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Abstract

We show that an equilibrium always exists in the Rothschild-Stiglitz insur-

ance market model with adverse selection and an arbitrary number of risk types,

when insurance contracts include policy dividend rules. The Miyazaki-Wilson-

Spence state-contingent allocation is an equilibrium allocation, and it is the only

one when out-of-equilibrium beliefs satisfy a robustness criterion. It is shown

that stock insurers and mutuals may coexist, with stock insurers o¤ering insur-

ance coverage at actuarial price and mutuals cross-subsidizing risks.

Keywords: Insurance, Adverse Selection, Mutual, Participating Contract,

Policy Dividend.
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1 Introduction

The fact that no equilibrium may exist in the Rothschild-Stiglitz (1976) model of insur-

ance markets under adverse selection has been at the origin of an abundant literature

in economic theory. In one way or another, most articles in this area have moved

away from the basic premise of the Rothschild-Stiglitz approach. This approach con-

sisted of modelling the strategic interactions between insurers who simultaneously o¤er

contracts under hidden information about the risk types of insurance seekers.

An important avenue of research that followed the seminal contribution of Roth-

schild and Stiglitz (1976) has its origin in the article by Wilson (1977). It focuses

attention on competitive mechanisms when insurers interact in a dynamic way. This

includes the "anticipatory equilibrium" of Miyazaki (1977), Wilson (1977) and Spence

(1978), the "reactive equilibrium" of Riley (1979), and the variations on the equilibrium

concept introduced by Hellwig (1987) and Engers and Fernandez (1987), and in more

recent papers surveyed by Mimra and Wambach (2014). Another line of research, illus-

trated by the works of Dubey and Geanakoplos (2002) and Bisin and Gottardi (2006)

among others, departs from the strategic dimension and considers atomistic insurance

markets under adverse selection in line with the approach by Prescott and Townsend

(1984). Unlike these two strands of research,1 our purpose is to reexamine the equilib-

rium issue in a perspective that remains framed within the initial Rothschild-Stiglitz
1The fact that there may be no equilibrium in the Rothschild-Stiglitz model is related to the

discontinuity of insurers�payo¤ functions, since small changes in their contract o¤ers may lead all

individuals of a given type to switch to other insurers, with a possible jump in the insurers�expected

pro�ts. Dasgupta and Maskin (1986a,b) have established existence theorems for mixed strategy

equilibria in a class of games where payo¤ functions have discontinuity points, and, as shown by

Rosenthal and Weiss (1984) in the case of the Spence model of education choices, such a mixed

strategy equilibrium exists in the Rothschild-Stiglitz insurance market model. However, assuming

that �rms play mixed strategies at the contract o¤er stage has not been considered as reasonable

in the subsequent literature on markets with adverse selection. In addition, as shown by Rosenthal

and Weiss (1984), at a mixed-strategy equilibrium, a potential entrant could make positive pro�t.
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approach. This requires a few preliminary explanations.

Rothschild and Stiglitz (1976) considered a simple setting in which each insurer is

constrained to o¤ering a single contract, with a free entry equilibrium concept, but

they emphasized that such an equilibrium could be viewed as a Nash equilibrium of

a game in which insurers interact by o¤ering contracts simultaneously. They also

noted that a next step was to test a less restrictive de�nition of insurers�strategies.

In particular, they observed that allowing insurers to o¤er menus of contracts would

make the condition under which an equilibrium exists even more restrictive. When

commenting on the approach byWilson (1977), they noted that "the peculiar provision

of many insurance contracts, that the e¤ective premium is not determined until the

end of the period (when the individual obtains what is called a dividend), is perhaps

a re�ection of the uncertainty associated with who will purchase the policy, which in

turn is associated with the uncertainty about what contracts other insurance �rms will

o¤er". In other words, many insurance contracts, mostly those o¤ered by mutuals, have

a participating dimension which should not be ignored when we seek to understand

how competition works in the real word.2

Our objective in the present paper is to move forward in that direction. In a

�rst approach (Picard, 2014), we have studied how allowing insurers to o¤er either

participating or non-participating contracts, or in other words to act as mutuals or

as stock insurers,3 a¤ects the conclusion about the existence of an equilibrium if all

This reinforces the fundamental conclusion of Rothschild and Stiglitz, that is, that an entry-deterring

equilibrium may not exist.
2Mutuals di¤er according to the role of the premium charged at the start of each policy period.

Advance premium mutuals set premium rates at a level that is expected to be su¢ cient to pay the

expected losses and expenses while providing a margin for contingencies, and policyholders usually

receive dividends. In contrast, assessment mutuals collect an initial premium that is su¢ cient only

to pay typical losses and expenses and levy supplementary premiums whenever unusual losses occur.
3This mapping between the nature of contracts (participating or non-participating) and the cor-

porate form (mutuals or stocks) is of course an oversimpli�cation of the insurance market. Firstly,

insurers may o¤er participating and non-participating contracts simultaneously. In particular, most

3



other assumptions of the Rothschild-Stiglitz model are unchanged. An equilibrium

(in Rothschild and Stiglitz sense) always exists in such a setting, and the socalled

Miyazaki-Wilson-Spence (MWS) allocation is a state contingent equilibrium alloca-

tion. Furthermore, mutuals o¤ering participating contracts is the corporate form that

emerges in markets where cross-subsidization provides a Pareto-improvement over the

Rothschild-Stiglitz separating pair of contracts, a case where no equilibrium exists in

the standard Rothschild-Stiglitz model. However, these conclusions were reached un-

der quite restrictive assumptions: we postulated that there were only two risk types

(high risk and low risk), as in the initial Rothschild-Stiglitz model, and we restricted

attention to linear policy dividend rules that allow insurers to distribute a �xed pro-

portion of their aggregate underwriting pro�t to policyholders. Finally, we did not

present conditions under which a unique equilibrium allocation exists. The objective

of the present paper is to reexamine these issues in a setting with an arbitrary number

of risk types and a more general de�nition of admissible policy dividend rules, and

also to obtain conditions under which there is a unique equilibrium allocation.

It turns out that, beyond the extended validity of our conclusions, considering an

arbitrary number of risk types provide an endogenous structure of corporate forms in

the insurance industry: mutuals emerge for risk type subgroups that require cross-

subsidization, while stock insurers and mutuals may provide coverage to subgroups

without cross-subsidization. We will thus explain why the coexistence of mutuals and

stock insurers is a natural outcome of competitive interactions in insurance markets,

a conclusion that �ts with the facts observed in many countries.4 Finally, we will

life insurance contracts include pro�t participation clauses, even in the case of stock insurers. Further-

more, whatever the corporate structure, the participation of policyholders in pro�t may take other

forms than policy dividends: in particular, it may be in the form of discounts when contracts are

renewed, which is a strategy available to stock insurers and mutuals. In addition, the superiority of

one corporate form over another may also re�ect other factors, including agency costs and governance

problems.
4The mutual market share is over 40% in Japan, France and Germany. It is almost 50% in the
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also examine the issue of equilibrium uniqueness. However, considering an arbitrary

number of types and non-linear policy dividend rules and extending the approach to

conditions under which a unique equilibrium exists requires a more formal approach

than the geometry-based reasoning that is su¢ cient for more simple cases, such as the

seminal article of Rothschild and Stiglitz (1976).

The rest of this article is organized as follows. Section 2 presents our setting, which

is an insurance market under adverse selection with an arbitrary number of risk types,

where insurance contracts may include policy dividend rules. Section 3 is the core

of the paper: it analyzes the market equilibrium by de�ning a market game and an

equilibrium of this game, as well as the MWS allocation in the manner of Spence

(1978). We show that this allocation is sustained by an equilibrium of the market

game and, more speci�cally, that it may be sustained by participating contracts for

subgroups with cross-subsidization and non-participating contracts in the other cases.

Finally, we show that the MWS allocation is the only equilibrium allocation under

a robustness criterion derived from evolutionary stability criterions in games with a

continuum of players. Section 4 concludes. Proofs are in the Appendix.

2 The setting

We consider a large population represented by a continuum of individuals, with mass

1, facing idiosyncratic risks of having an accident.5 All individuals are risk averse:

they maximize the expected utility of wealth u(W ); where W denotes wealth and the

(twice continuously di¤erentiable) utility function u is such that u0 > 0 and u00 < 0:

If no insurance policy is taken out, we have W = WN in the no-accident state and

Netherlands and it is over 60% in Austria. In the US, it reached 36.3% in 2013. These aggregate

�gures mask important disparities between the life and non-life lines of business.
5The word "accident" is taken in its generic meaning: it refers to any kind of insurable loss, such

as health care expenditures or �re damages.
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W = WA in the accident state; A = WN �WA is the loss from an accident. Individuals

di¤er according to their probability of accident �, and they have private information

on their own accident probability. There are n types of individuals, with � = �i for

type i with 0 < �n < �n�1 < ::: < �1 < 1. Hence, the larger the index i, the lower

the probability of an accident. �i is the fraction of type i individuals among the whole

population with
Pn

i=1 �i = 1.

Insurance contracts are o¤ered by m insurers (m � 2) indexed by j = 1; :::;m who

may o¤er participating or non-participating contracts. In other words, insurers are

entrepreneurs who may be stock insurers or mutual insurers. Stock insurers pool risks

between policyholders through non-participating insurance contracts, and they transfer

underwriting pro�t to risk-neutral shareholders. Mutual insurers have no shareholders:

they share risks between their members only through participating contracts. Insurers

o¤er contracts in order to maximize their residual expected pro�t (i.e. the expected

corporate earnings after policy dividends have been distributed).6

We assume that each individual can take out only one contract. An insurance

contract is written as (k; x), where k is the insurance premium and x is the net payout

in case of an accident. Hence, x+k is the indemnity. Participating insurance contracts

also specify how policy dividends are paid or supplementary premiums are levied. We

will restrict attention to deterministic policies in which dividend rules de�ne the (non-

6Thus, the insurance corporate form is a consequence of the kind of insurance contracts o¤ered at

the equilibrium of the insurance market. It is not given ex ante. The underwriting activity as well as

all other aspects of the insurance business (e.g. claims handling) are supposed to be costless. Insurers

earn �xed fees in a competitive market. The mere fact that they may transfer risks to risk-neutral

investors leads them to maximize the expected residual pro�t. If an insurer could increase its residual

expected pro�t by o¤ering other insurance policies, then it could contract with risk neutral investors

and secure higher �xed fees. Note that the residual pro�t of a mutual is zero if pro�ts are distributed

as policy dividends or losses are absorbed through supplementary premiums. In that case, if the

mutual insurer could make positive residual pro�t, then he would bene�t from becoming a stock

insurer.
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random) policy dividend D as a function of average pro�ts and of the number of

policyholders, for each contract o¤ered by the insurer (see below for details).7 The

expected utility of a type i policyholder is then written as:

Eu = (1� �i)u(WN � k +D) + �iu(WA + x+D):

Our objective is to characterize a subgame perfect Nash equilibrium of a two

stage game called "the market game", where insurers can o¤er participating or non-

participating contracts. At stage 1, insurers o¤er menus of contracts, and at stage 2

individuals respond by choosing the contracts they prefer among the o¤ers made by

the insurers.

It is of utmost importance to note that the choices of individuals depend on the

intrinsic characteristics of the contracts that have been o¤ered at stage 1, but also on

expected policy dividends. Expected policy dividends should coincide with true divi-

dends (for contracts that are actually chosen by some individuals), that are themselves

dependent on the distribution of risk types among policyholders for each contract.

Thus, at stage 2, the participating nature of contracts induces a form of interdepen-

dence between individuals�strategies that is absent in the standard model with only

non-participating contracts.

At stage 1, the strategy of insurer j is de�ned by a menu of n contracts, one for

each type of individual, written as Cj = (Cj1 ; C
j
2 ; :::; C

j
n; D

j(:)), where Cjh = (kjh; x
j
h)

speci�es the premium kjh and the net indemnity x
j
h. D

j(:) is a policy dividend rule, i.e.,

a way to distribute the net pro�ts made on Cj. We write Dj(:) = (Dj
1(:); :::; D

j
n(:)),

where Dj
h(N

j
1 ; P

j
1 ; :::; N

j
n; P

j
n) denotes the policy dividend paid to each individual who

has chosen contract Cjh when N
j
i is the fraction of individuals in the whole population

who have chosen Cji with underwriting pro�t (the di¤erence between premium and

7D will be non random because the law of large numbers allows us to evaluate the average pro�t

by the expected pro�t made on a policyholder who is randomly drawn among the customers. D < 0

corresponds to a supplementary call.
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indemnity) per policyholder P ji , with
Pm

j=1

Pn
i=1N

j
i = 1.

8 Cj is non-participating if

Dj
h(N

j
1 ; P

j
1 ; :::; N

j
n; P

j
n) � 0 for all h, and otherwise it is said to be participating. In

particular, Cj is fully participating if underwriting pro�ts are entirely distributed as

policy dividends, that is, if9

nX
h=1

N j
hD

j
h(N

j
1 ; P

j
1 ; :::; N

j
n; P

j
n) �

nX
h=1

N j
hP

j
h :

We will assume that Dj
h(N

j
1 ; P

j
1 ; :::; N

j
n; P

j
n) is non-decreasing with respect to P

j
1 ; :::; P

j
n

and homogeneous of degree zero with respect to (N j
1 ; :::; N

j
n). We can write the policy

dividend as

Dj
h = D

j
h(�

j
1; P

j
1 ; :::; �

j
n; P

j
n);

where

�jh �
N j
hPn

i=1N
j
i

is the fraction of insurer j0s customers who have chosen Cjh , with
Pn

h=1 �
j
h = 1.

The homogeneity assumption is made for the sake of mathematical simplicity, but

also because it �ts with the standard policy dividend rules we may think of. For

instance, if insurer j shares a fraction j 2 [0; 1] of its underwriting pro�t evenly

among all its policyholders, then we have

Dj
h = 

j

nX
i=1

�jiP
j
i for all h = 1; :::; n:

If insurer j distributes a fraction j 2 [0; 1] of the underwriting pro�t made on Cjh to

the policyholders who have chosen this contract, then

Dj
h = 

jP jh for all h = 1; :::; n:

If insurer j distributes a fraction j 2 [0; 1] of its underwriting pro�t to the policyhold-

ers, with di¤erent rights to dividend according to the contract, then we may postulate

8Dj
h < 0 corresponds to a supplementary premium levied on Cjh.

9Cj may be fully participating with Dj
h � 0 for some h. In other words, a fully participating menu

may include non-participating policies.
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that there exist coe¢ cients �jh � 0, with �
j
1 = 1 such that D

j
h = �

j
hD

j
1, which gives

Dj
h =

�jh
nX
h=1

�ji�
j
i

j
nX
h=1

�jhP
j
h for all h = 1; :::; n:

Thus, although the homogeneity assumption reduces the generality of our analysis, it

nevertheless encompasses a broad variety of cases that we observe in practice.

3 Market equilibrium

Let C � (C1; C2; :::; Cm) be the pro�le of contract menus o¤ered by insurers at stage

1 of the market game, with Cj = (Cj1 ; C
j
2 ; :::; C

j
n; D

j(:)). At stage 2, the strategy of a

type i individual speci�es for all j and all h the probability �jih(C) to choose C
j
h as a

function of C. The contract choice strategy of type i individuals is thus de�ned by

�i(C) � f�jih(C) 2 [0; 1] for j = 1; :::;m and h = 1; :::; n with
Pm

j=1

Pn
h=1 �

j
ih(C) = 1g

for all C. Let �(:) � (�1(:); �2(:); :::; �n(:)) be a pro�le of individuals�strategies.

When an insurance contract Cjh = (k
j
h; x

j
h) is taken out by a type i individual, with

(non-random) policy dividend Dj
h, the policyholder�s expected utility and the expected

underwriting pro�t are respectively written as:

Ui(C
j
h; D

j
h) � (1� �i)u(WN � kjh +D

j
h) + �iu(WA + x

j
h +D

j
h);

�i(C
j
h) � (1� �i)k

j
h � �ix

j
h:

When type i individuals choose Cjh with probability �
j
ih, we may write �

j
h and P

j
h as
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functions of individual choices and contracts:

�jh(�) �

nX
i=1

�i�
j
ih

nX
i=1

nX
k=1

�i�
j
ik

if
nX
i=1

nX
k=1

�i�
j
ik > 0;

P jh(C
j
h; �) =

nX
i=1

�i�
j
ih�i(C

j
h)

nX
i=1

�i�
j
ih

if
nX
i=1

�i�
j
ih > 0;

where � = (�1; :::; �n) with �i = (:::; �
j
ih; :::).

We are now in a position to de�ne a market equilibrium more formally.

3.1 De�nition of a market equilibrium

De�nition 1 A pro�le of strategies e�(:); eC � ( eC1; :::; eCm), where eCj = ( eCj1 ; :::; eCjn; eDj(:));

is a subgame perfect Nash equilibrium of the market game (in short a market equilib-

rium) if

mX
j=1

nX
h=1

e�jih(C)Ui(Cjh; Dj

h(C)) = maxfUi(C
j
h; D

j

h(C)); j = 1; :::;m; h = 1; :::; ng

for all i = 1; :::; n and all C; (1)

�
j
( eC) � �j(Cj; eC�j) for all Cj and all j = 1; :::;m (2)

where C � (C1; :::; Cm); Cj = (Cj1 ; :::; C
j
n; D

j(:)); eC�j = ( eC1; :::; eCj�1; eCj+1; :::; eCm)
and

D
j

h(C) � D
j
h(�

j

1(C); P
j

1(C); :::; �
j

n(C); P
j

n(C)); (3)

�
j
(C) �

nX
i=1

nX
h=1

�ie�jih(C)[�i(Cjh)�Dj

h(C)]; (4)
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with

�
j

h(C) = �
j
h(e�(C)) for all h if

nX
i=1

nX
k=1

�ie�jik(C) > 0;
P
j

h(C) = P
j
h(C

j
h; e�(C)) for all h if

nX
i=1

�ie�jih(C) > 0;
�
j

h(C) � 0 and P
j

h(C) 2 [�1(C
j
h);�n(C

j
h)] for all h; with

nX
h=1

�
j

h(C) = 1;

if
nX
i=1

nX
k=1

�ie�jik(C) = 0:
The notations in De�nition 1 are as follows. Consider a pro�le of contracts C =

(C1; :::; Cm) where Cj = (Cj1 ; C
j
2 ; :::; C

j
n; D

j(:)) is the menu o¤ered by insurer j. Then

�
j

h(C) is the proportion of insurer j
0s policyholders who choose Cjh when C is of-

fered, with P
j

h(C) the corresponding pro�t per policyholder. When insurer j attracts

policyholders, then �
j

h(C) and P
j

h(C) are derived from individuals� contract choice

strategy e�(C). Otherwise, �jh(C) and P jh(C) are out-of-equilibrium beliefs that full-

�ll the coherency conditions stated in De�nition 1.10 Then D
j

h(C) and �
j
(C) de-

�ned by (3) and (4) denote the policy dividend for Cjh and the residual pro�t of

insurer j, respectively. They depend on the set of contracts C o¤ered in the mar-

ket and on the pro�le of individuals� contract choice strategy e�(:). In particular,

D
j

h(C) =
eDj
h(�

j

1(C); P
j

1(C); :::; �
j

n(C); P
j

n(C)) if C
j = eCj.

Keeping these notations in mind, (1) and (2) correspond to the standard de�nition

of a subgame perfect Nash equilibrium. From (1), choosing Cjh with probability e�jih(C)
is an optimal contract choice for type i individuals, given expected policy dividends.11

(2) means that eCj is an optimal o¤er by insurer j (i.e., an o¤er that maximizes residual
10More explicitly, if equilibrium strategies specify that insurer j�s contracts are not chosen by

anybody, then individuals consider that f�jh(C); P
j

h(C); h = 1; :::; ng correspond to the composition

and to the choices of a small subset of individuals who would choose a contract o¤ered by insurer j

in a deviation from their equilibrium strategies.
11Since there is a continuum of individuals in the population, when a type i individual chooses her

mixed strategy �i(C), she considers that expected underwriting pro�t P
j

h(C) and expected policy

11



pro�t, that is, the di¤erence between underwriting pro�t and policy dividend) wheneC�j is o¤ered by the other insurers, given the contract choice strategy of individuals.
Let C� denote the menu of contracts at a symmetric equilibrium of the market game

(de�ned as an equilibrium where all active insurers, i.e., all insurers with customers,

o¤er the same menu and individuals are evenly shared between insurers), with eCj =
C� � (C�1 ; C�2 ; :::; C�n; D�(:)) for each active insurer j and C�i = (k

�
i ; x

�
i ) for all i = 1; :::; n

and D�(:) � (D�
1(:); :::; D

�
n(:)). If individuals do not randomize between contracts,

C�i = (k
�
i ; x

�
i ) denotes the contract chosen by type i individuals.

A symmetric equilibrium of the market game sustains an equilibrium allocation

f(W 1�
i ;W

2�
i ); i = 1; :::; ng, where (W 1�

i ;W
2�
i ) is the lottery on �nal wealth induced by

the equilibrium strategies for type i individuals (meaning that their �nal wealth isW 1�
i

with probability 1� �i and W 2�
i with probability �i), with W 1�

i = WN � k�i +D�
i and

W 2�
i = WA + x

�
i +D

�
i ; where D

�
i � D�

i (�1;�
�
1; :::; �n;�

�
n) with �

�
i � �i(C�i ):

Our main objective in what follows is to establish the existence and uniqueness

of such an equilibrium allocation. To do that, we �rst characterize a candidate equi-

librium allocation by following the Spence (1978) approach to the Miyazaki-Wilson

equilibrium with an arbitrary number of types (we will call it the MWS allocation),

and next we show that this allocation is sustained by a pro�le of strategies which is a

symmetric equilibrium of the market game.

dividends D
j

h(C) are independent from her own choices. This is implicit in equation (1): type i

individuals choose their insurance contract for given expectations on policy dividends. If Cjh is chosen

by nobody, or more generally if insurer j does not attract any customer, then individuals estimate

P
j

h(C) and D
j

h(C) by considering themselves as members of a deviant group with in�nitesimal mass

who would choose contracts o¤ered by insurer j, and their out-of-equilibrium beliefs correspond to

the composition of this hypothetical deviant group.
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3.2 The MWS allocation

When a type i individual takes out a contract Ci = (ki; xi) and receives policy dividend

Di, then she is facing lottery (W 1
i ;W

2
i ) = (WN�ki+Di;WA+xi+Di), and the insurer�s

expected residual pro�t (in short, its pro�t) is

�i(Ci)�Di = WN � (1� �i)W 1
i + �i(W

2
i + A): (5)

This allows us to characterize candidate equilibrium allocations as follows. Let us

de�ne a sequence of expected utility levels u�i by u
�
1 = u(WN��1A), and for 2 � i � n:

u�i = max(1� �i)u(W 1
i ) + �iu(W

2
i )

with respect to W 1
h ;W

2
h ; h = 1; :::; i , subject to

(1� �h)u(W 1
h ) + �hu(W

2
h ) � u�h for h < i; (6)

(1� �h)u(W 1
h ) + �hu(W

2
h ) � (1� �h)u(W 1

h+1) + �hu(W
2
h+1) for h < i; (7)

iX
h=1

�h[(1� �h)W 1
h + �h(W

2
h + A)] =WN : (8)

Let Pi denote the problem which de�nes u�i , with i = 2; :::; n. The objective function

in Pi is the expected utility of type i individuals by restricting attention to individuals

with types 1 to i. Constraints (6) ensure that higher risk individuals (i.e. h < i) get

expected utility no less than u�h. (7) are incentive compatibility constraints: type h

individuals (with h < i) are deterred from choosing the policy targeted at the adjacent

less risky type h+1. (8) is the break-even constraint over the set of risk types h � i. For

n = 2, the optimal solution to P2 is the Miyazaki-Wilson equilibrium allocation. Let

f(cW 1
i ;
cW 2
i ); i = 1; :::; ng be the optimal solution to Pn. It is characterized in Lemmas 1

and 2, which are adapted from Spence (1978), and, as usual in the literature, we may

call it the MWS allocation.

Lemma 1 There exist T 2 N; 0�T � n � 1, and `t 2 f0; :::; ng, t = 0; :::; T + 1 with

13



`0 = 0 � `1 � `2 ::: � `T < `T+1 = n such that for all t = 0; :::; T

hX
i=`t+1

�i[WN � (1� �i)cW 1
i � �i(cW 2

i + A)] < 0 for all h = `t + 1; :::; `t+1 � 1; (9)

`t+1X
i=`t+1

�i[WN � (1� �i)cW 1
i � �i(cW 2

i + A)] = 0: (10)

Furthermore, we have

(1� �i)u(cW 1
i ) + �iu(

cW 2
i ) = u�i if i 2 f`1; `2; :::; ng; (11)

(1� �i)u(cW 1
i ) + �iu(cW 2

i ) > u�i otherwise: (12)

In Pn, for each risk type i lower than n, the optimal lottery (cW 1
i ;cW 2

i ) trades o¤ the

increase in insurance cost against the relaxation of the adjacent incentive constraint. In

addition, the minimal expected utility level u�i has to be reached. Lemma 1 states that

this trade-o¤ results in pooling risk types in T + 1 subgroups indexed by t. Subgroup

t includes risk types i = `t + 1; :::; `t+1 with `0 = 0 and `T+1 = n. From (12), within

each subgroup t, all types i except the highest (i.e. i = `t + 1; :::; `t+1 � 1) get more

than their reservation utility u�i , and from (9) there is negative pro�t over this subset

of individuals. They are cross-subsidized by the highest risk type (i.e., by type `t+1).

From (11) and (10), type `t just reaches its reservation utility u�`t, for t = 1; :::; T + 1,

with zero pro�t over the whole subgroup t. In what follows, I will denote the set of

risk types in subgroups with cross-subsidization, i.e.

i 2 I � f1; :::; ng if `t < i � `t+1

for t 2 f0; :::; Tg such that `t+1 � `t � 2:

When n = 2, we know from Crocker and Snow (1985)12 that there exists �� 2 (0; 1)

such that I = f1; 2g if �1 < �� and I = ; if �1 � ��. When n > 2, the population

is distributed among subgroups. A case with n = 5; T = 2; `1 = 3 and `2 = 4 is

12See also Picard (2014).
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illustrated in Figure 1. There are three subgroups in this example: type i = 3 cross-

subsidizes types 1 and 2, while the contracts o¤ered to types 4 and 5 make zero pro�t.

We thus have I = f1; 2; 3g and buh > u�h for h = 1; 2 and buh = u�h for h = 3; 4 and 5,
where buh is the type h expected utility at the optimal solution to Pn.13

Figure 1

Lemma 2 There does not exist any incentive compatible allocation f(W 1
i ;W

2
i ); i =

1; :::; ng such that

(1� �`t)u(W 1
`t) + �`tu(W

2
`t) � u

�
`t for all t = 1; :::; T + 1 (13)

and
nX
i=1

�i[WN � (1� �i)W 1
i � �i(W 2

i + A)] > 0: (14)

Lemma 2 states that no insurer can make positive pro�t by attracting all individuals

and o¤ering more than u�`t to threshold types `t. Suppose that there exists a pro�table

allocation close to f(cW 1
i ;
cW 2
i ); i = 1; :::; ng that provides more than u�`t to types `t.

Such an allocation would provide an expected utility larger than u�h for all h (this

is just a consequence of the second part of Lemma 1), which would contradict the

de�nition of u�n. The proof of Lemma 2 extends this argument to allocations that are

not close to f(cW 1
i ;
cW 2
i ); i = 1; :::; ng. The main consequence of Lemma 2 is that it

is impossible to make positive pro�t in a deviation from f(cW 1
i ;cW 2

i ); i = 1; :::; ng if

threshold types `t are guaranteed to get at least u�`t.

13The structure of cross-subsidization subgroups follows from the interaction of the �i and �i in a

complex way, which makes a more precise characterization di¢ cult. For given �i, intuition suggests

that the case described in Figure 1 emerges from a situation where �1=�3 and �2=�3 are relatively

small so that cross-subsidizing risk types 1 and 2 allows a higher expected utility u�3 for type 3 to be

reached, while �3=�4 and �4=�5 are relatively large so that it would be too costly to cross-subsidize

risk types 3 and 4.
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3.3 Existence of an equilibrium

Proposition 1 f(cW 1
i ;cW 2

i ); i = 1; :::; ng is an equilibrium allocation. It is sustained

by a symmetric equilibrium of the market game where each insurer j o¤ers Cj = C� �

( bC1; :::; bCn; D�(:)), type i individuals choose bCi � (bki; bxi) = (WN �cW 1
i ;
cW 2
i �WA) and

D�(:) = (D�
1(:); :::; D

�
n(:)) is any policy dividend rule such thatX

i2I
NiD

�
i (N1; P1; :::; Nn; Pn) �

X
i2I
NiPi; (15)

D�
i (�1;�1( bC1); :::; �n;�n( bCn)) = 0 for all i = 1; :::; n; (16)

D�
`t(N1; P1; :::; Nn; Pn) � 0 for all t = 1; :::; T + 1: (17)

At the symmetric equilibrium of the market game described in Proposition 1, each

insurer o¤ers C� = ( bC1; :::; bCn; D�(:)), and type i individuals choose bCi. The condi-
tions on D�(:) are su¢ cient for C� to be an equilibrium contract o¤er. (15) means

that pro�ts are fully distributed among the individuals who choose a contract with

cross-subsidization at equilibrium, and from (16) no policy dividend is paid on the

equilibrium path. From (17), threshold types `t are excluded from the sharing of

pro�ts.

To intuitively understand how Proposition 2 is deduced from Lemma 2, consider

an allocation induced by Cj0 6= C� o¤ered by a deviant insurer j0. This corresponds to

a compound lottery that mixes the allocations induced by Cj0 and C�. The aggregate

residual pro�t of this allocation is larger or equal to the pro�t made on Cj0 alone,

because non-deviant insurers j 6= j0 o¤er a menu of contracts with full distribution

of pro�ts or payment of losses on f bCi; i 2 Ig and non-negative pro�ts on f bCi; i =2 Ig.
Furthermore, Condition (17) assures that all threshold types `t get at least u�`t. Lemma

2 shows that this allocation cannot be pro�table, hence deviant insurer j0 does not

make positive pro�t14.

14More precisely, Proposition 2 follows from a straightforward extension of Lemma 2 to allocations

with randomization between contracts. See Lemma 3 in the Appendix.
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Remark 1 Note that equilibrium premiums are not uniquely de�ned, since insurers

may compensate higher premiums through higher dividends. More precisely, the equilib-

rium allocation f(cW 1
i ;
cW 2
i ); i = 1; :::; ng can also be sustained by an equilibrium of the

market game where insurers o¤er contracts bC 0i � (bk0i; bx0i) where bk0i = bki+� and bx0i = bxi�
�, with policy dividend rule D��

i (N1; P1; :::; Nn; Pn) � D�
i (N1; P1� �; :::; Nn; Pn� �)+ �,

with � > 0. In that case, dividends include a �xed part � paid to all policyholders and

a variable part that does not concern threshold types. Hence, the fundamental meaning

of Condition (17) is not the fact that threshold types do not receive policy dividends,

since they may actually receive such dividends according to the level of premiums: Con-

dition (17) guarantees that threshold types cannot be penalized when deviant insurers

o¤er new contracts.15

Although no policy dividend (or dividend �) is paid on the equilibrium path, there

may be variations in policy dividends when a deviant insurer j0 o¤ers a menu Cj0 that

di¤ers from C� = ( bC1; :::; bCn). Such a deviation may a¤ect the distribution of types
among individuals who still choose a contract in C�, with possible variations in pro�ts

or losses of insurers j 6= j0, and thus policy dividends or supplementary premiums.

Variations in policy dividends can then act as an implicit threat that dissuades deviant

insurers from undertaking competitive attacks. For the sake of illustration, assume

D�
i (N1; P1; :::; Nn; Pn) =

bki � bk`t+1
`t+1X

h=`t+1

Nh(bkh � bk`t+1)
`t+1X

h=`t+1

NhPh (18)

15Condition (17) seems necessary to get an equilibrium existence result when n > 2. For the sake

of illustration, assume n = 3 and consider a case where bC1 is in de�cit and bC2 and bC3 are pro�table
when respectively chosen by types 1; 2 and 3 (a case where I = f1; 2; 3g and T = 0). Assume also

that underwriting pro�t or losses are uniformly shared between policyholders, including type 3. In

that case, if �2 is small enough, there exists a pro�table non-participating contract C 02 closed to bC2
which would attract type 2 individuals if o¤ered in deviation from equilibrium, while types 1 and 3

would keep choosing bC1 and bC3 and pay (small) supplementary premiums.
17



for all i 2 f`t + 1; :::; `t+1g � I. Here, D�(:) involves the sharing of pro�t within

each subgroup t with cross-subsidization. The total pro�t made within subgroup t

is
P`t+1

h=`t+1
NhPh. It is distributed to policyholders within the same subgroup. Fur-

thermore, according to the policy dividend rule, the larger the premium, the larger

the policy dividend in absolute value. There is no right to receive a policy dividend

for the individuals who pay the smallest premium (i.e. for type `t+1), while rights

are larger for types i who pay larger premiums, which re�ects the practice of mutu-

als that pay larger dividends to policyholders who have paid larger premiums. We

have
P`t+1

h=`t+1
�h�( bCh) = 0 for all t from (10), and thus this policy dividend rule

satis�es conditions (15)-(17). If a deviant insurer j0 attracts some individuals who

cross-subsidize other risk types within subgroup t, then after the deviation we will

have
P`t+1

h=`t+1
NhPh < 0 for non-deviant insurers j 6= j0, and consequently the welfare

of these other individuals will deteriorate if they keep choosing the same contract be-

cause they will have to pay supplementary premiums. It may then be impossible for

insurer j0 to not also attract them, which will make its o¤er non-pro�table. The proof

of Proposition 1 shows that this is indeed the case.

Remark 2 It might be objected that, in practice, a deviant insurer could limit its o¤er

to a small number of individuals by rationing demand, which would lessen the e¤ect of

its action on non-deviant insurers. In this way, if a deviant insurer restricts its o¤er

to a small group of size ", then its deviation only entails a small e¤ect on the pro�t

of non-deviant insurers: the lower ", the smaller the shift in the lotteries o¤ered by

non-deviant insurers, which would open the door to pro�table deviations attracting type

`t individuals when I 6= ;. A complete analysis of the market equilibrium with quantity

rationing is beyond the scope of the present paper and would require a thorough analy-

sis.16 However, at this stage, we may observe that insurers could use discontinuous

policy dividend rules to prevent deviant competitors from attracting a small group of

16Regarding competition with quantity rationing in the insurance market, see Inderst and Wambach

(2001).
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their policyholders. For example, participating contracts may stipulate that no policy

dividend will be distributed unless the insurer�s pro�t reaches a predetermined target

level. Equilibrium strategies may consist of o¤ering bC 0i � (bk0i; bx0i), as de�ned in Re-
mark 2 if i 2 I, and committing to pay positive dividend � if the pro�t is at least �

and nothing otherwise. Any deviation that attracts " type `t individuals would cancel

the payment of policy dividends by non-deviant insurers. Consequently, there exists a

continuation equilibrium where the deviant does not make pro�t.

More generally, we may choose D�(:) such that

`t+1X
i=`t+1
i2I

NiD
�
i (N1; P1; :::; Nn; Pn) �

`t+1X
i=`t+1
i2I

NiPi;

for all subgroup t with cross-subsidization, which shows that the equilibrium allocation

is also sustained by equilibrium strategies where each insurer sells insurance to a given

subgroup of individuals (gathering risk types i = `t+1; :::; `t+1 in I) or to a combination

of these subgroups. Insurers who sell insurance to subgroups with only one risk type

(i.e. to types i =2 I) or to a combination of these subgroups do not cross-subsidize risks.

They o¤er non-participating policies, and we may consider them as stock insurers.

Insurers who sell insurance policies to individuals who belong to subgroups with cross-

subsidization (i.e. to types i 2 I) o¤er fully participating policies: they act as mutuals

do. In the example illustrated in Figure 1, mutuals would o¤er participating contracts

to subgroup t = 1 (that includes types 1, 2 and 3) and stock insurers would o¤er

non-participating contracts to subgroups t = 2 and 3: Hence, the model explains why

stock insurers and mutuals may coexist: mutuals o¤er insurance contracts that are

robust to competitive attacks when there is cross-subsidization, while stock insurers

o¤er insurance contracts at actuarial price. The following corollary recaps our results

more compactly.

Corollary 1 The MWS allocation is also sustained by a market equilibrium where
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mutual insurers o¤er participating contracts to subgroups of individuals with types i 2 I

and stock insurers o¤er non-participating contracts to types i =2 I.

3.4 Uniqueness of equilibrium

Participating contracts induce an interdependence between the individuals�contract

choices. Consequently: multiple continuation equilibria may exist after menus of con-

tracts have been o¤ered at stage 1. Typically, type i individuals may decide to choose

a participating contract o¤ered by insurer j if they anticipate that less risky types i0

(i.e., i0 > i) are going to do the same, but they may make another choice for other

expectations. This creates leeway in the characterization of a continuation equilibrium

after a deviation at stage 1, and it opens the door to multiple equilibrium issues in

the market game itself. In particular, contracts may not be chosen by anyone because

of pessimistic expectations about the contracts o¤ered by inactive insurers: insurance

seekers may anticipate that the insurers who o¤er these contracts are going to attract

only high-risk individuals, with negative underwriting pro�t. These pessimistic expec-

tations (i.e., out-of-equilibrium beliefs) may annihilate pro�table deviations, although

such deviations would exist under more optimistic expectations. An equilibrium sus-

tained by arbitrarily pessimistic beliefs is not very convincing if choosing contracts

o¤ered by a deviant insurer were bene�cial to some policyholders. De�nition 2 intro-

duces a robustness criterion, that eliminates such equilibria.

De�nition 2 A market equilibrium e�(:); eC is based on robust beliefs if there does

not exist a deviation Cj0 = (Cj01 ; :::; C
j0
n ; D

j0(:)) by insurer j0 2 f1; :::;mg such thatPn
i=1

Pn
h=1 �ie�j0ih(Cj0 ; eC�j0) = 0 and a risk type i0 2 f1; :::; ng such that:

(i) Ui0(C
j0
i0
; D

j0

i0
) > maxfUi0( eCjh; Dj

h(C)); j 6= j0; h = 1; :::; ng;where D
j0

i0
is the

policy dividend received by an in�nitely small subset of type i0 individuals who choose

Cj0i0 in a deviation from their equilibrium strategy e�i0(Cj0 ; eC�j0) and who are the only
ones to do so,
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(ii) insurer j0 attracts type i0 policyholders, and possibly other individuals, in at

least one other continuation equilibrium following the deviation from eCj0 to Cj0 and
makes positive pro�t at all such continuation equilibria.

A robust equilibrium allocation is sustained by a symmetric market equilibrium

based on robut beliefs.

Proposition 2 The MSW allocation is the only robust equilibrium allocation.

Presumably, individuals may make error in the real world, and this is the logic of

the robustness criterion used to eliminate equilibria that are based on beliefs that are

arbitrarily pessimistic. In De�nition 2 �(i), if a subgroup of type i0 individuals with

positive measure do such an error (i.e., they choose Cj0i0 ), then they would observe

that such a departure from their equilibrium contracts is in fact favorable to them.17

De�nition 2�(ii) adds the condition that this improvement would be con�rmed at

all continuation equilibria where insurer j0 attracts policyholders, and that such con-

tinuation equilibria exist and are pro�table to insurer j0. De�nition 2 says that an

equilibrium is based on robust beliefs if such deviations do not exist and Proposition

2 states that the MWS allocation is the only equilibrium allocation when beliefs are

required to be robust.

Remark 3 De�nition 2 is inspired by robustness criterions in games with a continuum

of players (non-atomic games). In an evolutionary game setting with a large group of

identical players, a (mixed or pure) strategy of a given player is said to be neutrally

stable (NSS) if there does not exist another strategy that would be strongly prefered by

this player if this alternative strategy were played by a small enough fraction of similar

individuals18. De�nition 2�(i) adapts the NSS criterion to any subgame that follows
17Since Dj0

h (N
j0
1 ; P

j0
1 ; :::; N

j0
n ; P

j0
n ) is homogeneous of degree zero with respect to (N

j0
1 ; :::; N

j0
n ),

D
j0

i0 does not depend on the mass of the subset ot type i0 individual who choose C
j0
i0
.

18The NSS criterion was introduced by Maynard Smith (1982). In the terminology of evolutionary

games, the alternative strategy is played by a small group of "mutants" who appears in a large
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a deviation by some insurer j0. De�nition 2 �(ii) weakens this equilibrium selection

criterion by requiring that alternative strategies also provide a higher expected utility

to the deviant individuals at another equilibrium (thus, not only when they are played

in deviation from equilibrium by a small subgroup of individuals) and that insurer j0

makes positive pro�t in such continuation equilibria.

4 Concluding comments

Thus, the MWS allocation is always an equilibrium allocation in the Rothschild-Stiglitz

model when insurers can issue participating or non-participating policies. It is the

only equilibrium allocation when out-of-equilibrium beliefs satisfy a robustness cri-

terion. This equilibrium allocation is characterized by a classi�cation of individuals

into subgroups as done by Spence (1978), with cross-subsidization within each sub-

group that includes several risk types. Participating policies act as an implicit threat

which prevents deviant insurers from attracting low-risk individuals only. If a de-

viant insurer attracts individuals who cross-subsidize other risk types within a given

subgroup, then these other individuals will have to pay supplementary premiums or

receive lower dividends if they keep choosing the same contract from their non-deviant

insurer. Consequently, it will be impossible for the deviant insurer to not also attract

them, which will make its o¤er non-pro�table.

This mechanism is similar to the logic of the MWS equilibrium. In both cases,

a deviant insurer is deterred from attracting low risk individuals because it is ex-

population of individuals who are programmed to play the same incumbent strategy. Following the

biological intuition, we may assume that evolutionary forces select against the mutant strategy if and

only if its postentry payo¤ (or �tness) is not larger than that of the incumbent strategy. Thus, a

neutrally stable strategy cannot be destabilized by deviations of a small group of mutants. NSS is

a weakening of the evolutionary stability criterion (ESS) introduced by Maynard Smith and Price

(1973) and Maynard Smith (1974). On the connections between evolutionary stability criteria and

other robustness criteria of Nash equilibria, see Weibull (1995).
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pected that ultimately its o¤er would also attract higher risks, which would make it

unpro�table. However, in the MWS equilibrium, insurers are protected from these

competitive attacks because they can react by withdrawing contracts that become un-

pro�table. This assumption may be considered as unsatisfactory because it means that

insurers are not committed to actually o¤er the announced contracts. It can also be

legitimately argued that this description of the dynamic relationship between insurers

is arbitrary. Other timings are possible, as shown by Riley (1979), Hellwig (1987) and

others. Mimra and Wambach (2014) list papers that have departed from the original

game structure of Rosthschild and Stiglitz (1976), and we have to admit that no par-

ticular timing has an obvious superiority over the others. Moving away from the most

natural Rothschild-Stiglitz game structure may be like opening a Pandora�s box, since

there always exist new ways to describe the dynamic competitive interaction between

�rms.

We have taken a di¤erent route. Our analysis has not stepped away from the

instantaneous strategic interaction between insurers that characterizes the Rothschild-

Stiglitz model, and we have just explored the consequences of deleting an exogenous

restriction on the content of insurance policies. As observed by Rothschild and Stiglitz

(1976) themselves, extending their model in order to include "the peculiar provision

of many insurance contracts", �rstly by considering menus, and secondly by allowing

insurers to pay policy dividends, is a natural way to reconcile the empirical observation

and the theoretical de�nition of a market equilibrium, and this is what we have done

in this paper. Of course, we may consider that the glass is half empty rather than

half full, and that even more general contracts, e.g., with quantity rationing, should

be considered. This is another research avenue worth exploring. However, the case

where �rms commit to honour the o¤ers made to clients, without restricting these

o¤ers to a subset of consumers, seems to be a natural starting point for the analysis

of competitive markets.

The main outcome of this modelling, apart from the existence and uniqueness of
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an equilibrium, is the fact that it leads to an endogenous de�nition of corporate forms,

where mutuals and stock insurers may coexist, with speci�c functions: mutuals may

provide coverage to risk groups that require cross-subsidization, while at the same

time being protected against competitive attacks that would target their least risky

policyholders. Subgroups without cross-subsidization do not require such endogenous

protection, and they purchase non-participating or participating contracts. If, for

some other reasons, stock insurers bene�t from competitive advantages, for instance

because they can transfer systemic risks to stockholders, then we may reach a complete

market structuring that trades o¤ the ability of mutuals to implement e¢ cient cross-

subsidization and the superiority of stock insurers in the face of macroeconomic risks.

The diversity of market structures that we may observe in practice suggests that the

balance is not always on the same side.

Appendix

Proof of Lemma 1

If
Pi

h=1 �h[WN � (1��h)cW 1
h ��h(cW 2

h +A)] > 0 for i 2 f1; :::; ng, then it would be

possible to provide a higher expected utility than u�h for all h = 1; :::; i, while breaking

even over the subset of individuals h = 1; :::; i, which would contradict the de�nition

of u�i . We thus have
Pi

h=1 �h[WN�(1��h)cW 1
h ��h(cW 2

h +A)] � 0 for all i 2 f1; :::; ng,

which yields the �rst part of the Lemma.

We have (1 � �i)u(cW 1
i ) + �iu(cW 2

i ) � u�i for all i from the de�nition of Pn. If

i 2 f`1; `2; :::; ng, we have
Pi

h=1 �h[(1 � �h)cW 1
h + �h(

cW 2
h + A)] = WN from the �rst

part of the Lemma, and we deduce (1 � �i)u(cW 1
i ) + �iu(

cW 2
i ) = u�i , for otherwise

we would have a contradiction with the de�nition of u�i . Conversely, suppose we

have (1 � �i)u(cW 1
i ) + �iu(cW 2

i ) = u�i and i =2 f`1; `2; :::; ng. We would then havePi
h=1 �h[WN � (1� �h)cW 1

h � �h(cW 2
h +A)] < 0. Hence the allocation f(cW 1

h ;
cW 2
h ); h =

1; :::; ig is in de�cit. Let f(W 10
h ;W

20
h ); h = 1; :::; ig be the optimal solution to Pi.

Replacing f(cW 1
h ;
cW 2
h ); h = 1; :::; ig with f(W 10

h ;W
20
h ); h = 1; :::; ig allows us to improve
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the optimal solution to Pn, since the same type i expected utility u�i can be reached

while breaking even on the set h = 1; :::; i, which provides additional resources that

could be used to raise (1� �n)u(W 1
n) + �nu(W

2
n) over (1� �n)u(cW 1

n) + �nu(
cW 2
n). We

thus obtain a contradiction with the fact that f(cW 1
i ;cW 2

i ); i = 1; :::; ng is the optimal

solution to Pn.

Proof of Lemma 2

We�rst restrict attention to incentive compatible allocations f(W 1
i ;W

2
i ); i = 1; :::; ng

located in a neighbourhood of f(cW 1
i ;cW 2

i ); i = 1; :::; ng. Suppose that such an alloca-

tion satis�es (13)-(14). Lemma 1 shows that

(1� �i)u(W 1
i ) + �iu(W

2
i ) � u�i for all i = 1; :::; n;

if (W 1
i ;W

2
i ) is close enough to (cW 1

i ;
cW 2
i ). Hence f(W 1

i ;W
2
i ); i = 1; :::; ng satis�es the

constraints of Pn with positive pro�ts and expected utility larger or equal to u�n for

type n, hence a contradiction.

We now prove that there does not exist any incentive compatible allocation f(W 1
i ;W

2
i ); i =

1; :::; ng that satis�es (13)-(14), even if we do not restrict attention to allocations close

to f(cW 1
i ;cW 2

i ); i = 1; :::; ng. Let us de�ne zsi � u(W s
i ) and bzsi � u(cW s

i ) for i = 1; :::; n

and s = 1; 2. With this change of variable, the Lemma states that there does not exist

f(z1i ; z2i ); i = 1; :::; ng such that

(1� �`t)z1`t + �`tz
2
`t � u

�
`t for all t = 1; :::; T + 1 ; (19)

(1� �i)z1i + �iz2i � (1� �i)z1i+1 + �iz2i+1 for i = 1; :::; n� 1 ; (20)
nX
i=1

�if(1� �i)[WN � u�1(z1i )]� �i[u�1(z2i )�WA]g

>
nX
i=1

�if(1� �i)[WN � u�1(bz1i )]� �i[u�1(bz2i )�WA]g: (21)

The set of f(z1i ; z2i ); i = 1; :::; ng that satis�es the conditions (19)-(21) is convex.

Hence if there is any allocation f(z1i ; z2i ); i = 1; :::; ng that satis�es these conditions,
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there is an allocation in any neighbourhood of f(bz1i ; bz2i ); i = 1; :::; ng that satis�es them,
which contradicts our previous result.

Remark 4 Lemmas 1 and 2 easily extend to allocations where individuals of a given

type may randomize between contracts that are equivalent for themselves. An allocation

is then a type-dependent randomization over a set of lotteries. Formally, an alloca-

tion is de�ned by a set of lotteries f(W 1
s ;W

2
s ); s = 1; :::; Sg and individuals� choices

� � (�1; �2; :::; �n) with �i = (�i1; :::; �iS), where �is is the probability that a type i

individual chooses (W 1
s ;W

2
s ), with

PS
s=1 �is = 1. In other words, type i individuals

get a compound lottery generated by their mixed strategy �i over available lotteries

f(W 1
s ;W

2
s ); s = 1; :::; Sg. An allocation is incentive compatible if

SX
s=1

�is[(1� �i)u(W 1
s ) + �iu(W

2
s )] = maxf(1� �i)u(W 1

s ) + �iu(W
2
s ); s = 1; :::; Sg;

for all i = 1; :::; n. In words, an allocation is incentive compatible when individuals

only choose their best contract with positive probability. The de�nition of Problem Pi
for i = 1; :::; n can be extended straightforwardly to this more general setting, with an

unchanged de�nition of u�i . In particular, individuals choose only one (non compound)

lottery at the optimal solution to Pi, and the MWS lotteries are still an optimal solution

to Pn. Lemma 1 is thus still valid. Lemma 3 extends Lemma 2 to the case where

individuals may randomize between contracts.

Lemma 3 There does not exist any incentive compatible allocation with randomization

f(W 1
s ;W

2
s ); s = 1; :::; S;� � (�1; �2; :::; �n)g such that

SX
s=1

�`t;s[(1� �`t)u(W 1
s ) + �`tu(W

2
s )] � u�`t for all t = 1; :::; T + 1 (22)

and
nX
h=1

�hf
SX
s=1

�hs[WN � (1� �h)W 1
s � �h(W 2

s + A)]g > 0: (23)
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Proof of Lemma 3

For a given incentive compatible allocation with randomization f(W 1
s ;W

2
s ); s =

1; :::; S;� � (�1; �2; :::; �n)g, let (W
1

h;W
2

h) = (W 1
s(h);W

2
s(h)) be one of the the most

pro�table lotteries which are chosen by type h individuals with positive probability,

i.e., s(h) is such that �h;s(h) > 0 and

(1� �h)W 1
s(h) + �hW

2
s(h) � (1� �h)W 1

s0 + �hW
2
s0

for all s0 such that �h;s0 > 0. If (22) and (23) hold for the initial allocation with ran-

domization, then (13) and (14) also hold for the non-randomized incentive compatible

allocation f(W 1

h;W
2

h); h = 1; :::; ng, which contradicts Lemma 2.

Contract choice strategies �(C) = ( �1(C); �2(C); :::; �n(C)) de�ne a continuation

equilibrium when they satisfy (1) - with �(C) instead of e�(C). The proof of Proposition
1 goes through the existence of a continuation equilibrium, with optimistic out-of-

equilibrium beliefs, for all C

Lemma 4 For any contract o¤er C = (C1; :::; Cm) made at stage 1, there exists at

least one continuation equilibrium �(C) = ( �1(C); �2(C); :::; �n(C)) at stage 2.

Proof of Lemma 4

Let C = (C1; :::; Cm) with Cj = (Cj1 ; :::; C
j
n; D

j(:)) be a contract o¤er. Consider a

discretization of the stage 2 subgame that follows C, with N individuals. Individuals

are indexed by t = 1; :::; N and SNi is the set of type i individuals, with
XN

i=1

��SNi �� =
N . In this discretized game, a pure strategy of individual t is the choice of a contract in

C. Let us denote sjth = 1 if individual t chooses C
j
h and s

j
th = 0 otherwise. The expected

utility of a type i who chooses Cjh is Ui(C
j
h; X

j
h), whereX

j
h = D

j
h(�

j
1; P

j
1 ; :::; �

j
n; P

j
n), with

�jh =

PN
t=1 s

j
thPN

t=1

Pn
k=1 s

j
tk

if
NX
t=1

nX
k=1

sjtk > 0;

P jh =

Pn
i=1

P
t2SNi

sjth�i(C
j
h)PN

t=1 s
j
th

if
NX
t=1

sjth > 0;
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This discretized subgame is a �nite strategic-form game. Consider an "�perturbation

of this game, with " > 0, where all individuals may play mixed strategy and are

required to choose each contract Cjh with probability larger or equal to ". This pertur-

bated game is characterized by N and " and it has a mixed strategy equilibrium, where

all type i individuals choose Cjh with probability �
j�N
ih (") � ".19 Let ��Ni (") = (�

j�N
ih (")).

Thus, if t 2 SNi , we have

E
h
Ui(C

j
h; X

j�N
h (")

����N(")i = maxnE hUi(Cjk; Xj�N
k (")

����N(")i for all j; ko
if �j�Nih (") > "; (24)

where expected value E
�
:
����N(")� is conditional on the equilibrium mixed strategies

played by all individuals, and whereXj�N
h (") is the equilibrium random policy dividend

induced by ��N(") = (��N1 ("); :::; �
�N
n (")).

20

Consider a sequence of such discretized subgames indexed by N 2 N, where " de-

pends on N , with " � "N > 0, such that
��SNi �� =N ! �i for all i and "N ! 0 when N !

1. The sequence f��N = (:::; �j�Ni ("N); :::)gN2N is in a compact set, and thus it in-

cludes a converging subsequence: ��N ! �� = (:::; �j�ih; :::) with
Pm

j=1

Pn
h=1 �

j�
ih = 1 for

all i, when N !1; N 2 N0 � N. We have Xj�N
h ("N) = Dj

h(�
j�N
1 ; P j�N1 ; :::; �j�Nn ; P j�Nn ),

where �j�Nk ; P j�Nk respectively denote the equilibrium proportion of insurer j�s policy-

holders who choose Cjk and the corresponding equilibrium pro�t per policyholder. The

19The payo¤ functions are such that there is always an equilibrium of the discretized game where

individuals of the same type play the same mixed strategy.
20In (24), for notational simplicity, we assume that individual t is unaware that her own choice

a¤ects the policy dividend levels. This is an innocuous assumption in the proof, insofar as we char-

acterize the individuals�choices when N goes to in�nity, which makes the previous e¤ect negligible.

28



weak law of large numbers yields

�j�Nh
P!

nX
i=1

�i�
j�N
ih ("N)

nX
i=1

nX
k=1

�i�
j�N
ik ("N)

� �j�Nh ;

P j�Nh

P!

nX
i=1

�i�
j�N
ih ("N)�i(C

j
h)

nX
i=1

�i�
j�N
ih ("N)

� P j�Nh ;

when N !1. We have

�
j�N
h !

nX
i=1

�i�
j�
ih

nX
i=1

nX
k=1

�i�
j�
ik

� �j�h if
nX
i=1

nX
k=1

�i�
j�
ik > 0;

P j�Nh !

nX
i=1

�i�
j�
ih�i(C

j
h)

nX
i=1

�i�
j�
ih

� P j�h if
nX
i=1

�i�
j�
ih > 0;

when N ! 1; N 2 N0. If
Pn

i=1

Pn
k=1 �i�

j�
ik = 0, then we have �

j�N
h ! �

j�
h � 0

and P j�Nh ! P
j�
h , with

Pn
h=1 �

j�
h = 1 and P

j�
h 2 [�1(C

j
h);�n(C

j
h)] for all h, when

N ! 1; N 2 N0. Consequently Xj�N
h ("N)

P! D
j�
h � Dj

h(�
j�
1 ; P

j�
1 ; :::; �

j�
n ; P

j�
n ) when

N !1; N 2 N0.

Taking the limit of (24), when N !1 ; N 2 N0, then gives

Ui(C
j
h; D

j�
h ) = maxfUi(C

j
k; D

j�
k ) for all j; kg if �

j�
ih > 0:

Using
Pm

j=1

Pn
h=1 �

j�
ih = 1 then yields

mX
j=1

nX
h=1

�j�ihUi(C
j
h; D

j�
h ) = maxfUi(C

j
h; D

j�
h ) for all j; hg,

which shows that �� is an equilibrium of the stage 2 subgame when insurers o¤er C

at stage 1 and policy dividends are D
j�
h .
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Proof of Proposition 1

Assume that each insurer o¤ers bC = ( bC1; bC2; :::; bCn; D�(:)) such that (15)-(17) hold.

Then bCi is an optimal choice of type i individuals if no policy dividend is paid on any
contract. (16) shows that this is actually the case when all individuals are evenly

shared among insurers.

Suppose some insurer j0 deviates from bC to another menu Cj0 = fCj01 ; Cj02 ; :::; Cj0n ;
Dj0(:)g with Cj0i = (k

j0
i ; x

j0
i ). Let e�(Cj0 ; bC�j0) be a continuation equilibrium following

the deviation, i.e., equilibrium contract choices by individuals in the subgame where

Cj0 and bC are simultaneously o¤ered, respectively by insurer j0 and by all the other

insurers j 6= j0. Lemma 4 shows that such a continuation equilibrium exists. Let us

restrict the de�nition of this subgame by imposing e�ji�1;i = 0 for all i =2 I; j 6= j0.

From (17), type i � 1 individuals weakly prefer bCi�1 to bCi if i =2 I, so that any

equilibrium of the restricted game is also an equilibrium of the original game. Let

P
j

h be the pro�t per policyholder made by insurer j 6= j0 on contract bCh and �jh be
the proportion of insurer j0 s customers who choose bCh, after the deviation by insurer
j0. Consider a continuation equilibrium where individuals of a given type are evenly

shared between insurers j 6= j0, i.e., where e�jih(Cj0 ; bC�j0) = e�j0ih(Cj0 ; bC�j0) for all h if
j 6= j0, j; j0 6= j0 21. We may then use more compact notations e�0ih � e�j0ih(Cj0 ; bC�j0)
and e�1ih � e�jih(Cj0 ; bC�j0); P 1h = P

j

h; N
1

h = N
j

h for all j 6= j0. Let also P
0

h and �
0

h be,

respectively, the average pro�t made on Cj0h and the proportion of the customers of

insurer j0 who choose C
j0
h .

After the deviation by insurer j0, type i individuals get the following lottery on

�nal wealth:

(W 1
0h;W

2
0h) � (WN � kj0h +D

0

h;WA + x
j0
h +D

0

h) with probability e�0ih;
(W 1

1h;W
2
1h) � (cW 1

h +D
1

h;
cW 2
h +D

1

h) with probability e�1ih(n� 1);
21Such a continuation equilibrium exists because it is a Nash equilibrium of an equivalent game

with only two insurers that respectively o¤er bC�j0and Cj0 . Note that this equivalence is possible
because Dj

h(:) is homogeneous of degree 1 with respect to (N
j
1 ; :::; N

j
n).
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where

D
0

h = Dj0
h (�

0

1; P
0

1; :::; �
0

n; P
0

n);

D
1

h = D�
h(�

1

1; P
1

1; :::; �
1

n; P
1

n);

for h = 1; :::; n, with
Pn

h=1[e�0ih + e�1ih(n� 1)] = 1. Let us denote this lottery by L. Let
� denote the residual pro�t made by insurer j0. We have

� =
nX
i=1

�if
nX
h=1

e�0ih[WN � (1� �i)W 1
0h � �i(W 2

0h + A)]g: (25)

We know from (15) that D�(:) involves the full distribution of pro�ts made by non-

deviant insurers on the set of contracts f bCi; i 2 Ig. Furthermore, we have e�1hi = 0 if
h < i � 1 when i =2 I, because types h strongly prefer bCi�1 to bCi for all h < i � 1.22
Thus we have e�1hi = 0 if h � i when i =2 I, and consequently the pro�t made on bCi by
non-deviant insurers is non-negative when i =2 I. We deduce that non-deviant insurers

j make non-negative residual pro�t. We thus have

nX
i=1

�if
nX
h=1

e�1ih[WN � (1� �i)W 1
1h � �i(W 2

1h + A)]g � 0: (26)

(25) and (26) then yield

� �
nX
i=1

�if
nX
h=1

e�0ih[WN � (1� �i)W 1
0h � �i(W 2

0h + A)]

+(n� 1)
nX
h=1

e�1ih[WN � (1� �i)W 1
1h � �i(W 2

1h + A)]g: (27)

Furthermore, we have

nX
h=1

e�0`t;h[(1� �`t)u(W 1
0h) + �`�u(W

2
0h)]

+(n� 1)
nX
h=1

e�1`t;h[(1� �`t)u(W 1
1h) + �`tu(W

2
1h)

� u�`t for all t = 1; :::; T + 1 (28)

22Note that we here use D�
i � 0 and D�

i�1 � 0 when i =2 I, which follows from (17).
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because (W 1
1`t
;W 2

1`t
) = (cW 1

1`t
;cW 2

1`t
) since D

1

`t = 0 from (17), and (1 � �`t)u(cW 1
1`t
) +

�`tu(cW 2
1`t
) = u�`t ; and fe�0`t;h; e�1`t;h; h = 1; :::; ng is an optimal contract choice strategy

of type `t individuals. The right-hand side of (27) is the expected pro�t associated

with L. Lemma 3 applied to lottery L then gives � � 0. Hence the deviation is

non-pro�table, which completes the proof.

Proof of Proposition 2

In the proof of Proposition 1, it has been shown that the MWS allocation is sus-

tained by a market equilibrium where stage 1 deviations are non-pro�table at all

continuation equilibrium. Hence this equilibrium allocation is robust.

Let f(fW 1
i ;
fW 2
i ); i = 1; :::; ng be an equilibrium allocation that di¤ers from the

MWS allocation, with expected utility eui for type i. This allocation satis�es incentive
compatibility constraints (7) for all h = 1; :::; n�1, and it is sustained by a symmetric

Nash equilibrium of the market game with ma active insurers (ma � m) where each

active insurer o¤ers eC = ( eC1; eC2; :::; eCn; eD(:)), with eD(:) = ( eD1(:); eD2(:); :::; eDn(:)).

At such an equilibrium, insurers make non-negative residual pro�t, for otherwise they

would deviate to a "zero contract". Hence f(fW 1
i ;
fW 2
i ); i = 1; :::; ng satis�es (8) for

i = n, rewritten as a weak inequality (with sign �). Since f(fW 1
i ;
fW 2
i ); i = 1; :::; ng

satis�es (7) and (8) for i = n and it is not an optimal solution to Pn, we deduce

that there is i0 in f1; :::; ng such that eui � u�i if i < i0 and eui0 < u�i0 . Thus, there

exists an allocation f(W 1
i ;W

2
i ); i = 1; :::; i0g in the neighbourhood of the optimal

solution to Pi0, with expected utility ui for type i, that satis�es (6) and (7) as strong

inequalities and (8) rewritten as a strong inequality (with sign <) for i = i0. Let

ki = WN �W 1
i and xi = W

2
i �WA for i � i0. Let j0 be some insurer that belongs to

the set of inactive insurers if ma = 1 and that may be active or inactive if ma > 1.

Suppose insurer j0 deviates from eC to Cj0 = fCj01 ; C
j0
2 ; :::; C

j0
n ; D

j0(:)g with Dj0(:) =
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(Dj0
1 (:); D

j0
2 (:); :::; D

j0
n (:)); where C

j0
i = (ki; xi) if i � i0; C

j0
i = (0; 0) if i > i0 and

Dj0
i (N

j0
1 ; P

j0
1 ; :::; N

j0
n ; P

j0
n ) =

�
0 if

Pi0
h=1N

j0
h P

j0
h > 0

�K if
Pi0

h=1N
j0
h P

j0
h � 0

if i � i0;

Dj0
i (N

j0
1 ; P

j0
1 ; :::; N

j0
n ; P

j0
n ) � 0 if i > i0;

with K > 0. For K large enough, insurer j0 makes positive pro�t at any continuation

equilibrium after the deviation to Cj0 where it attracts some individuals. This is

the case when all type i0 individuals choose C
j0
i0
and reach expected utility ui0 (with

ui0 � u�i0 > eui0) and possibly other individuals choose a contract in Cj0 . Thus, any
market equilibrium where insurer j0 does not attract some individuals after deviating

from eC to Cj0 is not based on robust beliefs. We deduce that f(fW 1
i ;fW 2

i ); i = 1; :::; ng

is not a robust equilibrium allocation.
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