J. Bass and J. S. Takahashi, Circadian Integration of Metabolism and Energetics, Science, vol.330, issue.6009, pp.1349-1354, 2010.
DOI : 10.1126/science.1195027

D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan et al., Metabolic Mapping of MCF10A Human Breast Cells via Multiphoton Fluorescence Lifetime Imaging of the Coenzyme NADH, Cancer Research, vol.65, issue.19, pp.8766-8773, 2005.
DOI : 10.1158/0008-5472.CAN-04-3922

G. A. Bjarnason, J. , and R. , Rhythms in Human Gastrointestinal Mucosa and Skin, Chronobiology International, vol.53, issue.1, pp.129-140, 2002.
DOI : 10.1093/jnci/86.21.1608

W. R. Brown, A Review and Mathematical Analysis of Circadian Rhythms in Cell Proliferation in Mouse, Rat, and Human Epidermis, Journal of Investigative Dermatology, vol.97, issue.2, pp.273-280, 1991.
DOI : 10.1111/1523-1747.ep12480379

H. Cheng, M. Alvarez-saavedra, H. Dziema, Y. S. Choi, A. Li et al., Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain, Human Molecular Genetics, vol.18, issue.16, pp.3110-3124, 2009.
DOI : 10.1093/hmg/ddp252

E. Clayton, D. P. Doupe, A. M. Klein, D. J. Winton, B. D. Simons et al., A single type of progenitor cell maintains normal epidermis, Nature, vol.44, issue.7132, pp.185-189, 2007.
DOI : 10.1038/nature05574

R. Colyer, C. Lee, and E. Gratton, A novel fluorescence lifetime imaging system that optimizes photon efficiency, Microscopy Research and Technique, vol.85, issue.3, pp.201-213, 2008.
DOI : 10.1002/jemt.20540

D. 'autreaux, B. Toledano, and M. B. , ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nature Reviews Molecular Cell Biology, vol.21, issue.10, pp.813-824, 2007.
DOI : 10.1038/nrm2256

M. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, The Phasor Approach to Fluorescence Lifetime Imaging Analysis, Biophysical Journal, vol.94, issue.2, pp.14-16, 2008.
DOI : 10.1529/biophysj.107.120154

K. Eckel-mahan and P. Sassone-corsi, Metabolism and the Circadian Clock Converge, Physiological Reviews, vol.93, issue.1, pp.107-135, 2013.
DOI : 10.1152/physrev.00016.2012

S. Gaddameedhi, C. P. Selby, W. K. Kaufmann, R. C. Smart, and A. Sancar, Control of skin cancer by the circadian rhythm, Proc. Natl. Acad. Sci. USA, pp.18790-18795, 2011.
DOI : 10.1073/pnas.1115249108

M. Geyfman, V. Kumar, Q. Liu, R. Ruiz, W. Gordon et al., Brain and muscle Arnt-like pro- tein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVBinduced DNA damage in the epidermis, Proc. Natl. Acad. Sci. USA, pp.11758-11763, 2012.

R. Hamanaka and N. S. Chandel, Warburg Effect and Redox Balance, Science, vol.334, issue.6060, pp.1219-1220, 2011.
DOI : 10.1126/science.1215637

A. A. Heikal, Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies, Biomarkers in Medicine, vol.4, issue.2, pp.241-263, 2010.
DOI : 10.2217/bmm.10.1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905054

P. Janich, G. Pascual, A. Merlos-suarez, E. Batlle, J. Ripperger et al., The circadian molecular clock creates epidermal stem cell heterogeneity, Nature, vol.38, issue.7376, pp.209-214, 2011.
DOI : 10.1038/nature10649

P. Janich, K. Toufighi, G. Solanas, N. M. Luis, S. Minkwitz et al., Human Epidermal Stem Cell Function Is Regulated by Circadian Oscillations, Cell Stem Cell, vol.13, issue.6, pp.745-753, 2013.
DOI : 10.1016/j.stem.2013.09.004

URL : http://doi.org/10.1016/j.stem.2013.09.004

R. V. Kondratov, A. A. Kondratova, V. Y. Gorbacheva, O. V. Vykhovanets, and M. P. Antoch, Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock, Genes & Development, vol.20, issue.14, pp.1868-1873, 2006.
DOI : 10.1101/gad.1432206

K. Konig and I. And-riemann, High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution, Journal of Biomedical Optics, vol.8, issue.3, pp.432-439, 2003.
DOI : 10.1117/1.1577349

X. Lim, S. H. Tan, W. L. Koh, R. M. Chau, K. S. Yan et al., Interfollicular Epidermal Stem Cells Self-Renew via Autocrine Wnt Signaling, Science, vol.342, issue.6163, pp.1226-1230, 2013.
DOI : 10.1126/science.1239730

G. Mascre, S. Dekoninck, B. Drogat, K. K. Youssef, S. Brohee et al., Distinct contribution of stem and progenitor cells to epidermal maintenance, Nature, vol.15, issue.7415, pp.257-262, 2012.
DOI : 10.1093/biostatistics/kxp059

M. P. Murphy, How mitochondria produce reactive oxygen species, Biochemical Journal, vol.417, issue.1, pp.1-13, 2009.
DOI : 10.1042/BJ20081386

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605959

C. Peek, A. H. Affinati, K. M. Ramsey, H. Y. Kuo, W. Yu et al., Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice, Science, vol.342, issue.6158, p.1243417, 2013.
DOI : 10.1126/science.1243417

M. Plikus, C. Vollmers, D. De-la-cruz, A. Chaix, R. Ramos et al., Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling, Proc. Natl. Acad. Sci. USA, pp.2106-2115, 2013.
DOI : 10.1073/pnas.1215935110

C. S. Potten, S. E. Al-barwari, W. J. Hume, and J. Searle, CIRCADIAN RHYTHMS OF PRESUMPTIVE STEM CELLS IN THREE DIFFERENT EPITHELIA OF THE MOUSE, Cell Proliferation, vol.8, issue.6, pp.557-568, 1977.
DOI : 10.1007/BF02113004

S. Sahar and P. Sassone-corsi, Metabolism and cancer: the circadian clock connection, Nature Reviews Cancer, vol.119, issue.12, pp.886-896, 2009.
DOI : 10.1038/nrc2747

M. C. Skala, K. M. Riching, A. Gendron-fitzpatrick, J. Eickhoff, K. W. Eliceiri et al., In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia, Proc. Natl. Acad. Sci. USA, pp.19494-19499, 2007.
DOI : 10.1073/pnas.0708425104

C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan et al., Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue, Proc. Natl. Acad. Sci. USA, pp.13582-13587, 2011.
DOI : 10.1073/pnas.1108161108

C. Stringari, R. A. Edwards, K. T. Pate, M. L. Waterman, P. J. Donovan et al., Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH. Sci, p.568, 2012.

C. Stringari, J. L. Nourse, L. Flanagan, and E. Gratton, Phasor Fluorescence Lifetime Microscopy of Free and Protein-Bound NADH Reveals Neural Stem Cell Differentiation Potential, PLoS ONE, vol.94, issue.11, p.48014, 2012.
DOI : 10.1371/journal.pone.0048014.g007

B. Tu, A. Kudlicki, M. Rowicka, and S. L. Mcknight, Logic of the Yeast Metabolic Cycle: Temporal Compartmentalization of Cellular Processes, Science, vol.310, issue.5751, pp.1152-1158, 2005.
DOI : 10.1126/science.1120499

O. Warburg, On the Origin of Cancer Cells, Science, vol.123, issue.3191, pp.309-314, 1956.
DOI : 10.1126/science.123.3191.309