Abstract : The present paper derives systems of partial differential equations that admit a quadratic zero curvature representation for an arbitrary real semisimple Lie algebra. It also determines the general form of Hamilton's principles and Hamiltonians for these systems, and analyzes the linear stability of their equilibrium solutions in the examples of and .
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2014, 47 (7), pp.075201. 〈10.1088/1751-8113/47/7/075201〉
https://hal-polytechnique.archives-ouvertes.fr/hal-01083760
Contributeur : Denis Roura
<>
Soumis le : lundi 17 novembre 2014 - 21:02:12
Dernière modification le : samedi 21 avril 2018 - 12:42:02
François Gay-Balmaz, Darryl D Holm, Tudor S Ratiu. Integrable G-strands on semisimple Lie groups. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2014, 47 (7), pp.075201. 〈10.1088/1751-8113/47/7/075201〉. 〈hal-01083760〉