divergent �ow as used in all tests above. The slotted
cylinder has been used extensively in the solid-body ad-
vection test case to demonstrate that shape-preserving lim-
iters effectively eliminate spurious grid-scale oscillations.
Contrary to traditional speci�cations of the slotted-cylinder
initial condition, we have chosen to overlay it by a back-
ground value of� D 0:1 instead of a zero background value.
Again, this is motivated by typical conditions found in the at-
mosphere where structures in tracer distributions frequently
overlay some smooth background distribution. In that case,
positivity preserving limiters will not eliminate undershoots
near the discontinuity.

Contour plots for mixing ratio att D T =2 based on slot-
ted cylinder initial conditions are shown in Figs. 7, 8, 9, and
10 (again, data are grouped according to the discretization
grid). In the LSPT2012 test case, speci�cation modelers were
asked to report on conventional error norms (att D T) in ad-
dition to showing contour plots (att D T =2). Here we have
chosen not to depict/list the conventional error norms as we
did not �nd any qualitative insights that were not visible in

the contour plots (the error norms are available in the supple-
mental material for the interested reader). So in the interest
of reducing the number of �gures/tables, errors` 2, and` 1 ,
as well as the minimum and maximum norms, are not shown.

All contour plots use the same coloring scale and contour
interval making it straightforward to compare schemes vi-
sually. It is immediately apparent, most notably in the areas
away from the slotted cylinders where the �eld should be
constant, whether a scheme is not strictly shape-preserving
(light blue contour �lling). Almost all unlimited schemes
show “ripples” in this area. Similarly, overshoots over the
slotted cylinders are immediately visible (dark red contour
�lling). The wavelength of the spurious oscillations is related
to the formal order of the schemes. For example, the oscilla-
tions for HOMME-p6 have a much shorter wavelength than
those observed for ICON.

This test, however, was speci�cally designed to assess
whether shape-preserving �lters truly eliminate undershoots
and overshoots while still preserving extrema. Finite-volume
scheme based on rigorous �ux computations and/or FCT lim-
iters completely eliminate undershoots/overshoots (CSLAM,
ICON, MPAS). For schemes based on simpli�ed �uxes and
not using FCT limiters, small undershoots are visible (SFF-
CSLAM3/4, CAM-FV1.2). The UCISOM scheme has a
strictly shape-preserving limiting option. However, to avoid
“excessive” diffusion, the limiter has been relaxed, which ex-
plains the undershoots with that scheme. If a scheme shows
ripples with a strictly shape-preserving �lter, then it may be
due to inconsistent coupling between the air mass and tracer
mass �elds when the mixing ratio is extracted. For example, a
scheme that is not “free-stream”-preserving will suffer from
this de�ciency.

The ability of the scheme to preserve the “plateau” of
the slotted cylinders seems to be closely related to “mini-
mal” resolution in a qualitative sense except for the UCI-
SOM and HEL scheme that perform better than would be
expected from their1� m ranking. Not surprisingly the more
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Fig. 7. Contour plot of� at t D T =2 using “rough” initial condition at approximately 1:5� (columns 1 and 2) and 0:75� (columns 3 and 4)
resolution without (columns 1 and 3) and with (columns 2 and 4) shape-preserving �lter for a subset of transport schemes implemented on a
cubed-sphere grid. The scheme acronym is shown in the lower left corner of each plot.

diffusive schemes that have a smaller1� m also diffuse the
slotted cylinders. The pure Lagrangian schemes obviously
maintain the discontinuities in the slotted cylinder better than
the Eulerian/semi-Lagrangian schemes.

3.5 Preservation of pre-existing functional relation:
cosine bells and correlated cosine bells

All known tests for linear transport on a sphere consider as-
pects of accuracy in a single-tracer setup. As discussed in
detail in Lauritzen and Thuburn (2012), the accuracy with
which schemes maintain relations between tracers is of sig-
ni�cant interest in chemistry–climate and climate model-
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Fig. 8.Same as Fig. 7 for the remaining scheme de�ned on a cubed-sphere grid and two-patch grid (CLAW). For plots showing “CONSTANT
FIELD – VALUE IS 0.1”, no data are available.

ing. To assess how well interrelated tracers are simulated
in an idealized setup, we use the same �ow �eld as before.
Two cosine bell distributions, with mixing ratio� and ac-
companying “correlated” mixing ratio� , are advected sep-
arately. The latter is related to the former initial condition
through a non-linear (polynomial) relation (black curve on
the scatterplots; Figs. 11, 12, 13, and 14). For any Eulerian or
semi-Lagrangian scheme known to the authors, scatter points
will deviate from the pre-existing functional curve as the

simulation progresses. In a purely Lagrangian scheme with
no explicitly added mixing (for example, contour surgery)
where parcels are traced throughout the simulation, any re-
lation between tracers is maintained, and hence the scatter
points are stationary in the correlation plots.

The way in which scatter points deviate from the poly-
nomial curve has consequences for the physical realizability
of the mixing introduced by the scheme. When mixing oc-
curs in the atmosphere, scatter points (for example, located in
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Fig. 9.Same as Figs. 7 and 8 but for regular latitude–longitude grid-based models.

two different air masses) will move toward each other along
straight lines in the scatterplot. These lines are called mix-
ing lines. The area spanned by all possible mixing lines is
referred to as the “convex hull” and is the bow-shaped area
on the scatterplots. If the scatter point moves into any area

that is not the convex hull, the mixing that the scheme in-
troduces is unphysical unmixing. Following Lauritzen and
Thuburn (2012), this unmixing is categorized into two types
(for graphical illustration see Fig. C1 in LSPT2012) – range-
preserving unmixing that is unmixing within the range of the
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Fig. 10.Same as Figs. 7, 8, and 9 but for icosahedral grid-based models. (LPM resolution for 1.5 and 0.75 is 2.16 and 1.8.)

range of the initial condition. Note that in the scatterplots
(Figs. 11, 12, 13, and 14), only the upper part of the range-
preserving unmixing area is marked with solid black lines;
the triangular area below the convex hull also belongs to the
range-preserving unmixing area and “overshooting” that is
the remaining area on the scatterplot. When scatter points
shift into the convex hull, the mixing is categorized as “real”
mixing.

Associated with each area are mixing diagnostics that
quantify the mixing in terms of normalized distances from
the pre-existing functional curve (Fig. B1 in LSPT2012):` r
for “real mixing”, ` u for range-preserving unmixing, and` o
for overshooting (for de�nitions of̀ i , i D “r”, “u”, and “o”,
see Lauritzen and Thuburn, 2012). Following LSPT2012 the
` i is computed half way through the simulation,t D T =2,
when the initial distributions are most deformed. As for
the �lament diagnostic̀ f , the mixing diagnostics̀i do not
require any knowledge of the analytical solution. In fact,
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Fig. 11.Scatterplots (for subset of cubed-sphere models) att D T =2 for the cosine bell and correlated cosine bell initial conditions for� and
� , respectively. First and third columns are for the unlimited schemes, and second and fourth columns are for the shape-preserving schemes.
The �rst two columns are for simulations at1� � 1:5� , and the last two columns are for1� � 0:75� . The scheme acronym is shown in the
lower left corner of each scatterplot with the maximum Courant number (CN) appended. Above the scheme acronym the mixing diagnostics
(“real” mixing ` r, range-preserving unmixing̀u, overshooting̀ o) are given.
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Fig. 12.Same as Fig. 11 for the remaining cubed-sphere models.
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Fig. 13.Same as Fig. 11 for models de�ned on a regular latitude–longitude grid.
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Fig. 14.Same as Fig. 11 for models de�ned on an icosahedral/Voronoi mesh.

and contrary to the �lament diagnostic, which relied on the
wind �eld being non-divergent, the mixing diagnostics can
be applied in any �ow setting and is hence more generally
applicable. For a three-dimensional extension of this test
case, see Kent et al. (2013).

The values for the mixing diagnostics for each scheme
are shown in the lower left corner of each scheme's scatter-
plot. The mixing data are also shown in histogram format in
Fig. 15, wherè i has been normalized with CSLAM values
to provide a reference. Before discussing the quanti�cation
of the mixing, it is insightful to analyze the scatter data qual-
itatively.
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Mixing diagnostics at resolution Dl m

Fig. 15.A histogram of mixing diagnostics (stacked) at resolutions1� � 1:5� (upper),1� � 0:75� (middle), and1� � 1� m (lower). The
ordering is according to minimal resolution1� m for the respective unlimited schemes (see Fig. 3 �rst row). Above each scheme acronym
there are two columns of data. The left column is for the unlimited scheme, and the right column contains data for the shape-preserving
version of the scheme (if applicable). The height of each colored column (green` r, yellow ` u, red` o) is the ratio betweeǹi , i 2 T“r”, “u”,
“o”] for the scheme in question normalized by the` i for CSLAM (CN5.5) at1� D 1:5� . Note that they axis scale are different. The stacked
histograms for SLFV-ML and CLAW exceed the plotting range. If no data are available, the mixing data are negative (although` i data were
not submitted for FARSIGHT, there are some mixing diagnostics given inWhite and Dongarra, 2011). The numerical values for` i are listed
in the scatterplots in Figs. 11, 12, 13 and 14.

3.5.1 Scatter shape

Scatter points located near the lower right corner of the con-
vex hull .� ; � / D .1:0; 0:1/ are the mixing ratio values mak-
ing up the extrema of the cosine bells and correlated co-
sine bells. The opposite extreme of the convex hull (upper
left corner.� ; � / D .0:1; 0:892/) contains the majority of the
data points as that is where the background value is located

on the scatterplot. Obviously, diffusive schemes will damp
the extrema, which, in terms of the scatterplot, cause scat-
ter points to shift toward the background scatter point value
.0:1; 0:892/ and away from the lower right corner of the
convex hull. This is particularly apparent in almost all low-
resolution (1� � 1:5� ) scatterplots for the shape-preserving
version of the schemes in Figs. 11–14 (second column).
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Considering �nite-volume schemes at1� � 1:5� , it is ob-
served that the scatter points make up a bow shape (ex-
cept CSLAM-CN5.5). In addition to all being �nite-volume-
based schemes, shape preservation is enforced either through
FCT or by constraining the reconstruction function. When
the resolution is increased to 0:75� (fourth column in Figs. 11
and 14), most of these schemes no longer have a bow-shaped
scatter, but the lower boundary is curved so that the scatter
points “track”/follow the pre-existing functional curve much
more closely with the majority of the scatter points inside
the convex hull. Some schemes (FARSIGHT-CN1.0 at 0:75� ,
ICON-CN0.6 at 0:75� , MPAS-CN0.8 at 0:75� , SBC-1.0 at
1:5� ) tend to lift the tail of the scatter data indicating that
some steepening of the gradients is taking place.

If a scheme is not shape-preserving, scatter points may
shift outside the convex hull either into the range-preserving
unmixing or overshooting area. Probably the most detrimen-
tal type of unmixing is overshooting unmixing or equiva-
lently range-expanding unmixing, which in this experimental
setup is manifested by scatter points shifting beyond the up-
per left corner of the convex hull into the overshooting area.
If a scheme is shape-preserving, no scatter points will be
shifted into the overshooting unmixing area. In other words,
the scheme is guaranteed not to expand the range of the ini-
tial condition mixing ratios. Note that non-zero background
values have been chosen for� so that a positivity-preserving
limiter (positive de�nite) will not prevent undershooting.
That said, a scheme may still exhibit non-shape-preserving
behavior inside the range of the initial conditions that will
not be accounted for iǹo but rather iǹ u. As expected, all
unlimited versions of the schemes show overshooting mix-
ing of varying amounts. For all the �nite-volume schemes,
the scatter points in the overshooting mixing category seem
to gather around the extension of the straight line making up
the lower boundary of the convex hull, almost as an exten-
sion of the convex hull shape towards the upper left corner of
the scatterplot. The FARSIGHT and CLAW schemes result
in a much different shape that differs from an “extension” of
the convex hull shape.

As alluded to above, it is immediately visible in the scat-
terplots if the “shape-preserving” versions of the schemes are
strictly shape-preserving. For example, CAM-FV has slight
overshooting mixing even though the dimensionally split
application of one-dimensional operators is strictly shape-
preserving. The overshooting/undershooting occurs since
shape-preservation is not guaranteed in the direction traverse
to the coordinate directions.

As can be proven mathematically, only schemes that are
monotone according to the de�nition by Harten et al. (1987)
will guarantee that no range-preserving unmixing occurs
(Thuburn and Mclntyre, 1997). Unfortunately only �rst-
order schemes are monotone according to this de�nition
(Godunov, 1959). In all schemes where the diffusive error
is not dominating, we indeed see that the shape-preserving
schemes produce range-preserving unmixing.

Quanti�cation of mixing

The quanti�cation of mixing,` i , i D “r”, “u”, “o”, is de-
picted in Fig. 15 using a histogram. The purpose of this
�gure is to show how` i varies among schemes at the res-
olutions 1:5� and 0:75� as well as to observe how shape-
preserving �lters affect̀ i for each individual scheme. The
histogram is ordered according to “minimal” resolution1� m
(see Sect. 3.2) from high value of1� m (left) to low value of
1� m (right). The numerical value of̀i is normalized with
` i for CSLAM with CN5.5 (̀ (un)

i (CSLAM)) at resolution
1� � 1:5. The reason for a graphical representation of “nor-
malized” data,̀ i =`(un)

i (CSLAM), rather thaǹ i is to give the
reader a reference for the amount of mixing. The mixing di-
agnostic is relatively new, and numerical values of` i may
be less meaningful to the reader than normalized data. The
actual values of̀ i for a particular scheme can be found in
the scatterplots (Figs. 11, 12, 13, and 14). Schemes with no
data are listed with̀ i D � 1. Note that the spread among the
schemes for̀ i =`(un)

i (CSLAM) spans a large range (for ex-
ample, at 1:5� the total mixing is more than 20 times the
CSLAM reference mixing).

To show the large amount of data concisely, the histograms
are stacked so that the total height of each rectangle is total
normalized mixing,

` r

` (un)
r .CSLAM/

C
` u

` (un)
u .CSLAM/

C
` o

` (un)
o .CSLAM/

; (13)

and the colors show the breakdown into the different cate-
gories of mixing. For example, the histogram for CSLAM-
CN5.5 (unlimited) is of exactly height three, and each col-
ored section is height one.

The speci�c choice of CSLAM for the normalization is
motivated by the “minimal” resolution. That is, at1� � 1:5�

the �laments are marginally resolved for CSLAM-CN5.5.
The CSLAM scheme performs, in general, a little above av-
erage compared to the other schemes in this collection, and
it is therefore more suitable for reference purposes than, for
example, the “best” or “worst” performing schemes. In ad-
dition it is based on a traditional �nite-volume approach and
hence is a suitable benchmark for schemes based on emerg-
ing numerical methods and untraditional designs that wish to
compare with “traditional” transport formulations. Neverthe-
less it is noted that similar “traditional” schemes could also
have been used for this purpose.

Mixing diagnostics at �xed resolution and “minimal”
resolution

An apparent �rst question about the histograms in Fig. 15
(upper and middle) is whether the amount of “real” mixing
for the unlimited schemes decreases with increased “mini-
mal” resolution (1� m), which is used for the ordering of
the mixing data. In general that is the case; there is a gen-
eral trend for a monotonic decrease in` r going from left
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to right in the two histograms shown in Fig. 15. While the
relation between “minimal” resolution and` r is, in general,
as expected (the higher1� m the smaller̀ r), it is perhaps
more interesting to focus on the schemes that do not fol-
low this trend and potentially provide insights that1� m
does not. Perhaps the biggest outlier in this ensemble is
UCISOM-CN5.5, which has at least one order of magni-
tude less real mixing and unmixing compared to schemes
with similar “minimal” resolution. Another “outlier” is the
unlimitedHOMME-p6-CN0.13, which has higher levels of
` r and` u than schemes with similar “minimal” resolutions,
which is due to spurious grid-scale oscillations. HEL, like
UCISOM, is an outlier, and it clearly shows that HEL was
speci�cally designed to minimize numerical mixing as the
mixing diagnostics are much smaller than for schemes with
similar “minimal” resolutions.

In the last row of Fig. 15, the normalized mixing diagnos-
tics at the “minimal” resolution for the respective schemes
are shown. Had1� m been a proxy for mixing, all histograms
would have had the same height. Here the outliers described
above are very apparent. This shows that the amount of nu-
merical mixing varies signi�cantly even though the` 2 error
norms are the same. This behavior was well described by
Thuburn and Mclntyre (1997): “Shaping two tracer �elds the
same way does not imply shaping them the right way”. In
other words, the mixing diagnostics emphasize a different
aspect of accuracy than normalized error norms (in this case
speci�ed with1� m).

Effect of shape-preserving �lter on mixing

For all schemes̀o is zero or close to zero when the shape-
preserving �lter is applied (as expected). With the excep-
tion of SBC-CN5.2 (at1� D 1� m), all schemes see a re-
duction in` u when using a shape-preserving limiter. Shape-
preserving limiters usually degrade conventional error norms
compared to the unlimited scheme. On the contrary, the “un-
mixing” diagnostic, which accounts for spurious unmixing,
improves.

The effect of shape-preserving �lters on “real” mixing
varies among the schemes. Some schemes see a reduction
in ` r, and some see an increase in “real” mixing compared to
the unlimited versions of the schemes.

3.6 Divergent �ow experiment

Here we repeat the experiment described in Sect. 3.2 but re-
place the non-divergent wind �eld (used in all prior tests)
with the divergent wind �eld de�ned in LSPT2012. All other
settings are the same: time step, cosine bell initial condi-
tions, etc. The purpose of this test case is to have model-
ers demonstrate that their scheme is well-behaved also for
divergent �ow �elds. For some classes of schemes, such as
�nite-volume schemes, the coupling between air mass and
tracer mass must be considered in divergent �ow settings

(see, for example, Sect. 2.1 in Nair and Lauritzen, 2010).
Hence this test case forces the modeler to consider such cou-
pling that may otherwise not be considered when the �ow
is non-divergent. That said, even for the non-divergent �ow
�eld, the non-preservation of a constant mixing ratio could
be a result of inconsistent coupling between air and tracer
mass (at least for �nite-volume type schemes). In addition to
assessing the consistency of the coupling, that accuracy of
the coupling between air and tracer mass is assessed.

Normalized error norms (` 2, ` 1 , � min, � max) at 1� � 1:5
resolutions are shown in the histogram in Fig. 16. The min-
imum (� min) and maximum norms (� max) are de�ned in
LSPT2012. Although LSPT2012 also requested these error
norms at1� � 0:75 and1� � � m, we did not �nd intrigu-
ing insights by analyzing these data, and for brevity the his-
tograms for this data are omitted (the data are available in
the supplemental material). Except for CAM-FV and FAR-
SIGHT, the divergent data are ordered similarly to1� m in
terms of magnitude (Fig. 3, top). Note that schemes based
on FCT limiting in general improve accuracy when shape
preservation is enforced, whereas schemes based on recon-
struction limiting degrade the error norms.

3.7 Algorithmic considerations

General properties of the algorithms are given in Table 3.
First of all, the width of the computation halo used to update
cell/grid-point value is listed. For example, if only the imme-
diate neighboring cell-average or grid-point values are used,
the width of the halo is one. This width should give an indi-
cation of message sizes in parallel computing environments.
The number of communications needed per time step is in-
dicated through the number of stages used in the scheme.
The minimum number of communications needed to com-
plete a simulation can, in general, be deduced from the stable
time step limitations of the scheme. Here that is speci�ed in
terms of maximum Courant number. For schemes that are not
Courant-number-limited but rather limited by the shear of the
�ow, we list “Lipschitz”, which refers to the criterion for sta-
bility for many trajectory algorithms in (semi-)Lagrangian
schemes. To indicate possible multi-tracer ef�ciency, it is
also listed what parts of the algorithm can be reused for each
additional tracer. Of course for a given number of tracers, the
ef�ciency is dependent on all parameters in this table and not
just on the amount of information that can be reused.

4 Summary and conclusions

Results from a wide range of schemes that have exercised
a recently proposed test case suite (Lauritzen et al., 2012)
are presented and analyzed. It is the purpose of this paper to
provide a catalog of results for an ensemble of state-of-the-
art transport schemes for global atmosphere/ocean modeling
as well as to investigate what aspects of accuracy different
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Fig. 16. Histogram of normalized error norms (` 2, ` 1 , � min, � max in �rst, second, third, and fourth row, respectively) for the divergent
�ow �eld test case for the unlimited (“un”) and shape-preserving (“sp”) versions of the schemes, respectively, at1� � 1:5. The ordering is
according to minimal resolution1� m (see Fig. 3 �rst row). The value “� 1” indicates that no data are available. The appended CNs are for
the non-divergent �ow �eld (for consistency with the other histograms); this test was run with the same time step as for the non-divergent
�ow tests. However, the maximum velocities are smaller than for the non-divergent �ow, and hence the actual CNs are smaller.
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Table 3. Data potentially relevant for computational ef�ciency. Columns are scheme acronym, width of halo or computational stencil to
update tracer value, number of stages for multi-step time-stepping algorithms (right-hand side evaluations), CN time step restriction (“Lips-
chitz” is a �ow-dependent time step limitation), and what information can be reused for each additional tracer.

Scheme Width of halo # stages Max. CN Reuse

CAM-FV 3 1 Lipschitz Trajectories
CAM-SE 1 3 0.26 None
CCSRG 2 1 Lipschitz Weights
CLAW 2 1 1.0 None
CSLAM 3 1 Lipschitz Weights
FARSIGHT 2 1 Lipschitz Weights
HEL 3 1 Lipschitz Weights
HEL-ND 3 1 Lipschitz Weights
HOMME-p3 1 3 0.26 None
HOMME-p6 1 3 0.13 None
ICON-FFSL 2 1 0.8 Weights
LPM 1 4 Lipschitz Trajectories
MPAS (sp) 2 3 1.0 (1.7) None
SBC (sp) 1(9) 1 Lipschitz Trajectories
SFF-CSLAM3 3 1 1 Weights
SFF-CSLAM4 4 1 1 Weights
SLFV-SL 2 2 1 Coef�cients for gradients
SLFV-ML 2 2 1 Coef�cients for gradients
TTS-I 1 1 Lipschitz Trajectories, weights
UCISOM 3 1 Lipschitz None
UCISOM-CS 3 1 Lipschitz None

diagnostics assess and their usefulness. This could provide
guidance for future transport scheme developers and facili-
tate their development process. Below is a list of the differ-
ent tests and a short summary of what aspects of accuracy the
test/diagnostics shed light on.

4.1 Numerical order of convergence (Gaussian hills
initial condition)

For in�nitely smooth initial conditions, convergence data are
examined in the resolution range [3� , 0:3� ]. This range was
deliberately chosen so that the �elds may only be marginally
resolved at the low resolution end of this resolution range.
It was observed how different schemes converge throughout
the resolution range at their formal convergence rate and how
other schemes reach asymptotic convergence rates at higher
resolutions. The effect of shape-preserving �lters on conver-
gence rates was also examined. The convergence rates and
effect of shape-preserving �lters varied signi�cantly among
the schemes that participated in this intercomparison. The
greatest reductions in convergence rates were seen for for-
mally high-order schemes for which rates dropped by several
orders to about second-order.

4.2 “Minimal” resolution (cosine bell initial condition)

To assess absolute errors and to challenge the schemes with
a slightly less smooth initial condition (C1), modelers were
asked which resolution was needed to provide solutions at

a certain level of accuracy (de�ned in terms of a root mean
square error norm). This resolution was referred to as “min-
imal resolution” (1� m). The range of1� varied from ap-
proximately 0:1� to more than 2� . The schemes have been
ordered according to increasing1� m when other accuracy
diagnostics were depicted as histograms. Doing that with
convergence rates showed no clear relationship between
1� m and numerical convergence rates. In fact some of the
lowest order schemes performed best with respect to1� m.

4.3 Ability of the transport scheme to preserve
�laments

The �lament diagnostic̀ f .� / was introduced to quantify how
well thin �laments are preserved. This diagnostic requires the
�ow to be non-divergent since it relies on the fact that, for
a non-divergent �ow �eld, the area of the sphere for which
the mixing ratio distribution is above a threshold value� is
invariant. Measurèf quanti�es how much of the initial con-
dition area, for which the mixing ratio� is larger than� , is
preserved. By plotting̀f as a function of� , one can examine
how gradients are diffused or steepened and how uniform that
damping of gradients is. This test was found particularly use-
ful to identify how some �lters, and limiters tend to perturb
gradients non-monotonically (e.g., “ad hoc” and “a posteri-
ori” �lters/limiters).
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4.4 Ability of the transport scheme to transport
“rough” distributions

Discontinuous initial conditions were used to expose shape-
preserving limiters as most unlimited schemes produce sig-
ni�cant unphysical oscillations (under- and overshoots).
Contour plots were shown for all schemes to compare
schemes easily and visually. Note that the same contour in-
terval and coloring is used for all schemes! This test exposes
any non-shape-preservation in �lters intended to enforce
shape preservation and how the in�nite gradients become �-
nite. It is also directly visible how diffusive the scheme is.

4.5 Ability of the transport scheme to preserve
pre-existing functional relations between tracers

This test is used to assess how schemes perturb a pre-existing
non-linear functional relation between tracers and quanti-
�es the mixing that the scheme introduces. The mixing is
classi�ed into different categories to quantify the amount
of physical realizable mixing and spurious unmixing. The
shapes of the scatterplots were examined, and large dif-
ferences between the schemes have been discovered. Also
shape-preserving limiters affect the scatter shape in different
ways. It was observed that minimal resolution1� m is not
necessarily a good proxy for how well a scheme maintains
pre-existing functional relations between tracers. From the
results it is quite clear that the mixing diagnostics measure
a different aspect of accuracy compared to conventional er-
ror norms. In particular, they may be used assess if a shape-
preserving �lter makes the solution more physically realiz-
able (overshooting unmixing should be exactly zero; range-
preserving unmixing should decrease) and how much real
mixing the �lter introduces.

4.6 Ability of transport scheme to deal with divergent
�ows

To force the modeler to consider density of air and tracer
mass coupling (at least for �nite-volume type schemes), a
divergent �ow �eld is considered.

Appendix A

Exact experimental settings

A1 CAM-FV

CAM-FV uses the regular latitude–longitude grid, and as
such the number of zonal grid points is 360=1� . For the 1:5�

grid resolution, time steps ofT =2400 andT =480 are used
for the CN� 0:2 and CN� 1:2 simulations, respectively. For
the 0:75� grid resolution, the time stepsT =7200 andT =960
are used for the CN� 0:2 and CN� 1:2 simulations, respec-
tively.

There are no explicit diffusion parameters in the CAM-FV
transport scheme. However, there is implicit diffusion from
the PPM algorithm used with the Lin–Rood scheme (Lin and
Rood, 1996). CAM-FV also makes use of a �lling algorithm
to ensure positivity.

A2 CAM-SE

The resolution in CAM-SE is speci�ed through the number
of elements (NE) in each coordinate direction on one cubed-
sphere panel and the number of quadrature points (NP) in
each coordinate direction of an element. The average resolu-
tion (in degrees) near the Equator is

1� D
90�

NE.NP� 1/
: (A1)

In CAM-SE, NP is set to 4.
The hyperviscosity coef�cients are 3:8 � 1016 m4 s� 1,

3:8 � 1015 m4 s� 1, 3:8 � 1014 m4 s� 1, and 1:8 � 1013 m4 s� 1

for resolutions NED 10 (1� m D 3� ), NED 20 (1� m �
1:5� ), NED 40 (1� m � 0:75� ), and NED 100 (1� m D
0:3� ), respectively. The hyperviscosity coef�cients are com-
puted so that at NED 30 the coef�cient is 1:0 � 1015 m4 s� 1

and scales with resolution as

�.1�/ D
�

1�
1�

� �

1015 m4 s� 1; (A2)

where � � 3.2 was chosen to match CAM-SE default set-
tings, which is similar to values used in the literature (e.g.,
Takahashi et al., 2006). At resolutions1� D 3:0� ; 1:5� ; 0:75�

and 0:30� , the time step is1t D 900 s, 450 s, 225 s and 90 s,
respectively.

The idealized test cases are implemented in CAM-SE us-
ing the offline_dyn option. In that con�guration the
winds are constant throughout the Runge–Kutta time step-
ping and not updated at every stage (as is done in HOMME).

A3 CCSRG

CCSRG is implemented on a latitude–longitude reduced
grid. The presented CCSRG results are obtained on the grids
with 20 % reduction (20 % fewer points than on a regular
latitude–longitude grid with the same resolution at the Equa-
tor). The grids are constructed with the algorithm of Fadeev
(2013). The grid reduction starts from approximately 45� N/S
(see Tolstykh and Shashkin, 2012, for grid statistics and
pictures). Semi-analytical trajectories (Nair and Lauritzen,
2010) are used. For the 1:5� and 0:75� resolutions, a non-
dimensional time step ofT =110 andT =220, respectively, is
used for the CN� 5:7 simulations. The time stepsT =600 and
T =1200, respectively, are used for CN� 1:0 runs.

A4 CLAW

The sphere grid used for the computations is described in
Calhoun et al. (2008) and is based on a novel mapping
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that transforms a single logically rectangular uniform
Cartesian grid to the sphere. Our grid is similar to the
cubed-sphere grid in that it is made up ofN � N grid patches
stretched to �t the sphere. Whereas the cubed-sphere uses
six square patches, our grid consists of two square patches,
one for each hemisphere, as shown in Fig. A1. For all
tests, we used 2N � N grids with resolutions in the range
N D .30; 60; 120; 240; 480; 960/, corresponding to angles
� D 90=N D .3:0� ; 1:5� ; 0:75� ; 0:375� ; 0:1875� ; 0:09375� / .
For the tests involving a minimum effective angle, we used
N D 640 (� eff D 0:28125) for the shape preserving case
and N D 960 (� eff D 0:1875) for the un�ltered case. To
generate the sphere grid, we map the computational domain
T� 3; 1U � T� 1; 1Uusing a simple mappingT .�; �/ described
in Calhoun et al. (2008). The resulting �nite volume mesh
cells are nearly uniform in size. The computational mesh
width for a given resolution is1x D 1y D 2=N.

Clawpack uses a variable time-stepping scheme and
chooses time steps based on a maximum wave speed, cell
area and a desired CN number. After each time step, a maxi-
mum CN number� max is computed as

� max D 1t1x max
i;j

�
juij j; jvij j

�

A ij
; (A3)

whereA ij is the area of mesh cellij , 1t the time step just
taken,uij andvij speeds at thex andy faces of mesh cellij ,
and1x the (constant) computational mesh width. Under the
assumption that the wave speeds do not change dramatically
from one time step to the next, we can satisfy a desired CFL
condition N� in the next time step by choosing a new1t as

1t new D
N�

� max
1t: (A4)

For the results presented here, we setN� D 0:95. Clawpack
does not make use of any explicit diffusion parameters or
arti�cial viscosity.

The Fortran code and Python scripts for running the
benchmark examples, and Matlab scripts for visual-
ization can all be downloaded from the author's web
page (http://math.boisestate.edu/~calhoun/www_personal/
research/NCAR_workshop/).

A5 CSLAM

CSLAM is implemented on an equiangular cubed-sphere
grid. The average resolution at the Equator is given by

1� D
90�

Nc
; (A5)

whereNc � Nc is the number of control volumes on each
face/panel of the cube. Semi-analytical trajectories are used
(Nair and Lauritzen, 2010). The diagnostics do not change
signi�cantly when using non-analytic trajectories (C. Erath,
personal communication, 2013). For the 1:5� and 0:75� reso-
lutions, a non-dimensionless time step ofT =120 andT =240

was used for the CN� 5:5 simulations, respectively. For
CN� 1:0 runs, the time steps wereT =600 andT =1200,
respectively. The shape-preserving �lter is the fully two-
dimensional limiter by Barth and Jespersen (1989) that scales
the fully two-dimensional reconstruction polynomial of de-
gree two so that its extrema are within the range of the sur-
rounding cell-averaged values.

A6 FARSIGHT

See White and Dongarra (2011) for scheme details.

A7 HEL(-ND)

HEL and HEL-ND use the same settings as for CSLAM. The
�lter parameters are the same in HEL and HEL-ND: both
are run without �lters in the underlying �rst-order version of
CSLAM. The number of Lagrangian parcels are equal to the
number of grid cells, and the parcels “survive” for the total
duration of the simulation. They are initialized at the grid cell
centers with the same area and value as the corresponding
Eulerian grid cell.

A8 HOMME

HOMME and CAM-SE use the same numerical model with
only a difference in the choice of orderp D NP� 1 of polyno-
mial basis functions, hyperviscosity coef�cient� , and hyper-
viscosity scaling� . The resolution is obtained via Eq. (A1).
For HOMME simulations, we choosep D 3 because of its
common use (see CAM-SE default parameters) andp D 6 to
demonstrate performance for the higher order scheme. If one
uses NE as in Eq. (A1) for thep D 3 setting, then NE=2 for
p D 6 corresponds to the equal equatorial resolutions in both
cases.

The fully collocated formulation of the spectral element
method used in HOMME and CAM-SE has a grid-scale com-
putational mode that must be controlled with some type of
stabilization (Ainsworth and Wajid, 2009). Here for stabiliza-
tion we use well-tested hyperviscosity (Dennis et al., 2012).
In practice, hyperviscosity coef�cient� is tuned for one reso-
lution 1� 0. Then for other resolutions the hyperviscosity co-
ef�cient is calculated similarly to Eq. (A2). Note that� is not
tuned for every single simulation in this study. In more de-
tail, afterp is de�ned, we specify scaling� and whether the
shape-preserving limiter is used. For the reasons explained
below (Sect. A8.1), if the limiter is off, we set� D p C 1.
Limited simulations are con�gured with� D 3:0 for p D 3
and � D 4:0 for p D 6. Next, the best� 0 is chosen for one
simulation with resolution1� 0. For this, we use standard er-
rors, mixing diagnostics, and �lament preservation diagnos-
tics. Finally, for any given resolution1� ,

�.1�/ D � 0

�
1�
1� 0

� �

:
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Fig. A1. The two-patch sphere grid used by the CLAW scheme.

Contrary to the CAM-SE setup, the winds are updated in
time at each stage of the Runge–Kutta time stepping.

A8.1 More on hyperviscosity scaling

In case of tracer advection, different amounts of arti�cial dis-
sipation affect performance of the scheme in various ways.
For example, with� D p C 1, the theoretical spatial conver-
gence order isp C 1. If � < p C 1, convergence rates are ex-
pected to be of the order of� . Bigger amounts of hypervis-
cosity raise standard errors but improve preservation of pre-
existing functional relations and �lament preservation diag-
nostics to a certain degree. It is natural to choose� D p C1 to
recover the higher order method and demonstrate its proper-
ties; to explore the scheme in applications, smaller values of
� should be used. In addition, the use of the shape-preserving
limiter leads to smaller orders of spatial convergence (Guba
et al., 2013). Therefore, for the unlimited simulations we
set � D p C 1 to maintain characteristics of the higher or-
der method. For the limited simulations, we take� D 3:0 for
p D 3 and� D 4:0 for p D 6. We call the former “conver-
gence regime” and the latter “mixing regime”. Chosen pa-
rameters are summarized in Table A1.

A9 ICON-FFSL

The ICON grid is derived from a spherical icosahedron that is
made up of 20 equilateral spherical triangles. This base grid
is further re�ned in a multi-step procedure, until the desired
resolution is reached. In a �rst step, the root division step, the
edges of each base triangle are divided inton equal sections
(termed Rn). Connecting the new edge points by great circle
arcs yieldsn2 spherical triangles within the original triangle.
This step is followed byk bisection steps (termed Bk), where
each triangle is consecutively subdivided into four smaller
triangles. This results in a so-called RnBk grid. The inter-
mediate grids and the �nal grid are further optimized using
spring dynamics (Tomita et al., 2001), with the spring coef-
�cient set to � D 0:9. For a given resolution RnBk, the total
number of cells can be computed from

nc D 20n24k:

The average resolution at the Equator was computed as
follows:

1� aveD 360� 1x
2� r e

;

where1x is the average distance between neighboring cell
centers andre is the earth radius. In Table A2 the applied
grids are listed together with their effective resolutions and
applied time steps. The wind vector used to de�ne the swept
�ux areas is computed by evaluating the analytical wind vec-
tor at the center of the cell side at timen C 1=2.

A10 LPM

The Lagrangian particle method relies on the �ow map,
x. � ; t / , giving the trajectory of �uid particles, where� is
a Lagrangian parameter,t time, andx position (Chorin and
Marsden, 2000; Cottet and Koumoutsakos, 2000). The �ow
map satis�es

D
Dt

x. � ; t / D u.x. � ; t /; t /; x . � ; 0/ D � ; (A6)

whereu is the given �uid velocity, and the scalar is advected
along particle trajectories,

D
Dt

�. x. � ; t /; t / D 0: (A7)

The sphere is represented as a union of disjoint panels,
S D [ N

i D1Pi . We present results in which the panels are ei-
ther the quadrilaterals of a cubed-sphere mesh, or the tri-
angles of an icosahedral triangular mesh. The mesh corre-
sponds to a discretization of the Lagrangian parameter. The
scheme tracks two sets of particles, at the centers and vertices
of the panels, indexed byj D 1; : : : ;M C N, whereN is the
number of panels andM the number of vertices. Each par-
ticle has a Lagrangian parameter value,� j , position,x j .t / ,
and scalar value,� j . We employ Cartesian coordinates for
the Lagrangian parameter and position. The particles are ad-
vected in the �ow,

d
dt

x j .t / D u.x j .t /; t /; (A8)

using fourth-order Runge–Kutta, with initial condition
x j .0/ D � j . The total scalar is computed byI .�/ �
P N

i D1 � i A i , where� i is the scalar value at the center of panel
Pi and A i is its area. To maintain accuracy, a remeshing
scheme is applied at regular intervals. At a remeshing step,
sayt D trm, new particle data are de�ned,.bx j ;b� j ; b� j / , where
bx j is a grid point on either the cubed-sphere or icosahedral
mesh,b� j the corresponding Lagrangian parameter satisfying
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Table A1. HOMME hyperviscosity parameters.

Reason p Limiter Resolution Hyperviscosity � scaled 1t
coef�cient � [m4 s� 1] as [s]

Convergence 3 No limiter 1.5� 6.6� 1014 Fourth order 432
Convergence 3 No limiter 0.75� 4� 1013 Fourth order 216

Mixing 3 Optim. limiter 1.5� 3.2� 1015 Third order 432
Mixing 3 Optim. limiter 0.75� 4� 1014 Third order 216

Convergence 6 No limiter 1.5� 1� 1014 Seventh order 216
Convergence 6 No limiter 0.75� 7.8� 1011 Seventh order 108

Mixing 6 Optim. limiter 1.5� 1.3� 1014 Fourth order 216
Mixing 6 Optim. limiter 0.75� 8� 1012 Fourth order 108

For eff. res.

Convergence 3 No limiter 0.9� 8.9� 1013 Fourth order 259.2
Mixing 3 Optim. limiter 0.8� 4.7� 1014 Third order 230.4

Convergence 6 No limiter 1.7� 2.1� 1014 Seventh order 240
Mixing 6 Optim. limiter 1.2� 4.6� 1013 Fourth order 172.8

Table A2. Target resolution in degrees (column 1), grid identi�er (column 2), average resolution1� ave (column 3), total number of cellsnc
(column 4), and the time step applied to achieve a Courant number of CN� 0:4 (column 5).

Target resolutionT� U Applied grid 1� ave [� ] nc 1t for CN� 0:4 [s]

1.5 R13B1 1.54 13 520 720
0.75 R13B2 0.77 54 080 360
1� m R3B5 0.416 184 320 192

bx j D x.b� j ; trm/ , andb� j D �. b� j ; 0/ the scalar value. To de-
termineb� j , the panel of the distorted mesh containingbx j is
located andb� j is computed from the data in that panel by lin-
ear interpolation. Results reported here remesh every 20 time
steps. The scheme is under development, and further details
will be reported in Bosler (2013).

Note that the remeshing scheme interpolates the La-
grangian parameter rather than the scalar. Hence LPM avoids
introducing overshoots and undershoots in the scalar, and
there is no arti�cial mixing (the error norms� max and� min
are zero throughout all test cases, and the mixing errors for
test case 5 are also zero).

Note also that mesh size is not well-de�ned since the par-
ticles are moving, so instead we report the average angu-
lar variation 1 � in the Lagrangian parameter. Discretiza-
tions with N D 5120; 20 480; 81 920; 98 304 correspond to
1 � D 4:33� , 2:16� , 1:08� ; 0:65� . The time step1t D 0:0125
was used for all computations; this value ensures that the
time discretization error is smaller than the spatial discretiza-
tion error. Using the test case CN de�nition with1 � , we
have CND 0.54, 1.08, 2.16, 3.59.

A11 MPAS

MPAS (Skamarock et al., 2012) uses the transport scheme
described in Skamarock and Gassmann (2011) implemented

on spherical centroidal Voronoi meshes (Ringler et al., 2011).
The meshes used in these tests are generated by subdividing
icosahedral meshes. That is, the Voronoi meshes are com-
posed of hexagons plus 12 pentagons. The scheme uses
a third-order Runge–Kutta time integration scheme and a
�nite-volume �ux divergence calculation using Eq. (11) in
Skamarock and Gassmann (2011) with the upwinding pa-
rameter� D 0:25. It uses the FCT shape-reserving limiter
described in Zalesak (1979); no additional explicit diffusion
is used in these tests. The Voronoi meshes described as 1:5� ,
0:75� , and 0:67� refer to the average cell-center spacing rel-
ative to an arc length at the Equator, and these meshes use
21 506, 86 018, and 107 522 cells, respectively, to tile the
sphere. The tests are performed using CN� 0:8, which cor-
responds to 768, 1536, and 1800 time steps to complete the
test-case integrations on the 1:5� , 0:75� and 0:67� meshes;
for reference this corresponds to time steps of 1350 s, 675 s
and 576 s on the earth radius sphere. For the divergent �ow
test case, second-order centered �uxes are used for density.

A12 SBC

The SBC scheme is implemented on a regular latitude–
longitude grid where the number of zonal grid point isnx D
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360=1� and the corresponding truncation wave number is

ntruncD nx=2� 1: (A9)

Thus, the linear grid is used (rather than the quadratic grid
where ntruncD nx=3� 1).

For the 1:5� simulations the truncation wave number is
TL119, and dimensionless time step size is 5=120 and 5=600
for CND 5.2 and CND 1.0, respectively. Similarly, for 0:75�

the truncation wave number is TL239, and1t is 5/240 (CND
5.2) and 5=1200 (CND 1.0). For the minimal resolutions,
1� m D 2:25� (for CND 5.2) and1� m D 2:25� (CND 1.0),
the truncation wave number is TL79 and TL159, respec-
tively, with 1t D 5=80 and1t D 5=800.

A13 SFF-CSLAM

SFF-CSLAM uses an equiangular gnomonic cubed-sphere
projection. The scheme is available for either a third-order
or fourth-order reconstruction, in both cases using a �nite-
volume stencil of width 5. The 1:5� and 0:75� grids corre-
spond to 60� 60 and 120� 120 elements per cubed-sphere
panel. The equivalent resolution runs at 1:05� (fourth-order
reconstruction) and 0:92� (third-order reconstruction) cor-
respond to 86� 86 and 98� 98 elements per cubed-sphere
panel. The time steps at 1:5� and 0:75� (at CN 0:8) areT =720
andT =1440, respectively. As with CSLAM, the Barth and
Jespersen (1989) �lter was used for positivity preservation.
No additional diffusive terms were added.

A14 SLFV-SL/ML

A14.1 Spherical grid generation

The schemes SLFV-SL and SLFV-ML are implemented on a
spherical icosahedral-hexagonal grid (Sadourny et al., 1968).
We start with a spherical icosahedron, consisting of 20 equi-
lateral spherical triangles. To achieve the desired resolution
the edges of these 20 spherical triangles are divided into
N equal parts. Connecting these new points with great cir-
cle arcs results in 20N 2 spherical triangles. To construct the
dual grid of the spherical triangular grid, we connect the cen-
troids of the triangles with great circle arcs. The resulting
dual grid consists of spherical hexagons except 12 pentagons
corresponding to the 12 starting points of the spherical icosa-
hedron. The total number of grid cells for resolutionN is
NR D 10N 2 C 2. For the resulting dual grid, the centroids
of grid cells do not coincide with the vertices of the spherical
triangular grid. Indeed the cell-averaged value of a function
is a second-order accurate approximation of its point-wise
value taken at the cell centroid. This motivates one to employ
some grid adjustment or grid optimization to design higher
order �nite volume schemes. Instead of using any sophisti-
cated optimization (for instance spring dynamics or Lloyd's
algorithm), we use centroids of the grid cells as our compu-
tational points and adjust the triangular mesh accordingly. In

Table A3. Icosahedral resolutionN , average grid spacing at the
Equator1� ave and time step1t used for schemes SLFV-SL and
SLFV-ML.

N Approximate1� ave NR Time step (1t )

24 3:0� 5762 0.01285
48 1:5� 23 042 0.00642
96 0:75� 92 162 0.00321

192 0:375� 368 642 0.00161

fact, this grid correction is equivalent to a single step Lloyd's
optimization.

For a unit sphere, the length of a basic spherical triangle is
! D 1:1071. The arc length at a resolutionN is calculated as
!
N . The average grid spacing at the Equator1� is calculated
as

1� D
2�
5N

:

We presented results of all the test cases for �xed maxi-
mum Courant number (CND 0:8). Table A3 lists the icosa-
hedral resolutionN , average grid spacing at the Equator1�
and time step of the simulation1t .

The wind vector used to approximate the �ux area is com-
puted by evaluating the analytical wind �eld at the midpoint
of the cell side at timet D n � 1t . For shape preservation,
SLFV-SL and SLFV-ML employ a multi-dimensional exten-
sion of Van Leer-type slope limiter discussed in Dukowicz
and Kodis (1987).

A14.2 SLFV scheme description

Since there is currently no publication documenting the
SLFV schemes, a brief description is given here. The
schemes are based on the �ux-form continuity Eq. (1) in-
tegrated over a control volume• :

A.•/
@��
@t

D �
I

0

�� V d0: (A10)

Here�� is the average of�� over a control volume• , 0
the boundary of the control volume andA.•/ the area of the
control volume.

SLFV-SL

In Eq. (A10), decomposing the boundary0 into Nk edges
and integrating Eq. (A10) with respect to time, one gets

A.•/ . ��
tC1
k � ��

t
k/ D �

NkX

i D1

h�� Vi i � Oni 1t d0 (A11)

' �
NkX

i D1

h� i i h� i i V
nC 1

2
k;i � Oni 1t d0: (A12)
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Hereh�� i i is the value of�� averaged in time fromt to

t C1t and over thei th edge composing0 . V
nC 1

2
k;i is the veloc-

ity �eld at time tn C 1t
2 evaluated at the midpointr k;i of the

i th edge of cellk. Approximation Eq. (A12) is second-order
accurate in time and in space. Finally,h� i is approximated in
a semi-Lagrangian fashion:

h� i D �
�

t; r k;i � V
nC 1

2
k;i

1t
2

�
: (A13)

This approximation is second-order accurate in space and
time (Miura, 2007). A similar formula is used forh� i . In

practice we useVn
k;i instead ofV

nC 1
2

k;i , which introduces some
temporal error for a time-varying velocity �eld.

SLFV-ML

In Eq. (A10), decomposing the boundary0 into Nk edges,
we get a semi-discrete equation:

A.•/
@��
@t

D �
NkX

i D1

� i � i V i � Oni 1t d0: (A14)

Here � i , � i and V i are the values of� , � and velocity
vectorV overi th edge of0 at timet. We evaluate these edge
quantities at the midpoint of the corresponding edge to get a
second-order spatial approximation at timet.

The semi-discrete Eq. (A14) is then marched forward in
time using the Runge–Kutta third-order total variational di-
minishing time integration scheme. This choice of time inte-
gration helps to damp the unphysical oscillation due to time
discretization.

A14.3 Linear reconstruction

To evaluate the right-hand side of Eqs. (A13) and (A14), we
de�ne a linear reconstruction of� and� in each control vol-
ume:

� k. r / D � C r k� � . r � r k/ ; (A15)

� k. r / D � C r k� � . r � r k/ ; (A16)

respectively, whererk is the centroid of thekth control vol-
ume. Indeed the area average of a quantity coincides with the
value of that quantity at the centroid of the control volume,
with second-order accuracy in space. As a consequence

� '
��
�

with the same accuracy.
To compute the discrete gradientr k� of any scalar �eld�

for a cellk, we work in the plane tangent to the cell centroid
r k. Vectors in the tangent plane are decomposed on a local
basis.ex ; ey / pointing west and north. We project the cen-
troids of the neighboring cellsr k; i to the tangent plane from

the point diagonally opposite tor k. The projected centroids
de�ne �ve or six triangles

�
r k; P . r k; i /; P . r k; i C1/

�
, for each

of which we compute a gradientr k;i � de�ned by its compo-
nentsr x

k;i � andr y
k;i � in local x andy directions, which we

obtain by solving

r x
k;i � d

i
x C r y

k;i � d
i
y D � i � � 0; (A17)

r x
k;i � d

i C1
x C r y

k;i � d
i C1
y D � i C1 � � 0; (A18)

wheredi D P .r k; i / � r k is the position vector of the pro-
jected neighboring centroidr k; i relative tor k, and� i (resp.
� 0) is the value of the scalar �eld� atr k; i (resp.r k). The gra-
dientsr k;i � are then averaged to getr k� . We have veri�ed
that this yields a �rst-order approximation of the gradient on
non-optimized grids.

A14.4 Slope limiting

In general this gradient construction will not lead to a
positivity-preserving scheme. For this we use a multidimen-
sional extension of Van Leer-type slope limiter (Dukowicz
and Kodis, 1987). In Eqs. (A15)–(A16) we replace the gra-
dientr � by a modi�ed gradientQr k� D � kr k� . The limiting
coef�cient � k is determined for each cellk such as to enforce
local monotonicity. Dukowicz and Kodis (1987) show that a
possible choice of� k is

� k D min.1; � min
k ; � max

k /; (A19)

where

� max
k D max

(
N� max
k � N� k

� kmax
k � N� k

)

; (A20)

and

� min
k D min

(
N� min
k � N� k

� kmin
k � N� k

)

: (A21)

Here N� max
k and N� min

k are the maximum and minimum val-
ues of N� in the neighboring cells, and� kmax

k and� kmax
k are

the maximum and minimum values of� in cell k according
to the non-slope-limited linear reconstruction in Eq. (A16).

For each edge entering the sum on the right-hand side of
Eq. (A12) (resp. Eq. A14), the reconstruction used to evalu-

ate�
�

t; r k;i � V
nC 1

2
k;i

1t
2

�
(resp.� i ) is the one based on the

control volume situated upwind to the edge. We present re-
sults obtained with a CN equal to 0:8, but the scheme seems
to work up to maximum CFL equal to 1.0.

A15 TTS-I

The TTS-I scheme operates on a fully Lagrangian mesh. The
initial grid is a centroidal Voronoi tessellation of the sphere,
and its resolution is given in terms of number of polygons.
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The Voronoi grid is then deformed by the �ow and modi�ed
by a curvature-guard algorithm (CGA) that splits and merges
edges according to deformation criteria. The speci�c con�g-
uration of the CGA is given in Table 1 in Dong and Wang
(2013). For display and computation of diagnostics (and cou-
pling with physical parameterizations in full model setup), a
regular latitude–longitude grid is used. For the experiments
two resolution con�gurations are chosen for the two meshes.
For 1� � 1:5� and1� � 0:75� , the number of polygons on
the initial Voronoi grid is 10 000 and 20 000, respectively.
The associated regular latitude–longitude grid spacings are
1:5� and 0:75� . A non-dimensionless time step ofT =300
andT =600 was used for the coarser and higher resolutions,
respectively. Trajectories are computed using fourth-order
Runge–Kutta integration.

A16 UCISOM(-CS)

UCISOM uses a regular latitude–longitude grid, and
UCISOM-CS uses a gnomonic cubed sphere with resolu-
tion de�ned as in Eq. (A5). The CN� 5.5 simulations use
non-dimensional time steps1t D 5=T whereT D 120 and
T D 240 for 1:5� and 0:75� resolutions, respectively; for
CN� 1.0, the time steps areT D 624 andT D 1248; and
for CN� 0.8, the time steps areT D 780 andT D 1560.
The mass �ux across grid edges is integrated exactly in lati-
tude or longitude from the equations for the regular latitude–
longitude grid, and with nine-point Romberg integration for
the cubed-sphere grid (preserves mass convergence in each
grid cell to single-precision accuracy or better). The �ux over
each time step is integrated analytically from the equations.
UCISOM uses a single forward time step for any CN value,
and is thus only �rst-order accurate in time (i.e., forward
Euler). The rate of convergence with increasing resolution
(Figs. 1–2) is actually the convergence with time step, as the
errors at differing spatial resolution runs at the same time step
(i.e., differing CN) are similar.

UCISOM can be run with a range of shape-preserving
options (limitersL ), and these range from no action (L D
0, allows for transport of negative tracer in some circum-
stances), positive de�nite (L D 1, tracer moments adjusted
before transport to ensure no negative tracer anywhere within
the cell along the transported direction), monotonic within a
cell (L D 2, before transport, the moments in the transported
dimension are adjusted to have a positive-de�nite, monotonic
distribution), and the most rigorous shape preserving (L D 3,
the moments in the daughter cell are adjusted after transport
to ensure that the tracer distribution throughout the cell is
limited by the minimum and maximum tracer values using
the moments in the parent cell(s)). All calculations shown
here usedL D 2.

While limiter L D 3 can eliminate ripples on both sides of
sharp gradients, it leads to a linear decline of the peak tracer
abundance, even when the tracer has a large constant plateau
that is resolved by many cells, as in the slotted cylinder. A

simple test of UCISOM is done with a constant plateau of
tracer value (110 tracer units in 12� 12 cells) embedded in
a background (10 units on a cylinder of circumference 32
cells) and moving diagonally round the cylinder. After sev-
eral rotations, the tracer distribution stabilizes (along with
the ripples and̀2 error) at a preferred shape and then evolves
very slowly. Overshoot ripples in the tracer plateau are +12 %
for L D 0 or L D 1, 5 % for L D 2, and< 0:2% for L D 3.
(Treatment of cross term moments,xy, produces some rip-
ples.) Undershoot ripples in the background near the plateau
are� 8 %,� 2:5 % and< 0:2 %, respectively. Only withL D
3 the entire 12� 12 block decays uniformly,� 1 % per rev-
olution for CN� 1. The cases in this paper are equivalent to
many revolutions in this test case, and results for UCISOM
look like some of the worst cases in Fig.5, with peak tracer
< 0:8. After results were completed for this study, a variant
of L D 3 was tested, whereby the minimum–maximum crite-
rion for the daughter cell is relaxed: the tracer is allowed to
overshoot the parent min–max by a percentage. For large al-
lowances (i.e., 3 %) theL D 3 case begins to look likeL D 2
with C4 % and� 1 % ripples, no decay of the plateau val-
ues, and no increase in` 2 error over successive rotations. For
small overshoot allowance (0:2 %), however, we regain some
of the desired properties (i.e., the ripples are smaller,C2:5 %
and� 1 %), but the plateau tracer does not decay. In general
the` 2 errors are similar forL D 0; 1; 2, but increase forL D 3
except for CN< 0:2.

Supplementary material related to this article is
available online at http://www.geosci-model-dev.net/7/
105/2014/gmd-7-105-2014-supplement.zip.
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