S. K. Akagi, R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid et al., Emission factors for open and domestic biomass burning for use in atmospheric models, Atmospheric Chemistry and Physics, vol.11, issue.9, pp.4039-407210, 2011.
DOI : 10.5194/acp-11-4039-2011-supplement

C. Alves, C. Gonçalves, C. Pio, F. Mirante, A. Caseiro et al., Smoke emissions from biomass burning in a Mediterranean shrubland, Atmospheric Environment, vol.44, issue.25, pp.3024-3033, 2010.
DOI : 10.1016/j.atmosenv.2010.05.010

C. Alves, A. Vicente, T. Nunes, C. Gonçalves, A. Fernandes et al., Summer 2009 wildfires in Portugal: Emission of trace gases and aerosol composition, Atmospheric Environment, vol.45, issue.3, pp.641-649, 2011.
DOI : 10.1016/j.atmosenv.2010.10.031

V. Amiridis, E. Giannakaki, D. S. Balis, E. Gerasopoulos, I. Pytharoulis et al., Smoke injection heights from agricultural burning in Eastern Europe as seen by CALIPSO, Atmos. Chem. Phys, vol.105194, pp.11567-1157610, 2010.

A. Anav, F. D-'andrea, N. Viovy, and N. Vuichard, A validation of heat and carbon fluxes from high-resolution land surface and regional models, Journal of Geophysical Research, vol.11, issue.6, pp.10-1029, 2010.
DOI : 10.1029/2009JG001178

URL : https://hal.archives-ouvertes.fr/hal-01136713

M. O. Andreae and P. Merlet, Emission of trace gases and aerosols from biomass burning, Global Biogeochemical Cycles, vol.34, issue.4, pp.995-96610, 2001.
DOI : 10.1029/2000GB001382

M. O. Andreae, D. Rosenfeld, A. Artaxo, A. A. Costa, G. P. Frank et al., Smoking Rain Clouds over the Amazon, Science, vol.303, issue.5662, pp.1337-1342, 2004.
DOI : 10.1126/science.1092779

S. A. Bartalev, A. S. Belward, D. V. Erchov, and A. S. Isaev, A new SPOT4-VEGETATION derived land cover map of Northern Eurasia, International Journal of Remote Sensing, vol.2, issue.9, pp.1977-1982, 2003.
DOI : 10.1016/0034-4257(95)00137-P

P. Berrisford, D. Dee, K. Fielding, M. Fuentes, P. Kallberg et al., The ERA-Interim archive, ERA- 40, Report Series, issue.1, 2009.

G. M. Davies, A. Gray, G. Rein, and C. J. Legg, Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland, Forest Ecology and Management, vol.308, pp.169-177, 2013.
DOI : 10.1016/j.foreco.2013.07.051

P. Freeborn, M. Wooster, W. Hao, C. Ryan, B. Nordgren et al., Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires, Journal of Geophysical Research, vol.101, issue.D15, pp.10-1029, 2008.
DOI : 10.1029/2007JD008679

M. A. Friedl, D. Sulla-menashe, B. Tan, A. Schneider, N. Ramankutty et al., MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sensing of Environment, vol.114, issue.1, pp.168-182, 2010.
DOI : 10.1016/j.rse.2009.08.016

H. Gibbs, Olson's major world ecosystem complexes ranked by carbon in live vegetation: an updated database using the GLC 2000 land cover product, p.31, 2006.

L. Giglio, I. Csiszar, and C. O. Justice, Global distribution and seasonality of active fires as observed with the terra and aqua MODIS sensors, J. Geophys. Res, pp.10-1029, 2006.

L. Giglio, J. T. Randerson, G. R. Van-der-werf, P. S. Kasibhatla, G. J. Collatz et al., Assessing variability and long-term trends in burned area by merging multiple satellite fire products, Biogeosciences, vol.75194, pp.1171-118610, 1171.

G. Grell, S. R. Freitas, M. Stuefer, and J. Fast, Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts, Atmos. Chem. Phys, vol.115194, pp.5289-530310, 2011.

M. C. Hansen, R. S. Defries, J. R. Townshend, M. Carroll, C. Dimiceli et al., Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm, 007<0001:GPTCAA>2.0.CO, pp.1-15, 2003.
DOI : 10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2

Ø. Hodnebrog, S. Solberg, F. Stordal, T. M. Svendby, D. Simpson et al., Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of, Atmos. Chem. Phys, vol.125194, pp.8727-875010, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01113576

A. Hodzic, S. Madronich, B. Bohn, S. Massie, L. Menut et al., Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects, Atmos. Chem. Phys, vol.75194, pp.4043-406410, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00328517

J. J. Hoelzemann, M. G. Schultz, G. P. Brasseur, C. Granier, and M. Simon, Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data, Journal of Geophysical Research, vol.28, issue.24, pp.14-0410, 2004.
DOI : 10.1029/2003JD003666

E. J. Hyer and J. S. Reid, Baseline uncertainties in biomass burning emission models resulting from spatial error in satellite active fire location data, Geophysical Research Letters, vol.100, issue.D2, pp.10-1029, 2009.
DOI : 10.1029/2008GL036767

D. Jacob and R. Podzun, Sensitivity studies with the regional climate model REMO, Meteorology and Atmospheric Physics, vol.117, issue.1-2, pp.119-129, 1997.
DOI : 10.1007/BF01025368

D. A. Jaffe and N. L. Wigder, Ozone production from wildfires: A critical review, Atmospheric Environment, vol.51, pp.1-10, 2012.
DOI : 10.1016/j.atmosenv.2011.11.063

D. Jaffe, W. Hafner, D. Chand, A. Westerling, and D. Spracklen, Interannual Variations in PM2.5 due to Wildfires in the Western United States, Environmental Science & Technology, vol.42, issue.8, pp.2812-281810, 2008.
DOI : 10.1021/es702755v

J. W. Kaiser, A. Heil, M. O. Andreae, A. Benedetti, N. Chubarova et al., Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, vol.95194, pp.527-55410, 2012.

I. B. Konovalov, M. Beekmann, I. N. Kuznetsova, A. Yurova, and A. M. Zvyagintsev, Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region, Atmos. Chem. Phys, vol.115194, pp.10031-1005610, 2011.

I. Koren, Y. R. Kaufman, L. A. Remer, and J. V. Martins, Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation, Science, vol.303, issue.5662, pp.1342-1345, 2004.
DOI : 10.1126/science.1089424

G. Krinner, N. Viovy, N. De-noblet-ducoudré, J. Ogée, J. Polcher et al., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochemical Cycles, vol.113, issue.D19, pp.101510-1029, 2005.
DOI : 10.1029/2002JD002559

URL : https://hal.archives-ouvertes.fr/insu-00374606

B. Langmann, B. Duncan, C. Textor, J. Trentmann, and G. Van-der-werf, Vegetation fire emissions and their impact on air pollution and climate, Atmospheric Environment, vol.43, issue.1, pp.107-116, 2009.
DOI : 10.1016/j.atmosenv.2008.09.047

J. S. Levine, The 1997 fires in Kalimantan and Sumatra, Indonesia: Gaseous and particulate emissions, Geophysical Research Letters, vol.102, issue.7, pp.815-81810, 1999.
DOI : 10.1029/1999GL900067

F. Li, X. D. Zeng, and S. Levis, A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model, Biogeosciences, vol.9, issue.7, pp.2761-2780, 2012.
DOI : 10.5194/bg-9-2761-2012

F. Maignan, F. Bréon, F. Chevallier, N. Viovy, P. Ciais et al., Evaluation of a Global Vegetation Model using time series of satellite vegetation indices, Geosci. Model Dev, pp.1103-111410, 1103.

A. Mieville, C. Granier, C. Liousse, B. Guillaume, F. Mouillot et al., Emissions of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction, Atmospheric Environment, vol.44, issue.11, pp.1469-1477, 2010.
DOI : 10.1016/j.atmosenv.2010.01.011

URL : https://hal.archives-ouvertes.fr/hal-00470019

F. Mouillot and C. Field, Fire history and the global carbon budget: a 1ox 1o fire history reconstruction for the 20th century, Global Change Biology, vol.13, issue.3, pp.398-420, 2006.
DOI : 10.1016/S0034-4257(03)00141-X

M. Mu, J. T. Randerson, G. R. Van-der-werf, L. Giglio, P. Kasibhatla et al., Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide, Journal of Geophysical Research: Atmospheres, vol.112, issue.6, p.10, 1029.
DOI : 10.1029/2011JD016245

F. Nachtergaele, H. Van-velthuizen, L. Verekst, and D. Widberg, Harmonized World Soil Database v 1.2., available at: http://webarchive.iiasa.ac, p.31, 2012.

P. Panagos, The European soil database, pp.32-33, 2006.

M. Pereira, R. M. Trigo, C. C. Da-camara, J. Pereira, and S. M. Leite, Synoptic patterns associated with large summer forest fires in Portugal, Agricultural and Forest Meteorology, vol.129, issue.1-2, pp.11-25, 2005.
DOI : 10.1016/j.agrformet.2004.12.007

R. Honi, Y. Clarisse, L. Clerbaux, C. Hurtmans, D. Duflot et al., Exceptional emissions of NH 3 and HCOOH in the 2010 Russian wildfires, Atmos . Chem. Phys, vol.135194, pp.4171-418110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00768973

G. Roberts, M. J. Wooster, G. L. Perry, N. Drake, L. Rebelo et al., Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery, Journal of Geophysical Research, vol.56, issue.1, pp.2111110-1029, 2005.
DOI : 10.1029/2005JD006018

G. Roberts, M. J. Wooster, and E. Lagoudakis, Annual and diurnal african biomass burning temporal dynamics, Biogeosciences, vol.6, issue.5, pp.849-86610, 2009.
DOI : 10.5194/bg-6-849-2009

URL : http://doi.org/10.5194/bgd-5-3623-2008

I. M. Rosa, J. M. Pereira, and S. Tarantola, Atmospheric emissions from vegetation fires in Portugal): estimates , uncertainty analysis, and sensitivity analysis, Atmos. Chem. Phys, vol.115194, pp.2625-264010, 1990.

D. P. Roy, L. Boschetti, C. O. Justice, and J. Ju, The collection 5 MODIS burned area product ??? Global evaluation by comparison with the MODIS active fire product, Remote Sensing of Environment, vol.112, issue.9, pp.3690-3707, 2008.
DOI : 10.1016/j.rse.2008.05.013

D. P. Roy, L. Boschetti, and A. M. Smith, Satellite Remote Sensing of Fires, Oxford Handbook of Innovation, pp.77-93, 2013.
DOI : 10.1002/9781118529539.ch5

J. San-miguel-ayanz, J. M. Moreno, and A. Camia, Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives, Forest Ecology and Management, vol.294, pp.11-22, 2013.
DOI : 10.1016/j.foreco.2012.10.050

G. Schmuck, J. San-miguel-ayanz, A. Camia, T. Durrant, R. Boca et al., Forest fires in Europe, Middle East and North Africa 2012 Institute for Environment and Sustainability, Via Enrico Fermi 2749, Tech. rep., Joint Research Center Ispra Geosci. Model Dev, vol.261, issue.7, pp.587-612, 2014.

S. Turquety, APIFLAME high-resolution fire emission model Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Climatic Change, vol.2, pp.207-24710, 1980.

S. Sitch, . Smith, I. C. Prentice, A. Arneth, A. Bondeau et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biology, vol.87802, issue.5, pp.161-185, 2003.
DOI : 10.1046/j.1466-822x.2001.00175.x

S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-tortarolo et al., Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades, Biogeosciences Discussions, vol.10, issue.12, pp.20113-2017710, 2013.
DOI : 10.5194/bgd-10-20113-2013-supplement

M. Sofiev, R. Vankevich, M. Lotjonen, M. Prank, V. Petukhov et al., An operational system for the assimilation of the satellite information on wildland fires for the needs of air quality modelling and forecasting, Atmos. Chem. Phys, vol.95194, pp.6833-684710, 2009.

A. J. Soja, W. R. Cofer, H. H. Shugart, A. I. Sukhinin, P. W. Stackhouse et al., Estimating fire emissions and disparities in boreal Siberia, J. Geophys . Res, vol.109, pp.14-0610, 1998.

D. Spracklen, J. Logan, L. Mickley, R. Park, R. Yevich et al., Wildfires drive interannual variability of organic carbon aerosol in the Western US in summer, Geophys. Res. Lett, vol.34, pp.1681610-1029, 2007.

A. Stohl, T. Berg, J. F. Burkhart, A. M. Fjaeraa, C. Forster et al., Arctic smoke ? record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring, Atmos. Chem. Phys, vol.75194, pp.511-53410, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00296130

D. Stroppiana, P. A. Brivio, J. Grégoire, C. Liousse, B. Guillaume et al., Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data, Atmospheric Chemistry and Physics, vol.10, issue.24, pp.12173-1218910, 2010.
DOI : 10.5194/acp-10-12173-2010

URL : https://hal.archives-ouvertes.fr/hal-00505333

S. Szopa, D. A. Hauglustaine, C. , and P. , Relative contributions of biomass burning emissions and atmospheric transport to carbon monoxide interannual variability, Geophysical Research Letters, vol.53, issue.612, pp.10-1029, 2007.
DOI : 10.1029/2007GL030231

M. G. Tosca, J. T. Randerson, and C. S. Zender, Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation, Atmospheric Chemistry and Physics, vol.13, issue.10, pp.5227-5241, 2013.
DOI : 10.5194/acp-13-5227-2013-supplement

M. Turetsky, E. S. Kane, J. W. Harden, R. D. Ottmar, K. L. Manies et al., Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands, Nature Geoscience, vol.90, issue.1, pp.27-3110, 1027.
DOI : 10.1038/ngeo1027

M. R. Turetsky, W. Donahue, and B. W. Benscoter, Experimental drying intensifies burning and carbon losses in a northern peatland, Nature Communications, vol.17, pp.51410-1038, 2011.
DOI : 10.1038/ncomms1523

S. Turquety, The atmospheric impact of wildfires, in: Oxford Handbook of Innovation, 2013.

S. Turquety, J. Logan, D. Jacob, R. Hudman, F. Leung et al., Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection, Journal of Geophysical Research, vol.6, issue.D15, pp.12-0310, 1029.
DOI : 10.1029/2006JD007281

URL : https://hal.archives-ouvertes.fr/hal-00186443

S. Turquety, D. Hurtmans, J. Hadji-lazaro, P. Coheur, C. Clerbaux et al., Tracking the emission and transport of pollution from wildfires using the IASI CO retrievals: analysis of the summer 2007 Greek fires, Atmos. Chem. Phys, vol.95194, pp.4897-491310, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00407689

S. P. Urbanski, Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US, Atmospheric Chemistry and Physics, vol.13, issue.14, pp.7241-726210, 2013.
DOI : 10.5194/acp-13-7241-2013-supplement

S. P. Urbanski, W. M. Hao, B. Nordgren, G. R. Van-der-werf, J. T. Randerson et al., The wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty Interannual variability in global biomass burning emissions from, Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires, pp.12973-13000, 1997.

V. Vestreng, K. Mareckova, S. Kakareka, A. Malchykhina, and T. Kukharchyk, Emission Data reported to LRTAP Convention and NEC Directive, Inventory Review, 2007.

C. Wiedinmyer, S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-saadi et al., The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev, vol.45194, pp.625-64110, 2011.

M. Wooster, G. Roberts, G. Perry, and Y. Kaufman, Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, Journal of Geophysical Research, vol.56, issue.21, pp.10-1029, 2005.
DOI : 10.1029/2005JD006318

L. Zobler, A World Soil File for Global Climate Modelling. NASA Technical Memorandum 87802, Tech. rep., NASA Goddard Institute for Space Studies, 1986.