A Gradient Flow Approach to Quantization of Measures

Abstract : In this paper we study a gradient flow approach to the problem of quantization of measures in one dimension. By embedding our problem in $L^2$ , we find a continuous version of it that corresponds to the limit as the number of particles tends to infinity. Under some suitable regularity assumptions on the density, we prove uniform stability and quantitative convergence result for the discrete and continuous dynamics.
Type de document :
Article dans une revue
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2015, 25 (10), pp.1845-1885. 〈10.1142/S0218202515500475〉
Liste complète des métadonnées

https://hal-polytechnique.archives-ouvertes.fr/hal-01109228
Contributeur : François Golse <>
Soumis le : dimanche 25 janvier 2015 - 16:58:18
Dernière modification le : mercredi 25 avril 2018 - 10:44:20
Document(s) archivé(s) le : dimanche 26 avril 2015 - 10:12:07

Fichiers

Quantiz1D.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Emanuele Caglioti, François Golse, Mikaela Iacobelli. A Gradient Flow Approach to Quantization of Measures. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2015, 25 (10), pp.1845-1885. 〈10.1142/S0218202515500475〉. 〈hal-01109228〉

Partager

Métriques

Consultations de la notice

247

Téléchargements de fichiers

130