Classification in Twitter via Compressive Sensing

Abstract : In this paper we introduce a novel low dimensional method to perform topic detection and classification in Twitter. The proposed method first employs Joint Complexity to perform topic detection. Then, based on the nature of the data, we apply the theory of Compressive Sensing to perform topic classification by recovering an indicator vector, while reducing significantly the amount of information from tweets. In this paper we exploit datasets in various languages collected by using the Twitter streaming API, and achieve increased classification accuracy when comparing to state-of-the-art methods based on bag-of- words, along with several reconstruction techniques.
Type de document :
Communication dans un congrès
IEEE International Conference on Computer Communications (INFOCOM), Apr 2015, Hong Kong, Hong Kong SAR China
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal-polytechnique.archives-ouvertes.fr/hal-01138337
Contributeur : Dimitrios Milioris <>
Soumis le : mercredi 27 mai 2015 - 10:29:37
Dernière modification le : jeudi 9 février 2017 - 15:14:46
Document(s) archivé(s) le : lundi 24 avril 2017 - 15:23:19

Fichier

Infocom2015Classification_CC.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01138337, version 1

Collections

Citation

Dimitrios Milioris. Classification in Twitter via Compressive Sensing. IEEE International Conference on Computer Communications (INFOCOM), Apr 2015, Hong Kong, Hong Kong SAR China. 〈hal-01138337〉

Partager

Métriques

Consultations de la notice

341

Téléchargements de fichiers

192