In Vivo Single-Cell Detection of Metabolic Oscillations in Stem Cells

Abstract : Through the use of bulk measurements in metabolic organs, the circadian clock was shown to play roles in organismal energy homeostasis. However, the relationship between metabolic and circadian oscillations has not been studied in vivo at a single-cell level. Also, it is unknown whether the circadian clock controls metabolism in stem cells. We used a sensitive, noninvasive method to detect metabolic oscillations and circadian phase within epidermal stem cells in live mice at the single-cell level. We observe a higher NADH/NAD+ ratio, reflecting an increased glycolysis/oxidative phosphorylation ratio during the night compared to the day. Furthermore, we demonstrate that single-cell metabolic heterogeneity within the basal cell layer correlates with the circadian clock and that diurnal fluctuations in NADH/NAD+ ratio are Bmal1 dependent. Our data show that, in proliferating stem cells, the circadian clock coordinates activities of oxidative phosphorylation and glycolysis with DNA synthesis, perhaps as a protective mechanism against genotoxicity.
Document type :
Journal articles
Complete list of metadatas

Cited literature [31 references]  Display  Hide  Download

https://hal-polytechnique.archives-ouvertes.fr/hal-01114435
Contributor : Denis Roura <>
Submitted on : Monday, February 9, 2015 - 8:35:01 PM
Last modification on : Wednesday, August 7, 2019 - 12:14:02 PM
Long-term archiving on : Sunday, April 16, 2017 - 8:06:28 AM

File

PIIS2211124714010183.pdf
Publisher files allowed on an open archive

Identifiers

Citation

Chiara Stringari, Hong Wang, Mikhail Geyfman, Viera Crosignani, Vivek Kumar, et al.. In Vivo Single-Cell Detection of Metabolic Oscillations in Stem Cells. Cell Reports, Elsevier (Cell Press), 2015, 10 (1), pp.1-7. ⟨10.1016/j.celrep.2014.12.007⟩. ⟨hal-01114435⟩

Share

Metrics

Record views

551

Files downloads

423