On the Mean Field and Classical Limits of Quantum Mechanics

Abstract : The main result in this paper is a new inequality bearing on solutions of the $N$-body linear Schrödinger equation and of the mean field Hartree equations. This inequality implies that the mean field limit of the quantum mechanics of $N$ identical particles is uniform in the classical limit and provides a quantitative estimate of the quality of the approximation. This result applies to the case of $C^{1,1}$ interaction potentials. The quantity measuring the approximation of the $N$-body quantum dynamics by its mean field limit is analogous to the Monge-Kantorovich (or Wasserstein) distance with exponent $2$. The inequality satisfied by this quantity is reminiscent of the work of Dobrushin on the mean field limit in classical mechanics [Func. Anal. Appl. 13 (1979), 115-123]. Our approach of this problem is based on a direct analysis of the $N$-particle Liouville equation, and avoids using techniques based on the BBGKY hierarchy or on second quantization.
Type de document :
Article dans une revue
Communications in Mathematical Physics, Springer Verlag, 2016, 343, pp.165-205. 〈10.1007/s00220-015-2485-7〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal-polytechnique.archives-ouvertes.fr/hal-01119132
Contributeur : François Golse <>
Soumis le : vendredi 13 novembre 2015 - 12:19:39
Dernière modification le : jeudi 10 mai 2018 - 01:57:26
Document(s) archivé(s) le : dimanche 14 février 2016 - 13:08:06

Fichiers

MFCQMFinalCorr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Golse, Clément Mouhot, Thierry Paul. On the Mean Field and Classical Limits of Quantum Mechanics. Communications in Mathematical Physics, Springer Verlag, 2016, 343, pp.165-205. 〈10.1007/s00220-015-2485-7〉. 〈hal-01119132v4〉

Partager

Métriques

Consultations de la notice

462

Téléchargements de fichiers

190