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SUMMARY

Through the use of bulk measurements in metabolic
organs, the circadian clock was shown to play roles
in organismal energy homeostasis. However, the
relationship between metabolic and circadian oscil-
lations has not been studied in vivo at a single-cell
level. Also, it is unknown whether the circadian clock
controls metabolism in stem cells. We used a sensi-
tive, noninvasive method to detect metabolic oscilla-
tions and circadian phase within epidermal stem
cells in live mice at the single-cell level. We observe
a higher NADH/NAD+ ratio, reßecting an increased
glycolysis/oxidative phosphorylation ratio during
the night compared to the day. Furthermore, we
demonstrate that single-cell metabolic heterogeneity
within the basal cell layer correlates with the circa-
dian clock and that diurnal ßuctuations in NADH/
NAD+ ratio are Bmal1 dependent. Our data show
that, in proliferating stem cells, the circadian clock
coordinates activities of oxidative phosphorylation
and glycolysis with DNA synthesis, perhaps as a pro-
tective mechanism against genotoxicity.

INTRODUCTION

The circadian clock is a self-sustained cellular oscillator that co-
ordinates appropriate metabolic responses within peripheral tis-
sues with the light/dark cycle. Recent studies demonstrated that
the circadian clock and metabolism are tightly interconnected
(Bass and Takahashi, 2010; Eckel-Mahan and Sassone-Corsi,
2013; Sahar and Sassone-Corsi, 2009). Thus, circadian-clock-
regulated transcription feedback loops in the liver produce cy-
cles of NAD+ biosynthesis, ATP production, and mitochondrial
respiration, and conversely, the cellular redox status in�uences
the activity of clock transcription factors ( Peek et al., 2013). So
far, in vivo evaluations of metabolic oscillations have been
done through bulk-tissue experiments. Furthermore, it remains
unknown whether the circadian clock is involved in metabolism
control in stem cells that maintain self-renewing epithelia.

The interfollicular epidermis, a prototype proliferative epithe-
lium, contains a basal cell layer where the majority of cells are
highly proliferative stem or progenitor cells that exit the cell cycle
as they move into the suprabasal compartment for differentiation
and formation of a protective barrier ( Clayton et al., 2007; Lim
et al., 2013; Mascre et al., 2012). Studies in a number of different
mammals demonstrated a striking time-of-day-dependent varia-
tion in stem cell proliferation in the epidermis ( Bjarnason and Jor-
dan, 2002; Brown, 1991) and other proliferative epithelia such as
the intestine (Potten et al., 1977). More recent studies have
started to cast light on how the time-of-day-dependent variation
in cell proliferation is regulated, showing that core circadian
clock components are required for this feature ( Gaddameedhi
et al., 2011; Geyfman et al., 2012; Janich et al., 2011, 2013; Pli-
kus et al., 2013).

The biological function of time-of-day-dependent stem cell
proliferation remains unexplained (Gaddameedhi et al., 2011;
Geyfman et al., 2012; Janich et al., 2013; Plikus et al., 2013).
One hypothesis is that organisms have evolved to temporally
separate DNA synthesis from metabolic functions such as oxida-
tive phosphorylation as a protective mechanism, as has been
suggested for metabolic cycles in yeast ( Tu et al., 2005). Energy
production through oxidative phosphorylation creates high
levels of reactive oxygen species (ROS), which damage DNA,
leading to cellular toxicity, cancer, and aging. A previous study
reported that the expression of genes involved in oxidative phos-
phorylation and the skin’s ROS levels are BMAL1 dependent and
antiphasic to the peak in S phase for stem cells ( Geyfman et al.,
2012). The limitation of these studies is that, except for the quan-
titation of cell proliferation, they are based on measurements in
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Figure 1. In Vivo Noninvasive NADH Imaging of Stem Cells within the Epidermal Basal Cell Layer
(A) Scheme of the live mouse imaging. Two-photon excitation (TPE) �uorescence from NADH (cyan) and second harmonic generation (SHG) from collagen are
collected in epidetection through the same objective of the excitation (Exc), represented in red.
(B) Energy diagrams and wavelengths involved in the TPE and SHG.
(C) A representative cross-section of mouse skin showing the epidermis separated from the dermis by a basal lamina. SHG signal from dermal collagen �b ers is
excited at 880 nm and collected with a 440/20 nm �lter. NADH TPE �uorescence intensity is excited at 740 nm and collected with a 460/80 nm �lter highlight ing
single stem cells within the basal layer.
(D) After a mathematical transformation that involves fast Fourier transformation (FFT) (Experimental Procedures; Digman et al., 2008), the measured �uorescence
lifetime decay is represented by a single point in the 2D phasor plot with g and s coordinates corresponding to the real and imaginary part of the FFT. Bec ause of
the linearity of the phasor coordinates, mixtures of free and bound NADH in the focal volume will lay along the line that connects the pure molecular spe cies
(Stringari et al., 2011).
(E) Phasor analysis of the FLIM images is performed both at the pixel level and cell level. Single pixels are painted in the FLIM map according to a linear cursor
(from purple to cyan) that corresponds to different relative concentration of free and bound NADH. Optical metabolic �ngerprint of single cells is ca lculated by
averaging the phasor coordinates over the segmented region of interest of the cells (red circular cursor). Cell-phasor �ngerprints are represented in the phasor
scatterplot by single points located along the metabolic trajectory between glycolysis and oxidative phosphorylation (OXPHOS).
See also Figure S1.
the cellularly complex skin and rely on inference from gene
expression rather than direct measurements of metabolites.

In order to study metabolism of stem cells of the epidermal
basal cell layer in vivo, we applied two-photon excitation (TPE)
and �uorescence lifetime imaging microscopy (FLIM) of the
intrinsic metabolic biomarker NADH (Heikal, 2010; Konig and
Riemann, 2003; Stringari et al., 2011; Figure 1). This optical
method is noninvasive and provides sensitive and quantitative
measurement of free and protein-bound NADH levels, which
re�ect the metabolic state of single cells within the native micro-
environment of the living tissue (Stringari et al., 2011, 2012a). The
free and bound NADH ratio re�ects the NADH/NAD+ redox ratio
2 Cell Reports 10, 1–7, January 6, 2015 ª 2015 The Authors
(Bird et al., 2005; Skala et al., 2007), an indicator of the relative
level of glycolysis and oxidative phosphorylation within the cell
(Bird et al., 2005; Stringari et al., 2012a; see Supplemental
Information).

RESULTS

We �rst performed in vivo imaging of NADH auto�uorescence and
collagen second harmonic generation (SHG) in adult mouse skin
(Figures 1A–1C) to determine whether we could utilize the SHG
from the dermis to localize cells of the basal cell layer. This
approach was successful, as NADH is excited at 740 nm within



Figure 2. Free-to-Bound NADH Metabolic
Circadian Oscillations in Stem Cells of the
Epidermis Basal Layer
(A) TPE �uorescence intensity in vivo images of
stem cells within the epidermis basal layer excited
at 740 nm with respective FLIM color maps at
740 nm of the relative concentrations of free NADH
and bound NADH. Red-purple color indicates a
high free/bound NADH ratio, whereas violet, cyan,
and white indicate linearly and progressively
decreasing free/bound NADH ratios. Different ra-
tios of free and protein-bound NADH re�ect
different redox ratios (NADH/NAD+) and rates of
glycolysis and oxidative phosphorylation.
(B) Different relative concentrations of free and
bound NADH correspond to a metabolic trajectory
in the phasor plot between glycolysis and OX-
PHOS, respectively. The linear cluster in the pixel
phasor histogram represents all possible relative
concentrations of free NADH (purple) and bound
NADH (white). Scatterplot of the cell phasor of all
stem cells optical metabolic �ngerprint at different
times of the day: 2 a.m. (blue); 8 a.m. (green); 2
p.m. (red); and 8 p.m. (cyan).
(C) The top shows a histogram of the g coordinate
of the cell phasor �ngerprint (which is proportional
to the free/bound NADH ratio) displaying a circa-
dian metabolic oscillation. All distributions are
statistically different (t test p < 0.0001). The error
bars indicate the SD. The bottom shows the
average number of stem cells in S phase over 24 hr
as determined by bromodeoxyuridine incorpora-
tion (Geyfman et al., 2012).
See also Figure S2.
cells of the epidermal basal cell layer, located right above the
collagen �bers of the dermis ( Figures 1C and S1). The two-photon
�uorescence intensity NADH distribution highlights single-cell
morphology with relatively dim nuclei and bright mitochondria
(Figures 1C, 1E, and2A). Analysis of the FLIM images is performed
by a fast Fourier transform (FFT) of the FLIM raw data (Figures 1D
and 1E) by creating a 2D histogram (phasor plot) of the NADH
FLIM image where every pixel of the FLIM image is transformed
into a pixel in the phasor plot (Figures 2A and 2B). The phasor
coordinates g (x) and s (y) are the real and the imaginary part of
the FFT transformation (Supplemental Information), respectively,
and the g coordinate is the most sensitive to free/bound NADH
variations (Stringari et al., 2011, 2012a). The broad NADH lifetime
distribution (Figures 1D and 2B) has a characteristic linear-elon-
gated pattern that re�ects a mixture of free and bound NADH,
yielding information on different distributions of metabolic states
and redox ratios of the cells over the time (Stringari et al., 2012a).

We next used �uorescence lifetime measurement of intrinsic
NADH within single cells (Figures 1D and 1E) of the basal cell
layer to determine whether there are time-of-day-dependent
�uctuations in NADH levels ( Figure 2). We found that metabolic
Cell Reports 10,
oscillations in the NADH cellular �nger-
prints follow a diurnal pattern, showing a
consistent variation in free/bound NADH
ratios between day and night (Figures 2
and S2). Mapping the relative concentra-
tion of free (purple) and bound (cyan) NADH within cells of the
basal cell layer at different time points of the day, according to
the FLIM phasor location of the free NADH and the bound
NADH measured in solution (Stringari et al., 2011), we found
greater free-to-bound NADH ratios at 2 a.m. and 8 a.m. than 2
p.m. and 8 p.m. (Figures 2A and 2B). In these studies, the meta-
bolic optical �ngerprint of single stem cells is measured through
the average phasor FLIM value of the entire cell, including cyto-
plasmic, mitochondrial, and nuclear NADH (Figure 1E). Mito-
chondrial NADH is the major contributor to the cellular metabolic
optical �ngerprint because mitochondria are brighter than cyto-
plasm and nucleus and occupy a higher percentage of the cell
volume (Figure 1C). For quanti�cation, the cellular phasor values
were then plotted in the scatter diagram, showing that the
average FLIM phasor values of basal cells are signi�cantly
different according to the hours of the day, indicating a different
metabolic state (t test between the g coordinate of single cells;
p < 0.0001; Figure 2B). We found consistent results in six inde-
pendent measurements (Figure S2). The relative concentration
of free/bound NADH within stem cells is highest during the night
at 2 a.m. and 8 a.m., decreasing signi�cantly during the day at
1–7, January 6, 2015 ª 2015 The Authors 3



Figure 3. Metabolic Cell Heterogeneity in
Epidermal Stem Cells Correlates with the
Clock Phase
(A) TPE in vivo images of the epidermis basal cell
layer expressing Per1-Venus reporter after exci-
tation of stem cells at 940 nm. For the same �eld of
view, TPE intensity images of NADH and FLIM
color maps at 740 nm of the relative concentra-
tions of free NADH and bound NADH are repre-
sented. Red-purple color indicates a high free/
bound NADH ratio, whereas violet, cyan, and white
indicate linearly and progressively decreasing free/
bound NADH ratios.
(B) Histogram of the average Per1-Venus intensity
from single stem cells displays a circadian oscil-
lation in phase with the oscillation of the g coor-
dinate of cell phasor �ngerprint ( Figure 2). The error
bars indicate the SD. A.U, arbitrary units.
(C) Single-stem-cell Per1-Venus intensity displays
a linear correlation with its metabolic �ngerprint.
See also Figure S3.
2 p.m. and 8 p.m. (Figures 2B and 2C). The histogram of the g co-
ordinate of the cell phasor �ngerprints (which is proportional to
the free/bound NADH ratio) displays a circadian metabolic oscil-
lation with a peak at 2 a.m. in phase with the highest percentage
of cells in S phase (Figure 2C).

Different ratios of free and protein-bound NADH re�ect
different redox ratios (NADH/NAD+), which in turn re�ect the
relative rates of glycolysis and oxidative phosphorylation (glycol-
ysis/oxidative phosphorylation [OXPHOS] ratio; Bird et al., 2005;
Stringari et al., 2012a; see Supplemental Information). The time-
of-day-dependent free/bound NADH oscillations suggest that
cells of the basal cell layer have relatively higher rate of glycolysis
during the night whereas during the day they present relatively
higher rates of oxidative phosphorylation. The glycolytic and
the oxidative phosphorylation phenotypes measured during
the night and day (Figure 2), respectively, correlate with previ-
ously described time-of-day variation in S phase in epidermal
stem cells with the high OXPHOS state being antiphasic to
maximum S phase (Figure 2C; Geyfman et al., 2012). The meta-
bolic oscillations that we measure in vivo in basal cell layer stem
cells are also consistent with the NAD+ circadian rhythmicity and
the mitochondrial oxidative respiration rates recently measured
in liver cells (Peek et al., 2013).

The phasor FLIM analysis at single-cell resolution reveals sig-
ni�cant cell-to-cell heterogeneity in the metabolic signature as
indicated by the intrinsic free and protein-bound NADH concen-
trations (Figures 1D, 1E, and 2B). To quantify the intercell meta-
bolic heterogeneity within the basal cell layer, we determined the
SD of the phasor coordinates g over the entire population of re-
corded cells. The measured SD of the g cell phasor coordinates
has a typical value between 0.008 and 0.034 (Figures 2B and S2),
which is signi�cantly larger than the experimental error on a sin-
gle-cell phasor measurement (0.002 with the signal-to-noise ra-
tio of the experiment; Stringari et al., 2012b). Hence, the free/
bound NADH distribution we observe re�ects a biological varia-
tion and true heterogeneity of the cellular metabolic �ngerprint
within the population of basal cells.
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To investigate whether there is a correlation between the
metabolic �ngerprint and the circadian phase, we performed
NADH FLIM measurements on the epidermis of Per1-Venus
mice expressing the �uorescent protein VENUS from the
clock-controlled Per1 promoter ( Cheng et al., 2009). The circa-
dian clock phase of individual progenitors of the basal cell
layer was evaluated by exciting the tissue at 940 nm wave-
length and measuring the intensity of the Per1-Venus reporter
(see Experimental Procedures; Figure S3). As reported before
(Cheng et al., 2009), the average intensity of the Per1-Venus
reporter is higher at 2 a.m. and 8 a.m. than 2 p.m. and 8
p.m. (Figures 3A and 3B). The phase of the Per1-Venus clock
reporter correlates with high ratios of free-to-bound NADH and
glycolysis/OXPHOS ratios (i.e., high values of g coordinate of
single-cell phasor �ngerprints). Furthermore, we found a linear
correlation between the cellular metabolic �ngerprint (g coordi-
nate of single-cell phasor) and the circadian-clock phase of in-
dividual cells (Per1-Venus reporter intensity; Figure 3C). Thus,
the circadian clock output and the redox state show signi�cant
cell-to-cell heterogeneity and are tightly correlated at a cellular
level.

To determine whether the daily �uctuations of NADH in pro-
genitor cells of the basal cell layer are controlled by the circadian
clock, we evaluated the metabolic �ngerprint of epidermal stem
cells in Bmal1� /� mice, which lack circadian rhythm ( Bunger
et al., 2000). We found that time-of-day-dependent metabolic
oscillations of the progenitor cells in the epidermal basal cell
layer are obliterated in the Bmal1� /� mice, (in Figure 4, the dif-
ference between the Bmal1� /� cell �ngerprints at 2 a.m. and 2
p.m. is not statistically signi�cant [t test p = 0.37]); these results
were consistently observed in three independent measurements
(Figure S4). As the Bmal1� /� mice were kept under normal
12:12 light-dark (LD) conditions, during which the animals are
entrained as measured by wheel running, these experiments
show that BMAL1 is required for diurnal variation in the free-
to-bound ratio of NADH in stem cells of the interfollicular
epidermis.



Figure 4. NADH Metabolic Oscillations Are Disrupted in the Bmal1 � / � Epidermal Basal Layer
(A) Two-photon �uorescence intensity in vivo images of stem cells within the epidermis basal cell layer of wild-type (WT) and Bmal1� /� mice excited at 740 nm
at two different time points. Phasor FLIM color maps at 740 nm of the relative concentrations of free NADH and bound NADH. Red-purple color indicates a h igh
free/bound NADH ratio, whereas violet, cyan, and white indicate linearly and progressively decreasing free/bound NADH ratios.
(B) Scatterplot of the cell phasor of all stem cells’ optical metabolic �ngerprint at different times of the day: 2 a.m. (blue) and 2 p.m. (red) measured in WT mice
(t test p < 0.0001) and 2 a.m. (green), 2 p.m. (black) measured inBmal1� /� mice (t test p = 0.37).
(C) The circadian metabolic oscillation of the cell phasor �ngerprint g coordinate (proportional to the free/bound NADH ratio) is disrupted in Bmal1� /� mice. The
error bars indicate the SD.
See also Figure S4.
DISCUSSION

Previous studies have shown that proliferation of interfollicular
epidermal stem cells is highly diurnal, with a greater percentage
of cells undergoing S phase during the night than during the day
in mice, and that this diurnal variation in cell proliferation de-
pends on the core circadian clock gene Bmal1 acting within
keratinocytes (Gaddameedhi et al., 2011; Geyfman et al., 2012;
Plikus et al., 2013). Whereas there is controversy about the
hierarchy of cells within the basal layer of the interfollicular
epidermis, previous work generally supports the idea that, during
normal homeostasis, the mouse epidermis is primarily main-
tained by a single type of progenitor/stem cell ( Clayton et al.,
2007; Lim et al., 2013; Mascre et al., 2012). In this study, we
have used FLIM, a label-free, single-cell resolution technique
that detects the levels of bound and free NADH in vivo, to identify
diurnal metabolic oscillations in stem cells of the interfollicular
epidermis. The implementation of FLIM overcomes limitations
of previous studies into the role of the circadian clock in meta-
bolism based on bulk measurements, allowing the detection of
metabolic heterogeneity within stem cells of the epidermis and
correlation of this heterogeneity to clock output at a single-cell
level.

Our study supports the idea that the circadian clock regulates
metabolism within stem cells of the interfollicular epidermis for
the following reasons. First, we �nd a correlation between the
NADH/NAD+ redox ratio as measured by FLIM and clock output
as measured by activity of the Per1-Venus reporter in vivo. Sec-
ond, we �nd that mutations in Bmal1 disrupt the diurnal variation
in the NADH/NAD+ redox ratio. Through regulation of gene
expression within metabolic organs, the circadian clock has
been shown to play a key role in diurnal shifts in organismal
metabolic patterns (Peek et al., 2013; Sahar and Sassone-Corsi,
2009). Our study indicates that the circadian clock also has a key
function in the modulation of metabolism within stem cells of a
highly proliferative epithelial tissue. We show signi�cant cell-to-
cell heterogeneity in circadian output and NADH/NAD+ redox
ratios, perhaps re�ecting different levels of stemness among
the epidermal basal cells.

Interestingly, we �nd that the epidermal stem cells show a
more glycolytic phenotype during night, when the highest
numbers of cells are in S phase (Geyfman et al., 2012). It has
long been observed that proliferating cells rely more on glycol-
ysis than oxidative phosphorylation, such as in the Warburg
effect in cancer cells (Warburg, 1956). ROS are a normal mito-
chondrial byproduct of oxidative phosphorylation during cellular
respiration (Murphy, 2009). Whereas also serving normal
signaling roles (D’Autreaux and Toledano, 2007), ROS is toxic
to the cell, oxidizing a variety of macromolecules including
DNA where it causes mutations. Thus, the accumulation of
ROS-mediated cellular damage is thought to play a role in carci-
nogenesis and aging. All tissues are susceptible to ROS-induced
Cell Reports 10, 1–7, January 6, 2015 ª 2015 The Authors 5



DNA damage, but because the S phase of the cell cycle is the
most-susceptible cellular stage, highly proliferative tissues are
likely most sensitive to ROS-induced mutagenesis, thus pro-
viding one possible explanation for proliferating cells’ reliance
on glycolysis (Hamanaka and Chandel, 2011). Our �ndings sug-
gest that the circadian clock confers time-of-day-dependent
shifts in glycolysis versus oxidative phosphorylation within prolif-
erating epithelial stem cells, thus minimizing DNA damage during
S phase. Conversely, in Bmal1 mutant mice, which show no tem-
poral separation of glycolytic and oxidative metabolism, this pro-
tection is presumably lost, leading to increased DNA damage.
Indeed, mutations in Bmal1 have been associated with prema-
ture aging and increased DNA damage (Janich et al., 2011; Kon-
dratov et al., 2006).
EXPERIMENTAL PROCEDURES

Animal Models and Procedures
Mice were kept under 12 hr:12 hr LD cycle (light on at 6:30 a.m.) with unre-
stricted access to food and water. Immediately before imaging, mice were
anesthetized with ketamine. Hair was shaved and removed with Nair hair
remover (Church & Dwight) on the back in a 2 cm2 area, which was washed un-
der warm water and dried with Kimwipes. Procedures were approved by the
Institutional Animal Care and Use Committee (protocols 2002-2357-3 and
2001-2239). Bmal1� /� and Per1-Venus mice were previously described
(Bunger et al., 2000; Cheng et al., 2009). Bmal1� /� mice and controls were
studied during �rst telogen at ages 20–22 days.

Imaging
Imaging was performed with a Zeiss 710 microscope coupled to a Ti:sapphire
laser system (Spectra-Physics Mai Tai). A 40 3 0.8 numerical aperture water
immersion objective (LUMPlanFl Olympus) with 2 mm working distance was
used. The excitation wavelengths were 880 nm and 740 nm with average po-
wer of about 5 mW. Fluorescence intensity images of NADH were acquired by
exciting the tissue at 740 nm and placing a 460/80 nm emission �lter in front of
the detector. Second harmonic generation from collagen was excited at
880 nm and collected with an emission �lter 440/20 nm or excited at 940 nm
and collected with a band-pass �lter 470/20 nm.

The stem cells within the epidermal basal cell layer are identi�ed by their
unique location immediately above the collagen-rich layer of the dermis; a sec-
ond harmonic generation 3D stack was systematically acquired to localize the
edge of the dermis layer in the Z axis (Figure S1). For example, in Figure S1C,
the edge of the dermis is identi�ed at a depth of 18 mm, corresponding to the
last Z section of the dermis that contains collagen. To localize the epidermal
basal layer, we moved the focus in Z between 2 and 4 mm above the edge of
the dermis layer. (In Figure S1B, the epidermal basal layer is located between
14 and 16 mm.) The epidermal basal layer is characterized (Figure S1B) by
small and round-shaped stem cells, whereas cells that undergo differentiation
in the upper layers are larger. Six regions of interest of the epidermal basal
layer were imaged within the 2 cm 2 skin. We imaged four mice for every
time point and condition.

Fluorescence lifetime images were acquired with an ISS A320 FastFLIM sys-
tem (Colyer et al., 2008). For image acquisition, the following settings are used:
image size of 256 3 256 pixels and scan speed of 25 ms/pixel. A dichroic �lter
(690 nm) was used to separate the �uorescence signal from the laser light and
the �uorescence. For the acquisition of FLIM images, �uorescence is detected
by a photomultiplier (H7422P-40 of Hamamatsu), and a 610 nm short-pass �l-
ter is placed in front of the detector. A 495 nm long-pass �lter separates the
blue and the green �uorescence. NADH �uorescence was collected through
a 460/80 nm �lter. FLIM data are acquired and processed by the SimFCS soft-
ware developed at the Laboratory of Fluorescence Dynamics. FLIM calibration
of the system is performed by measuring the known lifetime of the �uorescein
with a single exponential of 4.04 ns. FLIM data are collected until 100 counts in
the brightest pixel of the image are acquired. Typically, the acquisition time
6 Cell Reports 10, 1–7, January 6, 2015 ª 2015 The Authors
was of the order of few seconds. To quantify Per1-Venus intensity, we excited
the epidermal basal layer with a wavelength of 940 nm, acquiring ten frames for
each �eld of view ( Figure S3C). The same laser power of 5 mW was used for all
�elds of view. We veri�ed that the Venus �uorescence signal of cells was not
affected by photobleaching or photodamage by scanning 20 frames on the
same �eld of view ( Figure S3C).

FLIM Phasor Data Analysis
Every pixel of the FLIM image is transformed in one pixel in the 2D histogram of
the phasor plot through a mathematical transformation of the �uorescence
intensity decay that involves FFT (Digman et al., 2008; Stringari et al., 2011;
Supplemental Information). The coordinates g and s (x and y coordinates,
respectively) in the phasor plot are the real and imaginary part of the FFT.
The analysis of the phasor distribution is performed by cluster identi�cation
of free and bound NADH. Because of the linearity of the phasor coordinates,
mixtures of free and bound NADH in the focal volume will distribute along
the line that connects the pure molecular species. Fractional intensities of
chemical species in every pixel of the image were evaluated with a graphical
analysis in the phasor plot as described previously (Digman et al., 2008; String-
ari et al., 2011). We performed image segmentation on the FLIM data by select-
ing the region of interest of cells within the tissue, using a cursor with circular
shape. We then calculated the phasor average value within the entire cell,
including NADH in mitochondria and nuclei. When measuring the cell phasor,
all pixels of the cell (about 1,000) are taken in account and the signal-to-noise
ratio of the FLIM signature of cells is higher than in single pixels. The average
value of the SD of the NADH average cell phasor is calculated over the �ve
different independent experiments in Figures 2 and S2.
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