
HAL Id: hal-01206073
https://polytechnique.hal.science/hal-01206073v2

Preprint submitted on 26 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equilibrium in insurance markets with adverse selection
when insurers pay policy dividends

Pierre Picard

To cite this version:
Pierre Picard. Equilibrium in insurance markets with adverse selection when insurers pay policy
dividends. 2016. �hal-01206073v2�

https://polytechnique.hal.science/hal-01206073v2
https://hal.archives-ouvertes.fr


 

 

 

 

 

 

 

Equilibrium in insurance markets with adverse 

selection when insurers pay policy dividends 
 
 

 

 

 

 

Pierre PICARD 
 

 

 

 
 

July 1, 2016 

 

 

 

Cahier n° 2016-14 (revised version 2015-12) 
 

 
 

 

                    ECOLE POLYTECHNIQUE                   
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 

 

DEPARTEMENT D'ECONOMIE 
Route de Saclay 

91128 PALAISEAU CEDEX 

(33) 1 69333033 

http://www.portail.polytechnique.edu/economie/fr 
mariame.seydi@polytechnique.edu 

 
 



Equilibrium in insurance markets with adverse

selection when insurers pay policy dividends

Pierre Picard∗

July 1st, 2016

Abstract

We show that an equilibrium always exists in the Rothschild-Stiglitz insur-

ance market model with adverse selection and an arbitrary number of risk types,

when insurance contracts include policy dividend rules. The Miyazaki-Wilson-

Spence state-contingent allocation is an equilibrium allocation (defined as a set

of type-dependent lotteries sustained at a symmetric equilibrium of a market

game), and it is the only one when out-of-equilibrium beliefs satisfy a robust-

ness criterion. It is shown that stock insurers and mutuals may coexist, with

stock insurers offering insurance coverage at actuarial price and mutuals cross-

subsidizing risks.

∗Ecole Polytechnique; email: pierre.picard@polytechnique.edu
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1 Introduction

The fact that no equilibrium may exist in the Rothschild-Stiglitz (1976) model of insur-

ance markets under adverse selection has been at the origin of an abundant literature

in economic theory. In one way or another, most articles in this area have moved

away from the basic premise of the Rothschild-Stiglitz approach. This approach con-

sisted of modelling the strategic interactions between insurers who simultaneously offer

contracts under hidden information about the risk types of insurance seekers.

An important avenue of research that followed the seminal contribution of Roth-

schild and Stiglitz (1976) has its origin in the article by Wilson (1977). It focuses

attention on competitive mechanisms when insurers interact in a dynamic way. This

includes the "anticipatory equilibrium" of Miyazaki (1977), Wilson (1977) and Spence

(1978), the "reactive equilibrium" of Riley (1979), and the variations on the equilib-

rium concept introduced by Hellwig (1987) and Engers and Fernandez (1987), and in

more recent papers surveyed by Mimra and Wambach (2014), in particular Mimra and

Wambach (2011), and Netzer and Scheuer (2014). Another line of research, illustrated

by the works of Dubey and Geanakoplos (2002) and Bisin and Gottardi (2006) among

others, departs from the strategic dimension and considers atomistic insurance markets

under adverse selection in line with the approach by Prescott and Townsend (1984).

Unlike these two strands of research,1 our purpose is to reexamine the equilibrium issue

1The fact that there may be no equilibrium in the Rothschild-Stiglitz model is related to the

discontinuity of insurers’payoff functions, since small changes in their contract offers may lead all

individuals of a given type to switch to other insurers, with a possible jump in the insurers’expected

profits. Dasgupta and Maskin (1986a,b) have established existence theorems for mixed strategy

equilibria in a class of games where payoff functions have discontinuity points, and, as shown by

Rosenthal and Weiss (1984) in the case of the Spence model of education choices, such a mixed

strategy equilibrium exists in the Rothschild-Stiglitz insurance market model. However, assuming

that firms play mixed strategies at the contract offer stage has not been considered as reasonable

in the subsequent literature on markets with adverse selection. In addition, as shown by Rosenthal
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in a perspective that remains framed within the initial Rothschild-Stiglitz approach.

This requires a few preliminary explanations.

Rothschild and Stiglitz (1976) considered a simple setting in which each insurer is

constrained to offering a single contract, with a free entry equilibrium concept, but

they emphasized that such an equilibrium could be viewed as a Nash equilibrium of

a game in which insurers interact by offering contracts simultaneously. They also

noted that a next step was to test a less restrictive definition of insurers’strategies.

In particular, they observed that allowing insurers to offer menus of contracts would

make the condition under which an equilibrium exists even more restrictive. When

commenting on the approach byWilson (1977), they noted that "the peculiar provision

of many insurance contracts, that the effective premium is not determined until the

end of the period (when the individual obtains what is called a dividend), is perhaps

a reflection of the uncertainty associated with who will purchase the policy, which in

turn is associated with the uncertainty about what contracts other insurance firms will

offer". In other words, many insurance contracts, mostly those offered by mutuals, have

a participating dimension which should not be ignored when we seek to understand

how competition works in the real word.2

Our objective in the present paper is to move forward in that direction. In a first

approach (Picard, 2014), we have studied how allowing insurers to offer either partic-

ipating or non-participating contracts, or in other words to act as mutuals or as stock

insurers,3 affects the conclusion about the existence of an equilibrium if all other as-

and Weiss (1984), at a mixed-strategy equilibrium, a potential entrant could make positive profit.

This reinforces the fundamental conclusion of Rothschild and Stiglitz, that is, that an entry-deterring

equilibrium may not exist.
2Mutuals differ according to the role of the premium charged at the start of each policy period.

Advance premium mutuals set premium rates at a level that is expected to be suffi cient to pay the

expected losses and expenses while providing a margin for contingencies, and policyholders usually

receive dividends. In contrast, assessment mutuals collect an initial premium that is suffi cient only

to pay typical losses and expenses and levy supplementary premiums whenever unusual losses occur.
3This mapping between the nature of contracts (participating or non-participating) and the cor-
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sumptions of the Rothschild-Stiglitz model are unchanged. An equilibrium (within the

meaning of Rothschild and Stiglitz) always exists in such a setting, and the socalled

Miyazaki-Wilson-Spence (MWS) allocation is a state contingent equilibrium alloca-

tion. Furthermore, mutuals offering participating contracts is the corporate form that

emerges in markets where cross-subsidization provides a Pareto-improvement over the

Rothschild-Stiglitz separating pair of contracts, a case where no equilibrium exists in

the standard Rothschild-Stiglitz model. However, these conclusions were reached un-

der quite restrictive assumptions: we postulated that there were only two risk types

(high risk and low risk), as in the initial Rothschild-Stiglitz model, and we restricted

attention to linear policy dividend rules that allow insurers to distribute a fixed pro-

portion of their aggregate underwriting profit to policyholders. Furthermore, we did

not present conditions under which a unique equilibrium allocation exists. The objec-

tive of the present paper is to reexamine these issues in a setting with an arbitrary

number of risk types and a more general definition of admissible policy dividend rules,

and also to obtain conditions under which there is a unique equilibrium allocation.

It turns out that, beyond the extended validity of our conclusions, considering an

arbitrary number of risk types provide an endogenous structure of corporate forms in

the insurance industry: mutuals emerge for risk type subgroups that require cross-

subsidization, while stock insurers and mutuals may provide coverage to subgroups

without cross-subsidization. We will thus explain why the coexistence of mutuals and

stock insurers is a natural outcome of competitive interactions in insurance markets,

porate form (mutuals or stocks) is of course an oversimplification of the insurance market. Firstly,

insurers may offer participating and non-participating contracts simultaneously. In particular, most

life insurance contracts include profit participation clauses, even in the case of stock insurers. Further-

more, whatever the corporate structure, the participation of policyholders in profit may take other

forms than policy dividends: in particular, it may be in the form of discounts when contracts are

renewed, which is a strategy available to stock insurers and mutuals. In addition, the superiority of

one corporate form over another may also reflect other factors, including agency costs and governance

problems.
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a conclusion that fits with the facts observed in many countries.4 Finally, we will

also examine the issue of equilibrium uniqueness, and we will highlight a robustness

criterion under which there is a unique equilibrium. However, considering an arbitrary

number of types and non-linear policy dividend rules and extending the approach to

conditions under which a unique equilibrium exists requires a more formal approach

than the geometry-based reasoning that is suffi cient for more simple cases, such as the

seminal article of Rothschild and Stiglitz (1976).

The rest of this article is organized as follows. Section 2 presents our setting,

which is an insurance market under adverse selection with an arbitrary number of

risk types, where insurance contracts may include policy dividend rules. Section 3 is

the core of the paper: it analyzes the market equilibrium by defining a market game

and an equilibrium of this game, as well as the MWS allocation in the manner of

Spence (1978). We show that this allocation is sustained by a symmetric equilibrium

of the market game and, more specifically, that it may be sustained by participating

contracts for subgroups with cross-subsidization and non-participating contracts in

the other cases. Finally, we show that the MWS allocation is the only equilibrium

allocation under a robustness criterion derived from evolutionary stability criterions in

games with a continuum of players. Section 4 concludes. Proofs are in the Appendix.

2 The setting

We consider a large population represented by a continuum of individuals, with mass

1, facing idiosyncratic risks of having an accident.5 All individuals are risk averse:

4The mutual market share is over 40% in Japan, France and Germany. It is almost 50% in the

Netherlands and it is over 60% in Austria. In the US, it reached 36.3% in 2013. These aggregate

figures mask important disparities between the life and non-life lines of business.
5The word "accident" is taken in its generic meaning: it refers to any kind of insurable loss, such

as health care expenditures or fire damages.
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they maximize the expected utility of wealth u(W ), where W denotes wealth and the

(twice continuously differentiable) utility function u is such that u′ > 0 and u′′ < 0.

If no insurance policy is taken out, we have W = WN in the no-accident state and

W = WA in the accident state; A = WN −WA is the loss from an accident. Individuals

differ according to their probability of accident π, and they have private information

on their own accident probability. There are n types of individuals, with π = πi for

type i with 0 < πn < πn−1 < ... < π1 < 1. Hence, the larger the index i, the lower

the probability of an accident. λi is the fraction of type i individuals among the whole

population with
∑n

i=1 λi = 1.

Insurance contracts are offered by m insurers (m ≥ 2) indexed by j = 1, ...,m who

may offer participating or non-participating contracts. In other words, insurers are

entrepreneurs who may be stock insurers or mutual insurers. Stock insurers pool risks

between policyholders through non-participating insurance contracts, and they transfer

underwriting profit to risk-neutral shareholders. Mutual insurers have no shareholders:

they share risks between their members only through participating contracts. Insurers

offer contracts in order to maximize their residual expected profit (i.e. the expected

corporate earnings after policy dividends have been distributed).6

We assume that each individual can take out only one contract. An insurance

contract is written as (k, x), where k is the insurance premium and x is the net payout

6Thus, the insurance corporate form is a consequence of the kind of insurance contracts offered at

the equilibrium of the insurance market. It is not given ex ante. The underwriting activity as well as

all other aspects of the insurance business (e.g. claims handling) are supposed to be costless. Insurers

earn fixed fees in a competitive market. The mere fact that they may transfer risks to risk-neutral

investors leads them to maximize the expected residual profit. If an insurer could increase its residual

expected profit by offering other insurance policies, then it could contract with risk neutral investors

and secure higher fixed fees. Note that the residual profit of a mutual is zero if profits are distributed

as policy dividends or losses are absorbed through supplementary premiums. In that case, if the

mutual insurer could make positive residual profit, then he would benefit from becoming a stock

insurer.
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in case of an accident. Hence, x+k is the indemnity. Participating insurance contracts

also specify how policy dividends are paid or supplementary premiums are levied. We

will restrict attention to deterministic policies in which dividend rules define the (non-

random) policy dividend D as a function of average profits and of the number of

policyholders, for each contract offered by the insurer (see below for details).7 The

expected utility of a type i policyholder is then written as:

Eu = (1− πi)u(WN − k +D) + πiu(WA + x+D).

Our objective is to characterize a subgame perfect Nash equilibrium of a two

stage game called "the market game", where insurers can offer participating or non-

participating contracts. At stage 1, insurers offer menus of contracts, and at stage 2

individuals respond by choosing the contracts they prefer among the offers made by

the insurers.

It is of utmost importance to note that the choices of individuals depend on the

intrinsic characteristics of the contracts that have been offered at stage 1, but also on

expected policy dividends. Expected policy dividends should coincide with true divi-

dends (for contracts that are actually chosen by some individuals), that are themselves

dependent on the distribution of risk types among policyholders for each contract.

Thus, at stage 2, the participating nature of contracts induces a form of interdepen-

dence between individuals’strategies that is absent in the standard model with only

non-participating contracts.

At stage 1, the strategy of insurer j is defined by a menu of n contracts, one for

each type of individual, written as Cj = (Cj1 , C
j
2 , ..., C

j
n, D

j(.)), where Cjh = (kjh, x
j
h)

specifies the premium kjh and the net indemnity x
j
h. D

j(.) is a policy dividend rule, i.e.,

a way to distribute the net profits made on Cj. We write Dj(.) = (Dj
1(.), ..., D

j
n(.)),

7D will be non random because the law of large numbers allows us to evaluate the average profit

by the expected profit made on a policyholder who is randomly drawn among the customers. D < 0

corresponds to a supplementary call.
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where Dj
h(N

j
1 , P

j
1 , ..., N

j
n, P

j
n) denotes the policy dividend paid to each individual who

has chosen contract Cjh when N
j
i is the fraction of individuals in the whole population

who have chosen Cji with underwriting profit (the difference between premium and

indemnity) per policyholder P ji , with
∑m

j=1

∑n
i=1N

j
i = 1.8 Cj is non-participating if

Dj
h(N

j
1 , P

j
1 , ..., N

j
n, P

j
n) ≡ 0 for all h, and otherwise it is said to be participating. In

particular, Cj is fully participating if underwriting profits are entirely distributed as

policy dividends, that is, if9

n∑
h=1

N j
hD

j
h(N

j
1 , P

j
1 , ..., N

j
n, P

j
n) ≡

n∑
h=1

N j
hP

j
h .

We will assume that Dj
h(N

j
1 , P

j
1 , ..., N

j
n, P

j
n) is non-decreasing with respect to P j1 , ..., P

j
n

and homogeneous of degree zero with respect to (N j
1 , ..., N

j
n). We can write the policy

dividend as

Dj
h = Dj

h(θ
j
1, P

j
1 , ..., θ

j
n, P

j
n),

where

θjh ≡
N j
h∑n

i=1N
j
i

is the fraction of insurer j′s customers who have chosen Cjh , with
∑n

h=1 θ
j
h = 1.

The homogeneity assumption is made for the sake of mathematical simplicity, but

also because it fits with the standard policy dividend rules we may think of. For

instance, if insurer j shares a fraction γj ∈ [0, 1] of its underwriting profit evenly

among all its policyholders, then we have

Dj
h = γj

n∑
i=1

θjiP
j
i for all h = 1, ..., n.

If insurer j distributes a fraction γj ∈ [0, 1] of the underwriting profit made on Cjh to

the policyholders who have chosen this contract, then

Dj
h = γjP jh for all h = 1, ..., n.

8Dj
h < 0 corresponds to a supplementary premium levied on Cjh.

9Cj may be fully participating with Dj
h ≡ 0 for some h. In other words, a fully participating menu

may include non-participating policies.
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If insurer j distributes a fraction γj ∈ [0, 1] of its underwriting profit to the policyhold-

ers, with different rights to dividend according to the contract, then we may postulate

that there exist coeffi cients ηjh ≥ 0, with ηj1 = 1 such that Dj
h = ηjhD

j
1, which gives

Dj
h =

ηjh
n∑
h=1

θjiη
j
i

γj
n∑
h=1

θjhP
j
h for all h = 1, ..., n.

Thus, although the homogeneity assumption reduces the generality of our analysis, it

nevertheless encompasses a broad variety of cases that we observe in practice.

3 Market equilibrium

Let C ≡ (C1, C2, ..., Cm) be the profile of contract menus offered by insurers at stage

1 of the market game, with Cj = (Cj1 , C
j
2 , ..., C

j
n, D

j(.)). At stage 2, the strategy of a

type i individual10 specifies for all j and all h the probability σjih(C) to choose Cjh as

a function of C. The contract choice strategy of type i individuals is thus defined by

σi(C) ≡ {σjih(C) ∈ [0, 1] for j = 1, ...,m and h = 1, ..., n with
∑m

j=1

∑n
h=1 σ

j
ih(C) = 1}

for all C. Let σ(.) ≡ (σ1(.), σ2(.), ..., σn(.)) be a profile of individuals’strategies.

When an insurance contract Cjh = (kjh, x
j
h) is taken out by a type i individual, with

(non-random) policy dividend Dj
h, the policyholder’s expected utility and the expected

underwriting profit are respectively written as:

Ui(C
j
h, D

j
h) ≡ (1− πi)u(WN − kjh +Dj

h) + πiu(WA + xjh +Dj
h),

Πi(C
j
h) ≡ (1− πi)kjh − πix

j
h.

10Hence, for the sake of notational simplicity, it is assumed that all individuals of the same type

choose the same mixed strategy. In a more general setting, different individuals of the same type

could choose different mixed strategies. This extension would not affect our conclusions insofar as the

policy dividends paid by an insurer only depend on the distribution of customers among its contracts

and by the proportion of each type for each contract, and not on the identity of the individuals who

purchase a given contract. See the proof of Lemma 4 in the Appendix.
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When type i individuals choose Cjh with probability σ
j
ih, we may write θ

j
h and P

j
h as

functions of individual choices and contracts:

θjh(σ) ≡

n∑
i=1

λiσ
j
ih

n∑
i=1

n∑
k=1

λiσ
j
ik

if
n∑
i=1

n∑
k=1

λiσ
j
ik > 0,

P jh(Cjh, σ) =

n∑
i=1

λiσ
j
ihΠi(C

j
h)

n∑
i=1

λiσ
j
ih

if
n∑
i=1

λiσ
j
ih > 0,

where σ = (σ1, ..., σn) with σi = (..., σjih, ...).

We are now in a position to define a market equilibrium more formally.

3.1 Definition of a market equilibrium

Definition 1 A profile of strategies σ̃(.), C̃ ≡ (C̃1, ..., C̃m), where C̃j = (C̃j1 , ..., C̃
j
n, D̃

j(.)),

is a subgame perfect Nash equilibrium of the market game (in short a market equilib-

rium) if

m∑
j=1

n∑
h=1

σ̃jih(C)Ui(C
j
h, D

j

h(C)) = max{Ui(Cjh, D
j

h(C)); j = 1, ...,m, h = 1, ..., n}

for all i = 1, ..., n and all C, (1)

Π
j
(C̃) ≥ Π

j
(Cj, C̃−j) for all Cj and all j = 1, ...,m (2)

where C ≡ (C1, ..., Cm), Cj = (Cj1 , ..., C
j
n, D

j(.)), C̃−j = ( C̃1, ..., C̃j−1, C̃j+1, ..., C̃m)

and

D
j

h(C) ≡ Dj
h(θ

j

1(C), P
j

1(C), ..., θ
j

n(C), P
j

n(C)), (3)

Π
j
(C) ≡

n∑
i=1

n∑
h=1

λiσ̃
j
ih(C)[Πi(C

j
h)−D

j

h(C)], (4)
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with

θ
j

h(C) = θjh(σ̃(C)) for all h if
n∑
i=1

n∑
k=1

λiσ̃
j
ik(C) > 0,

P
j

h(C) = P jh(Cjh, σ̃(C)) for all h if
n∑
i=1

λiσ̃
j
ih(C) > 0,

θ
j

h(C) ≥ 0 and P
j

h(C) ∈ [Π1(C
j
h),Πn(Cjh)] for all h, with

n∑
h=1

θ
j

h(C) = 1,

if
n∑
i=1

n∑
k=1

λiσ̃
j
ik(C) = 0.

The notations in Definition 1 are as follows. Consider a profile of contracts C =

(C1, ..., Cm) where Cj = (Cj1 , C
j
2 , ..., C

j
n, D

j(.)) is the menu offered by insurer j. Then

θ
j

h(C) is the proportion of insurer j′s policyholders who choose Cjh when C is of-

fered, with P
j

h(C) the corresponding profit per policyholder. When insurer j at-

tracts policyholders, then θ
j

h(C) and P
j

h(C) are derived from individuals’ contract

choice strategy σ̃(C). Otherwise, θ
j

h(C) and P
j

h(C) are out-of-equilibrium beliefs that

fullfill the coherency conditions stated in Definition 1. Then D
j

h(C) and Π
j
(C) de-

fined by (3) and (4) denote the policy dividend for Cjh and the residual profit of

insurer j, respectively. They depend on the set of contracts C offered in the mar-

ket and on the profile of individuals’ contract choice strategy σ̃(.). In particular,

D
j

h(C) = D̃j
h(θ

j

1(C), P
j

1(C), ..., θ
j

n(C), P
j

n(C)) if Cj = C̃j.

Keeping these notations in mind, (1) and (2) correspond to the standard definition

of a subgame perfect Nash equilibrium. From (1), choosing Cjh with probability σ̃
j
ih(C)

is an optimal contract choice for type i individuals, given expected policy dividends.11

(2) means that C̃j is an optimal offer by insurer j (i.e., an offer that maximizes residual

11Since there is a continuum of individuals in the population, when a type i individual chooses her

mixed strategy σi(C), she considers that expected underwriting profit P
j

h(C) and expected policy

dividends D
j

h(C) are independent from her own choices. This is implicit in equation (1): type i

individuals choose their insurance contract for given expectations on policy dividends, because they

believe they are infinitesimal in the group of insureds who choose the same contract. If Cjh is chosen

by nobody, or more generally if insurer j does not attract any customer, then individuals estimate
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profit, that is, the difference between underwriting profit and policy dividend) when

C̃−j is offered by the other insurers, given the contract choice strategy of individuals.

Let C∗ denote the menu of contracts at a symmetric equilibrium of the market game

(defined as an equilibrium where all active insurers, i.e., all insurers with customers,

offer the same menu and individuals are evenly shared between insurers), with C̃j =

C∗ ≡ (C∗1 , C
∗
2 , ..., C

∗
n, D

∗(.)) for each active insurer j and C∗i = (k∗i , x
∗
i ) for all i = 1, ..., n

and D∗(.) ≡ (D∗1(.), ..., D
∗
n(.)). If individuals do not randomize between contracts,

C∗i = (k∗i , x
∗
i ) denotes the contract chosen by type i individuals.

A symmetric equilibrium of the market game sustains an equilibrium allocation

{(W 1∗
i ,W

2∗
i ), i = 1, ..., n}, where (W 1∗

i ,W
2∗
i ) is the lottery on final wealth induced by

the equilibrium strategies for type i individuals (meaning that their final wealth isW 1∗
i

with probability 1− πi and W 2∗
i with probability πi), with W 1∗

i = WN − k∗i +D∗i and

W 2∗
i = WA + x∗i +D∗i , where D

∗
i ≡ D∗i (λ1,Π

∗
1, ..., λn,Π

∗
n) with Π∗i ≡ Πi(C

∗
i ).

Our main objective in what follows is to establish the existence and uniqueness

of such an equilibrium allocation. To do that, we first characterize a candidate equi-

librium allocation by following the Spence (1978) approach to the Miyazaki-Wilson

equilibrium with an arbitrary number of types (we will call it the MWS allocation),

and next we show that this allocation is sustained by a profile of strategies which is a

symmetric equilibrium of the market game.

3.2 The MWS allocation

When a type i individual takes out a contract Ci = (ki, xi) and receives policy dividend

Di, then she is facing lottery (W 1
i ,W

2
i ) = (WN−ki+Di,WA+xi+Di), and the insurer’s

P
j

h(C) and D
j

h(C) by considering themselves as members of a deviant group with infinitesimal mass

who would choose contracts offered by insurer j, and their out-of-equilibrium beliefs correspond to

the composition of this hypothetical deviant group.
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expected residual profit (in short, its profit) is

Πi(Ci)−Di = WN − (1− πi)W 1
i − πi(W 2

i + A). (5)

This allows us to characterize candidate equilibrium allocations as follows. Let us

define a sequence of expected utility levels u∗i by u
∗
1 = u(WN−π1A), and for 2 ≤ i ≤ n:

u∗i = max(1− πi)u(W 1
i ) + πiu(W 2

i )

with respect to W 1
h ,W

2
h , h = 1, ..., i , subject to

(1− πh)u(W 1
h ) + πhu(W 2

h ) ≥ u∗h for h < i, (6)

(1− πh)u(W 1
h ) + πhu(W 2

h ) ≥ (1− πh)u(W 1
h+1) + πhu(W 2

h+1) for h < i, (7)
i∑

h=1

λh[WN − (1− πh)W 1
h − πh(W 2

h + A)] = 0. (8)

Let Pi denote the problem which defines u∗i , with i = 2, ..., n. The objective function

in Pi is the expected utility of type i individuals by restricting attention to individuals

with types 1 to i. Constraints (6) ensure that higher risk individuals (i.e. h < i) get

expected utility no less than u∗h. (7) are incentive compatibility constraints: type h

individuals (with h < i) are deterred from choosing the policy targeted at the adjacent

less risky type h+1. (8) is the break-even constraint over the set of risk types h ≤ i. For

n = 2, the optimal solution to P2 is the Miyazaki-Wilson equilibrium allocation. Let

{(Ŵ 1
i , Ŵ

2
i ), i = 1, ..., n} be the optimal solution to Pn. It is characterized in Lemmas 1

and 2, which are adapted from Spence (1978), and, as usual in the literature, we may

call it the MWS allocation.

Lemma 1 There exist T ∈ N, 0≤T ≤ n − 1, and `t ∈ {0, ..., n}, t = 0, ..., T + 1 with

`0 = 0 ≤ `1 ≤ `2 ... ≤ `T < `T+1 = n such that for all t = 0, ..., T

h∑
i=`t+1

λi[WN − (1− πi)Ŵ 1
i − πi(Ŵ 2

i + A)] < 0 for all h = `t + 1, ..., `t+1 − 1, (9)

`t+1∑
i=`t+1

λi[WN − (1− πi)Ŵ 1
i − πi(Ŵ 2

i + A)] = 0. (10)
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Furthermore, we have

(1− πi)u(Ŵ 1
i ) + πiu(Ŵ 2

i ) = u∗i if i ∈ {`1, `2, ..., n}, (11)

(1− πi)u(Ŵ 1
i ) + πiu(Ŵ 2

i ) > u∗i otherwise. (12)

In Pn, for each risk type i lower than n, the optimal lottery (Ŵ 1
i , Ŵ

2
i ) trades off the

increase in insurance cost against the relaxation of the adjacent incentive constraint. In

addition, the minimal expected utility level u∗i has to be reached. Lemma 1 states that

this trade-off results in pooling risk types in T + 1 subgroups indexed by t. Subgroup

t includes risk types i = `t + 1, ..., `t+1 with `0 = 0 and `T+1 = n. From (12), within

each subgroup t, all types i except the highest (i.e. i = `t + 1, ..., `t+1 − 1) get more

than their reservation utility u∗i , and from (9) there is negative profit over this subset

of individuals. They are cross-subsidized by the highest risk type (i.e., by type `t+1).

From (11) and (10), type `t just reaches its reservation utility u∗`t, for t = 1, ..., T + 1,

with zero profit over the whole subgroup t. In what follows, I will denote the set of

risk types in subgroups with cross-subsidization, i.e.

i ∈ I ⊂ {1, ..., n} if `t < i ≤ `t+1

for t ∈ {0, ..., T} such that `t+1 − `t ≥ 2.

When n = 2, we know from Crocker and Snow (1985)12 that there exists λ∗ ∈ (0, 1)

such that I = {1, 2} if λ1 < λ∗ and I = ∅ if λ1 ≥ λ∗. When n > 2, the population

is distributed among subgroups. A case with n = 5, T = 2, `1 = 3 and `2 = 4 is

illustrated in Figure 1. There are three subgroups in this example: type i = 3 cross-

subsidizes types 1 and 2, while the contracts offered to types 4 and 5 make zero profit.

We thus have I = {1, 2, 3} and ûh > u∗h for h = 1, 2 and ûh = u∗h for h = 3, 4 and 5,

where ûh is the type h expected utility at the optimal solution to Pn.13

12See also Picard (2014).
13The structure of cross-subsidization subgroups follows from the interaction of the πi and λi in a

complex way, which makes a more precise characterization diffi cult. For given πi, intuition suggests
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Figure 1

Lemma 2 There does not exist any incentive compatible allocation {(W 1
i ,W

2
i ), i =

1, ..., n} such that

(1− π`t)u(W 1
`t) + π`tu(W 2

`t) ≥ u∗`t for all t = 1, ..., T + 1 (13)

and
n∑
i=1

λi[WN − (1− πi)W 1
i − πi(W 2

i + A)] > 0. (14)

Lemma 2 states that no insurer can make positive profit by attracting all individuals

and offering more than u∗`t to threshold types `t. Suppose that there exists a profitable

allocation close to {(Ŵ 1
i , Ŵ

2
i ), i = 1, ..., n} that provides more than u∗`t to types `t.

Such an allocation would provide an expected utility larger than u∗h for all h (this

is just a consequence of the second part of Lemma 1), which would contradict the

definition of u∗n. The proof of Lemma 2 extends this argument to allocations that are

not close to {(Ŵ 1
i , Ŵ

2
i ), i = 1, ..., n}. The main consequence of Lemma 2 is that it

is impossible to make positive profit in a deviation from {(Ŵ 1
i , Ŵ

2
i ), i = 1, ..., n} if

threshold types `t are guaranteed to get at least u∗`t .

3.3 Existence of an equilibrium

Proposition 1 {(Ŵ 1
i , Ŵ

2
i ), i = 1, ..., n} is an equilibrium allocation. It is sustained

by a symmetric equilibrium of the market game where each insurer j offers Cj = C∗ ≡

(Ĉ1, ..., Ĉn, D
∗(.)), type i individuals choose Ĉi ≡ (k̂i, x̂i) = (WN − Ŵ 1

i , Ŵ
2
i −WA) and

that the case described in Figure 1 emerges from a situation where λ1/λ3 and λ2/λ3 are relatively

small so that cross-subsidizing risk types 1 and 2 allows a higher expected utility u∗3 for type 3 to be

reached, while λ3/λ4 and λ4/λ5 are relatively large so that it would be too costly to cross-subsidize

risk types 3 and 4.
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D∗(.) = (D∗1(.), ..., D
∗
n(.)) is any policy dividend rule such that∑

i∈I
NiD

∗
i (N1, P1, ..., Nn, Pn) ≡

∑
i∈I

NiPi, (15)

D∗i (λ1,Π1(Ĉ1), ..., λn,Πn(Ĉn)) = 0 for all i = 1, ..., n, (16)

D∗`t(N1, P1, ..., Nn, Pn) ≡ 0 for all t = 1, ..., T + 1. (17)

At the symmetric equilibrium of the market game described in Proposition 1, each

insurer offers C∗ = (Ĉ1, ..., Ĉn, D
∗(.)), and type i individuals choose Ĉi. The condi-

tions on D∗(.) are suffi cient for C∗ to be an equilibrium contract offer. (15) means

that profits are fully distributed among the individuals who choose a contract with

cross-subsidization at equilibrium, and from (16) no policy dividend is paid on the

equilibrium path. From (17), threshold types `t are excluded from the sharing of

profits.

To intuitively understand how Proposition 1 is deduced from Lemma 2, consider

an allocation induced by Cj0 6= C∗ offered by a deviant insurer j0. This corresponds

to a compound lottery generated by individuals’mixed strategies over Cj0 and C∗.

The aggregate residual profit of this allocation is larger or equal to the profit made

on Cj0 alone, because non-deviant insurers j 6= j0 offer a menu of contracts with full

distribution of profits or payment of losses on {Ĉi, i ∈ I} and non-negative profits on

{Ĉi, i /∈ I}. Furthermore, Condition (17) assures that all threshold types `t get at least

u∗`t . Lemma 2 shows that this allocation cannot be profitable, hence deviant insurer

j0 does not make positive profit14.

Remark 1 Note that equilibrium premiums are not uniquely defined, since insurers

may compensate higher premiums through higher dividends. More precisely, the equilib-

rium allocation {(Ŵ 1
i , Ŵ

2
i ), i = 1, ..., n} can also be sustained by an equilibrium of the

market game where insurers offer contracts Ĉ ′i ≡ (k̂′i, x̂
′
i) where k̂

′
i = k̂i+δ and x̂′i = x̂i−

14More precisely, Proposition 1 follows from a straightforward extension of Lemma 2 to allocations

with randomization between contracts. See Lemma 3 in the Appendix.
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δ, with policy dividend rule D∗∗i (N1, P1, ..., Nn, Pn) ≡ D∗i (N1, P1− δ, ..., Nn, Pn− δ) + δ,

with δ > 0. In that case, dividends include a fixed part δ paid to all policyholders and

a variable part that does not concern threshold types. Hence, the fundamental meaning

of Condition (17) is not the fact that threshold types do not receive policy dividends,

since they may actually receive such dividends according to the level of premiums: Con-

dition (17) assures us that threshold types cannot be penalized when deviant insurers

offer new contracts.15

Although no policy dividend (or dividend δ) is paid on the equilibrium path, there

may be variations in policy dividends when a deviant insurer j0 offers a menu Cj0 that

differs from C∗ = (Ĉ1, ..., Ĉn). Such a deviation may affect the distribution of types

among individuals who still choose a contract in C∗, with possible variations in profits

or losses of insurers j 6= j0, and thus policy dividends or supplementary premiums.

Variations in policy dividends can then act as an implicit threat that dissuades deviant

insurers from undertaking competitive attacks. For the sake of illustration, assume

D∗i (N1, P1, ..., Nn, Pn) =
k̂i − k̂`t+1

`t+1∑
h=`t+1

Nh(k̂h − k̂`t+1)

`t+1∑
h=`t+1

NhPh (18)

for all i ∈ {`t + 1, ..., `t+1} ⊂ I. Here, D∗(.) involves the sharing of profit within

each subgroup t with cross-subsidization. The total profit made within subgroup t

is
∑`t+1

h=`t+1
NhPh. It is distributed to policyholders within the same subgroup. Fur-

thermore, according to the policy dividend rule, the larger the premium, the larger

15Condition (17) seems necessary to get an equilibrium existence result when n > 2. For the sake

of illustration, assume n = 3 and consider a case where Ĉ1 is in deficit and Ĉ2 and Ĉ3 are profitable

when respectively chosen by types 1, 2 and 3 (a case where I = {1, 2, 3} and T = 0). Assume also

that underwriting profit or losses are uniformly shared between policyholders, including type 3. In

that case, if λ2 is small enough, there exists a profitable non-participating contract C ′2 closed to Ĉ2

which would attract type 2 individuals if offered in deviation from equilibrium, while types 1 and 3

would keep choosing Ĉ1 and Ĉ3 and pay (small) supplementary premiums.
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the policy dividend in absolute value. There is no right to receive a policy dividend

for the individuals who pay the smallest premium (i.e. for type `t+1), while rights

are larger for types i who pay larger premiums, which reflects the practice of mutu-

als that pay larger dividends to policyholders who have paid larger premiums. We

have
∑`t+1

h=`t+1
λhΠ(Ĉh) = 0 for all t from (10), and thus this policy dividend rule

satisfies conditions (15)-(17). If a deviant insurer j0 attracts some individuals who

cross-subsidize other risk types within subgroup t, then after the deviation we will

have
∑`t+1

h=`t+1
NhPh < 0 for non-deviant insurers j 6= j0, and consequently the welfare

of these other individuals will deteriorate if they keep choosing the same contract be-

cause they will have to pay supplementary premiums. It may then be impossible for

insurer j0 to not also attract them, which will make its offer non-profitable. The proof

of Proposition 1 shows that this is indeed the case.16

16It might be objected that, in practice, a deviant insurer could limit its offer to a small number of

individuals by rationing demand, which would lessen the effect of its action on non-deviant insurers.

In this way, if a deviant insurer restricts its offer to a small group of size ε, then its deviation

only entails a small effect on the profit of non-deviant insurers: the lower ε, the smaller the shift

in the lotteries offered by non-deviant insurers, which would open the door to profitable deviations

attracting type `t individuals when I 6= ∅. A complete analysis of the market equilibrium with

quantity rationing is beyond the scope of the present paper and would require a thorough analysis.

However, at this stage, we may observe that insurers could use discontinuous policy dividend rules

to prevent deviant competitors from attracting a small group of their policyholders. For example,

participating contracts may stipulate that no policy dividend will be distributed unless the insurer’s

profit reaches a predetermined target level. Equilibrium strategies may consist of offering Ĉ ′i ≡ (k̂′i, x̂′i),

as defined in Remark 1 if i ∈ I, and committing to pay positive dividend δ if the profit is at least δ

and nothing otherwise. Any deviation that attracts ε type `t individuals would cancel the payment of

policy dividends by non-deviant insurers. Consequently, there exists a continuation equilibrium where

the deviant does not make profit. Regarding competition with quantity rationing in the insurance

market, see Inderst and Wambach (2001).
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More generally, we may choose D∗(.) such that

`t+1∑
i=`t+1
i∈I

NiD
∗
i (N1, P1, ..., Nn, Pn) ≡

`t+1∑
i=`t+1
i∈I

NiPi,

for all subgroup t with cross-subsidization, which shows that the equilibrium allocation

is also sustained by equilibrium strategies where each insurer sells insurance to a given

subgroup of individuals (gathering risk types i = `t+1, ..., `t+1 in I) or to a combination

of these subgroups. Insurers who sell insurance to subgroups with only one risk type

(i.e. to types i /∈ I) or to a combination of these subgroups do not cross-subsidize risks.

They offer non-participating policies, and we may consider them as stock insurers.

Insurers who sell insurance policies to individuals who belong to subgroups with cross-

subsidization (i.e. to types i ∈ I) offer fully participating policies: they act as mutuals

do. In the example illustrated in Figure 1, mutuals would offer participating contracts

to subgroup t = 1 (that includes types 1, 2 and 3) and stock insurers would offer

non-participating contracts to subgroups t = 2 and 3. Hence, the model explains why

stock insurers and mutuals may coexist: mutuals offer insurance contracts that are

robust to competitive attacks when there is cross-subsidization, while stock insurers

offer insurance contracts at actuarial price. The following corollary recaps our results

more compactly.

Corollary 1 The MWS allocation is also sustained by a market equilibrium where

mutual insurers offer participating contracts to subgroups of individuals with types i ∈ I

and stock insurers offer non-participating contracts to types i /∈ I.

3.4 Uniqueness of equilibrium

Participating contracts induce an interdependence between the individuals’contract

choices. Consequently: multiple continuation equilibria17 may exist after menus of
17Contract choice strategies σ̃(C) = ( σ̃1(C), σ̃2(C), ..., σ̃n(C)) define a continuation equilibrium

associated with the contract offer C when they satisfy (1), with D
j

h(C) given by (3).
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contracts have been offered at stage 1. Typically, type i individuals may decide to

choose a participating contract offered by insurer j if they anticipate that less risky

types i′ (i.e., i′ > i) are going to do the same, but they may make another choice

for other expectations. This creates leeway in the characterization of a continuation

equilibrium after a deviation at stage 1, and it opens the door to multiple equilibrium

issues in the market game itself. In particular, contracts may not be chosen by anyone

because of pessimistic expectations about the contracts offered by inactive insurers:

insurance seekers may anticipate that the insurers who offer these contracts are go-

ing to attract only high-risk individuals, with negative underwriting profit. These

pessimistic expectations (i.e., out-of-equilibrium beliefs) may annihilate profitable de-

viations, although such deviations would exist under more optimistic expectations.

An equilibrium sustained by arbitrarily pessimistic beliefs is not very convincing if

choosing contracts offered by a deviant insurer were beneficial to some policyholders.

Definition 2 introduces a robustness criterion, that eliminates such equilibria.

Definition 2 A market equilibrium σ̃(.), C̃ is based on robust beliefs if there does not

exist a deviation Cj0 where insurer j0 does not attract any customer, i.e.,∑n

i=1

∑n

h=1
λiσ̃

j0
ih(C

j0 , C̃−j0) = 0,

and a risk type i0 such that:

(i) Type i0 individuals would be better off if they choose a contract C
j0
i0
in Cj0 in

a deviation from their equilibrium strategy, and if they belong to an infinitely small

subset of type i0 individuals who are the only ones to do so, i.e.,

Ui0(C
j0
i0
, D

j0

i0
) > max{Ui0(C̃

j
h, D

j

h(C)); j 6= j0, h = 1, ..., n},

where D
j0

i0
is the policy dividend received by type i0 individuals when they are the only

ones to choose a contract in Cj0,18

18Since Dj0
h (N

j0
1 , P

j0
1 , ..., N

j0
n , P

j0
n ) is homogeneous of degree zero with respect to (N

j0
1 , ..., N

j0
n ),

D
j0

i0 does not depend on the mass of the subset ot type i0 individual who choose C
j0
i0
.
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(ii) insurer j0 attracts type i0 policyholders, and possibly other individuals, in at

least one other continuation equilibrium following the deviation from C̃j0 to Cj0 and

makes positive profit at all such continuation equilibria.

A robust equilibrium allocation is sustained by a symmetric market equilibrium

based on robut beliefs.

Proposition 2 The MSW allocation is the only robust equilibrium allocation.

Presumably, individuals may make error in the real world, and this is the logic of

the robustness criterion used to eliminate equilibria based on arbitrarily pessimistic

beliefs. In Definition 2 −(i), if a subgroup of type i0 individuals with positive measure

do such an error (i.e., they choose Cj0i0 ), then they would observe that this departure

from their equilibrium contracts is in fact favorable to them. Definition 2−(ii) adds

the condition that this improvement would be confirmed at all continuation equilibria

where insurer j0 attracts policyholders, and that such continuation equilibria exist and

are profitable to insurer j0. Definition 2 says that an equilibrium is based on robust

beliefs if such deviations do not exist and Proposition 2 states that the MWS allocation

is the only equilibrium allocation when beliefs are required to be robust.

Remark 2 Definition 2 is inspired by robustness criterions in games with a continuum

of players (non-atomic games). In an evolutionary game setting with a large group of

identical players, a (mixed or pure) strategy of a given player is said to be neutrally

stable (NSS) if there does not exist another strategy that would be strongly prefered by

this player if this alternative strategy were played by a small enough fraction of similar

individuals19. Definition 2−(i) adapts the NSS criterion to any subgame that follows

19The NSS criterion was introduced by Maynard Smith (1982). In the terminology of evolutionary

games, the alternative strategy is played by a small group of "mutants" who appears in a large

population of individuals who are programmed to play the same incumbent strategy. Following the

biological intuition, we may assume that evolutionary forces select against the mutant strategy if and

only if its postentry payoff (or fitness) is not larger than that of the incumbent strategy. Thus, a
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a deviation by some insurer j0. Definition 2 −(ii) weakens this equilibrium selection

criterion by requiring that alternative strategies also provide a higher expected utility

to the deviant individuals at another equilibrium (thus, not only when they are played

in deviation from equilibrium by a small subgroup of individuals) and that insurer j0

makes positive profit in such continuation equilibria.

4 Concluding comments

Thus, the MWS allocation is always an equilibrium allocation in the Rothschild-Stiglitz

model when insurers can issue participating or non-participating policies. It is the

only equilibrium allocation when out-of-equilibrium beliefs satisfy a robustness cri-

terion. This equilibrium allocation is characterized by a classification of individuals

into subgroups as done by Spence (1978), with cross-subsidization within each sub-

group that includes several risk types. Participating policies act as an implicit threat

which prevents deviant insurers from attracting low-risk individuals only. If a de-

viant insurer attracts individuals who cross-subsidize other risk types within a given

subgroup, then these other individuals will have to pay supplementary premiums or

receive lower dividends if they keep choosing the same contract from their non-deviant

insurer. Consequently, it will be impossible for the deviant insurer to not also attract

them, which will make its offer non-profitable.

This mechanism is similar to the logic of the MWS equilibrium. In both cases, a de-

viant insurer is deterred from attracting low risk individuals because it is expected that

ultimately its offer would also attract higher risks, which would make it unprofitable.

However, in the MWS equilibrium, insurers are protected from these competitive at-

neutrally stable strategy cannot be destabilized by deviations of a small group of mutants. NSS is

a weakening of the evolutionary stability criterion (ESS) introduced by Maynard Smith and Price

(1973) and Maynard Smith (1974). On the connections between evolutionary stability criteria and

other robustness criteria of Nash equilibria, see Weibull (1995).
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tacks because they can react by withdrawing contracts that become unprofitable. This

assumption may be considered as unsatisfactory because it means that insurers are not

committed to actually offer the announced contracts. It can also be legitimately argued

that this description of the dynamic relationship between insurers is arbitrary. Other

timings are possible, as shown by Riley (1979), Hellwig (1987) and others. Mimra and

Wambach (2014) list papers that have departed from the original game structure of

Rosthschild and Stiglitz (1976), and we have to admit that no particular timing has an

obvious superiority over the others. Moving away from the Rothschild-Stiglitz game

structure may be like opening a Pandora’s box, since there always exist new ways to

describe the dynamic competitive interaction between firms.

We have taken a different route. Our analysis has not stepped away from the in-

stantaneous strategic interaction between insurers that characterizes the Rothschild-

Stiglitz model, and we have explored the consequences of deleting an exogenous re-

striction on the content of insurance policies.20 As observed by Rothschild and Stiglitz

(1976) themselves, extending their model in order to include "the peculiar provision

of many insurance contracts", firstly by considering menus, and secondly by allowing

insurers to pay policy dividends, is a natural way to reconcile the empirical observation

and the theoretical definition of a market equilibrium, and this is what we have done

in this paper. Of course, we may consider that the glass is half empty rather than

half full, and that even more general contracts, e.g., with quantity rationing, should

be considered. This is another research avenue worth exploring. However, the case

where firms commit to honour the offers made to clients, without restricting these

offers to a subset of consumers, seems to be a natural starting point for the analysis

20To be honest, it must be acknowledged that there are two possible game theory interpretation

of the Rothschild-Stiglitz framework. In the most usual one, insurers face a continuum of individuals

of various possible risk types, and they know the fraction of each type, but not any given individual’s

type. This is the interpretation we have come up with in this paper. In another one, insurers compete

for a single potential insured individual whose type is privately observed, and insurers have a common

prior over this type. Only the first interpretation is compatible with our analysis.
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of competitive markets.

The main outcome of this modelling, apart from the existence and uniqueness of

an equilibrium, is the fact that it leads to an endogenous definition of corporate forms,

where mutuals and stock insurers may coexist, with specific functions: mutuals may

provide coverage to risk groups that require cross-subsidization, while at the same

time being protected against competitive attacks that would target their least risky

policyholders. Subgroups without cross-subsidization do not require such endogenous

protection, and they purchase non-participating or participating contracts. If, for

some other reasons, stock insurers benefit from competitive advantages, for instance

because they can transfer systemic risks to stockholders, then we may reach a complete

market structuring that trades off the ability of mutuals to implement effi cient cross-

subsidization and the superiority of stock insurers in the face of macroeconomic risks.

The diversity of market structures that we may observe in practice suggests that the

balance is not always on the same side.

Appendix

Proof of Lemma 1

If
∑i

h=1 λh[WN − (1−πh)Ŵ 1
h −πh(Ŵ 2

h +A)] > 0 for i ∈ {1, ..., n}, then it would be

possible to provide a higher expected utility than u∗h for all h = 1, ..., i, while breaking

even over the subset of individuals h = 1, ..., i, which would contradict the definition of

u∗i .
21 We thus have

∑i
h=1 λh[WN − (1−πh)Ŵ 1

h −πh(Ŵ 2
h +A)] ≤ 0 for all i ∈ {1, ..., n},

which yields the first part of the Lemma.

We have (1 − πi)u(Ŵ 1
i ) + πiu(Ŵ 2

i ) ≥ u∗i for all i from the definition of Pn. If

i ∈ {`1, `2, ..., n}, we have
∑i

h=1 λh[WN − (1 − πh)Ŵ
1
h − πh(Ŵ

2
h + A)] = 0 from the

first part of the Lemma, and we deduce (1− πi)u(Ŵ 1
i ) + πiu(Ŵ 2

i ) = u∗i , for otherwise

21More explicitly, let ε be a positive real number and let {(W 1
h (τ),W

2
h (τ)), h = 1, ..., i} that satifies

(7) for all τ > 0 with W 1
h (0) = Ŵ 1

h ,W
2
h (0) = Ŵ 2

h for all h = 1, ..., i, and dW
1
h/dτ = dW 2

h/dτ > ε for

all τ and all h = 1, ...i. There exists τ̂ > 0 such that {(W 1
h (τ̂),W

2
h (τ̂)), h = 1, ..., i} satifies (8), with

Ui(W
1
h (τ̂),W

2
h (τ̂)) > u∗h for all h = 1, ..., i, which contradicts the definition of u

∗
i .
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we would have a contradiction with the definition of u∗i . Conversely, suppose we

have (1 − πi)u(Ŵ 1
i ) + πiu(Ŵ 2

i ) = u∗i and i /∈ {`1, `2, ..., n}. We would then have∑i
h=1 λh[WN − (1− πh)Ŵ 1

h − πh(Ŵ 2
h +A)] < 0. Hence the allocation {(Ŵ 1

h , Ŵ
2
h ), h =

1, ..., i} is in deficit. Let {(W 1′
h ,W

2′
h ), h = 1, ..., i} be the optimal solution to Pi.

Replacing {(Ŵ 1
h , Ŵ

2
h ), h = 1, ..., i} with {(W 1′

h ,W
2′
h ), h = 1, ..., i} allows us to improve

the optimal solution to Pn, since the same type i expected utility u∗i can be reached

while breaking even on the set h = 1, ..., i, which provides additional resources that

could be used to raise (1− πn)u(W 1
n) + πnu(W 2

n) over (1− πn)u(Ŵ 1
n) + πnu(Ŵ 2

n). We

thus obtain a contradiction with the fact that {(Ŵ 1
i , Ŵ

2
i ), i = 1, ..., n} is the optimal

solution to Pn.

Proof of Lemma 2

Wefirst restrict attention to incentive compatible allocations {(W 1
i ,W

2
i ), i = 1, ..., n}

located in a neighbourhood of {(Ŵ 1
i , Ŵ

2
i ), i = 1, ..., n}. Suppose that such an alloca-

tion satisfies (13)-(14). Lemma 1 shows that

(1− πi)u(W 1
i ) + πiu(W 2

i ) ≥ u∗i for all i = 1, ..., n,

if (W 1
i ,W

2
i ) is close enough to (Ŵ 1

i , Ŵ
2
i ). Hence {(W 1

i ,W
2
i ), i = 1, ..., n} satisfies the

constraints of Pn with positive profits and expected utility larger or equal to u∗n for

type n, hence a contradiction.

We now prove that there does not exist any incentive compatible allocation {(W 1
i ,W

2
i ), i =

1, ..., n} that satisfies (13)-(14), even if we do not restrict attention to allocations close

to {(Ŵ 1
i , Ŵ

2
i ), i = 1, ..., n}. Let us define zsi ≡ u(W s

i ) and ẑsi ≡ u(Ŵ s
i ) for i = 1, ..., n

and s = 1, 2. With this change of variable, the Lemma states that there does not exist
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{(z1i , z2i ), i = 1, ..., n} such that

(1− π`t)z1`t + π`tz
2
`t ≥ u∗`t for all t = 1, ..., T + 1 , (19)

(1− πi)z1i + πiz
2
i ≥ (1− πi)z1i+1 + πiz

2
i+1 for i = 1, ..., n− 1 , (20)

n∑
i=1

λi{(1− πi)[WN − u−1(z1i )]− πi[u−1(z2i )−WA]}

>

n∑
i=1

λi{(1− πi)[WN − u−1(ẑ1i )]− πi[u−1(ẑ2i )−WA]}. (21)

The set of {(z1i , z2i ), i = 1, ..., n} that satisfies the conditions (19)-(21) is convex.

Hence if there is any allocation {(z1i , z2i ), i = 1, ..., n} that satisfies these conditions,

there is an allocation in any neighbourhood of {(ẑ1i , ẑ2i ), i = 1, ..., n} that satisfies them,

which contradicts our previous result.

Remark 3 Lemmas 1 and 2 easily extend to allocations where individuals of a given

type may randomize between contracts that are equivalent for themselves. An allocation

is then a type-dependent randomization over a set of lotteries. Formally, an alloca-

tion is defined by a set of lotteries {(W 1
s ,W

2
s ), s = 1, ..., S} and individuals’ choices

σ ≡ (σ1, σ2, ..., σn) with σi = (σi1, ..., σiS), where σis is the probability that a type i

individual chooses (W 1
s ,W

2
s ), with

∑S
s=1 σis = 1. In other words, type i individuals

get a compound lottery generated by their mixed strategy σi over available lotteries

{(W 1
s ,W

2
s ), s = 1, ..., S}. An allocation is incentive compatible if

S∑
s=1

σis[(1− πi)u(W 1
s ) + πiu(W 2

s )] = max{(1− πi)u(W 1
s ) + πiu(W 2

s ), s = 1, ..., S},

for all i = 1, ..., n. In words, an allocation is incentive compatible when individuals

only choose their best contract with positive probability. The definition of Problem Pi
for i = 1, ..., n can be extended straightforwardly to this more general setting, with an

unchanged definition of u∗i . In particular, individuals choose only one (non compound)

lottery at the optimal solution to Pi, and the MWS lotteries are still an optimal solution
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to Pn. Lemma 1 is thus still valid. Lemma 3 extends Lemma 2 to the case where

individuals may randomize between contracts.

Lemma 3 There does not exist any incentive compatible allocation with randomization

{(W 1
s ,W

2
s ), s = 1, ..., S;σ ≡ (σ1, σ2, ..., σn)} such that

S∑
s=1

σ`t,s[(1− π`t)u(W 1
s ) + π`tu(W 2

s )] ≥ u∗`t for all t = 1, ..., T + 1 (22)

and
n∑
h=1

λh{
S∑
s=1

σhs[WN − (1− πh)W 1
s − πh(W 2

s + A)]} > 0. (23)

Proof of Lemma 3

For a given incentive compatible allocation with randomization {(W 1
s ,W

2
s ), s =

1, ..., S;σ ≡ (σ1, σ2, ..., σn)}, let (W
1

h,W
2

h) = (W 1
s(h),W

2
s(h)) be one of the the most

profitable lotteries which are chosen by type h individuals with positive probability,

i.e., s(h) is such that σh,s(h) > 0 and

(1− πh)W 1
s(h) + πhW

2
s(h) ≤ (1− πh)W 1

s′ + πhW
2
s′

for all s′ such that σh,s′ > 0. If (22) and (23) hold for the initial allocation with ran-

domization, then (13) and (14) also hold for the non-randomized incentive compatible

allocation {(W 1

h,W
2

h), h = 1, ..., n}, which contradicts Lemma 2.

Lemma 4 For any contract offer C = (C1, ..., Cm) made at stage 1, there exists at

least one continuation equilibrium σ(C) = ( σ1(C), σ2(C), ..., σn(C)) at stage 2.

Proof of Lemma 4

Let C = (C1, ..., Cm) with Cj = (Cj1 , ..., C
j
n, D

j(.)) be a contract offer. Consider a

discretization of the stage 2 subgame that follows C, with N individuals. Individuals

are indexed by t = 1, ..., N and SNi is the set of type i individuals, with
∑N

i=1

∣∣SNi ∣∣ =

N . In this discretized game, a pure strategy of individual t is the choice of a contract in
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C. Let us denote sjth = 1 if individual t chooses Cjh and s
j
th = 0 otherwise. The expected

utility of a type i who chooses Cjh is Ui(C
j
h, X

j
h), whereX

j
h = Dj

h(θ
j
1, P

j
1 , ..., θ

j
n, P

j
n), with

θjh =

∑N
t=1 s

j
th∑N

t=1

∑n
k=1 s

j
tk

if
N∑
t=1

n∑
k=1

sjtk > 0,

P jh =

∑n
i=1

∑
t∈SNi

sjthΠi(C
j
h)∑N

t=1 s
j
th

if
N∑
t=1

sjth > 0,

This discretized subgame is a finite strategic-form game. Consider an ε−perturbation

of this game, with ε > 0, where all individuals may play mixed strategy and are

required to choose each contract Cjh with probability larger or equal to ε. This pertur-

bated game is characterized by N and ε and it has a mixed strategy equilibrium, where

all type i individuals choose Cjh with probability σ
j∗N
ih (ε) ≥ ε.22 Let σ∗Ni (ε) = (σj∗Nih (ε)).

Thus, if t ∈ SNi , we have

E
[
Ui(C

j
h, X

j∗N
ht (ε)

∣∣σ∗N(ε)
]

= max
{
E
[
Ui(C

j
k, X

j∗N
kt (ε)

∣∣σ∗N(ε)
]
for all j, k

}
if σj∗Nih (ε) > ε, (24)

where expected value E
[
.
∣∣σ∗N(ε)

]
is conditional on the equilibrium mixed strategies

played by all individuals except t, and where Xj∗N
ht (ε) is the equilibrium random policy

dividend when all individuals except t play the equilibrium type-dependent mixed

strategy σ∗N(ε) = (σ∗N1 (ε), ..., σ∗Nn (ε)) and individual t chooses Cjh.

Consider a sequence of such discretized subgames indexed by N ∈ N, where ε

depends on N , with ε ≡ εN > 0, such that
∣∣SNi ∣∣ /N → λi for all i and εN → 0 when

N →∞. The sequence {σ∗N = (..., σj∗Ni (εN), ...)}N∈N is in a compact set, and thus it

includes a converging subsequence: σ∗N → σ∗ = (..., σj∗ih, ...) with
∑m

j=1

∑n
h=1 σ

j∗
ih = 1

for all i, when N →∞, N ∈ N′ ⊂ N. Let θj∗Nk , P j∗Nk be the equilibrium proportion of

insurer j’s policyholders who choose Cjk and the corresponding equilibrium profit per

22The payoff functions are such that there is always an equilibrium of the discretized game where

individuals of the same type play the same mixed strategy.
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policyholder, respectively. The weak law of large numbers yields

θj∗Nh
P→

n∑
i=1

λiσ
j∗N
ih (εN)

n∑
i=1

n∑
k=1

λiσ
j∗N
ik (εN)

≡ θ
j∗N
h ,

P j∗Nh

P→

n∑
i=1

λiσ
j∗N
ih (εN)Πi(C

j
h)

n∑
i=1

λiσ
j∗N
ih (εN)

≡ P
j∗N
h ,

when N →∞. We have

θ
j∗N
h →

n∑
i=1

λiσ
j∗
ih

n∑
i=1

n∑
k=1

λiσ
j∗
ik

≡ θ
j∗
h if

n∑
i=1

n∑
k=1

λiσ
j∗
ik > 0,

P j∗Nh →

n∑
i=1

λiσ
j∗
ihΠi(C

j
h)

n∑
i=1

λiσ
j∗
ih

≡ P
j∗
h if

n∑
i=1

λiσ
j∗
ih > 0,

when N → ∞, N ∈ N′. If
∑n

i=1

∑n
k=1 λiσ

j∗
ik = 0, then we have θ

j∗N
h → θ

j∗
h ≥ 0

and P j∗Nh → P
j∗
h , with

∑n
h=1 θ

j∗
h = 1 and P

j∗
h ∈ [Π1(C

j
h),Πn(Cjh)] for all h, when

N →∞, N ∈ N′.

We have
∣∣∣Xj∗N

ht (εN)−Dj
h(θ

j∗N
1 , P j∗N1 , ..., θj∗Nn , P j∗Nn )

∣∣∣ −→ 0 for all t when N −→

∞. Hence, Xj∗N
ht (εN)

P→ D
j∗
h ≡ Dj

h(θ
j∗
1 , P

j∗
1 , ..., θ

j∗
n , P

j∗
n ) for all t whenN →∞, N ∈ N′.

Taking the limit of (24), when N →∞ , N ∈ N′, then gives

Ui(C
j
h, D

j∗
h ) = max{Ui(Cjk, D

j∗
k ) for all j, k} if σj∗ih > 0.

Using
∑m

j=1

∑n
h=1 σ

j∗
ih = 1 then yields

m∑
j=1

n∑
h=1

σj∗ihUi(C
j
h, D

j∗
h ) = max{Ui(Cjh, D

j∗
h ) for all j, h},
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which shows that σ∗ is an equilibrium of the stage 2 subgame when insurers offer C

at stage 1 and policy dividends are D
j∗
h .

Proof of Proposition 1

Assume that each insurer offers Ĉ = (Ĉ1, Ĉ2, ..., Ĉn, D
∗(.)) such that (15)-(17) hold.

Then Ĉi is an optimal choice of type i individuals if no policy dividend is paid on any

contract. (16) shows that this is actually the case when all individuals are evenly

shared among insurers.

Suppose some insurer j0 deviates from Ĉ to another menu Cj0 = {Cj01 , C
j0
2 , ..., C

j0
n ,

Dj0(.)} with Cj0i = (kj0i , x
j0
i ). Let σ̃(Cj0 , Ĉ−j0) be a continuation equilibrium following

the deviation, i.e., equilibrium contract choices by individuals in the subgame where

Cj0 and Ĉ are simultaneously offered, respectively by insurer j0 and by all the other

insurers j 6= j0. Lemma 4 shows that such a continuation equilibrium exists. Let us

restrict the definition of this subgame by imposing σ̃ji−1,i = 0 for all i /∈ I, j 6= j0.

From (17), type i − 1 individuals weakly prefer Ĉi−1 to Ĉi if i /∈ I, so that any

equilibrium of the restricted game is also an equilibrium of the original game. Let

P
j

h be the profit per policyholder made by insurer j 6= j0 on contract Ĉh and θ
j

h be

the proportion of insurer j′ s customers who choose Ĉh, after the deviation by insurer

j0. Consider a continuation equilibrium where individuals of a given type are evenly

shared between insurers j 6= j0, i.e., where σ̃
j
ih(C

j0 , Ĉ−j0) = σ̃j
′

ih(C
j0 , Ĉ−j0) for all h if

j 6= j′, j, j′ 6= j0
23. We may then use more compact notations σ̃0ih ≡ σ̃j0ih(C

j0 , Ĉ−j0)

and σ̃1ih ≡ σ̃jih(C
j0 , Ĉ−j0), P

1

h = P
j

h, N
1

h = N
j

h for all j 6= j0. Let also P
0

h and θ
0

h be,

respectively, the average profit made on Cj0h and the proportion of the customers of

insurer j0 who choose C
j0
h .

After the deviation by insurer j0, type i individuals get the following lottery on

23Such a continuation equilibrium exists because it is a Nash equilibrium of an equivalent game

with only two insurers that respectively offer Ĉ−j0and Cj0 . Note that this equivalence is possible

because Dj
h(.) is homogeneous of degree 1 with respect to (N

j
1 , ..., N

j
n).
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final wealth:

(W 1
0h,W

2
0h) ≡ (WN − kj0h +D

0

h,WA + xj0h +D
0

h) with probability σ̃
0
ih,

(W 1
1h,W

2
1h) ≡ (Ŵ 1

h +D
1

h, Ŵ
2
h +D

1

h) with probability σ̃
1
ih(n− 1),

where

D
0

h = Dj0
h (θ

0

1, P
0

1, ..., θ
0

n, P
0

n),

D
1

h = D∗h(θ
1

1, P
1

1, ..., θ
1

n, P
1

n),

for h = 1, ..., n, with
∑n

h=1[σ̃
0
ih + σ̃1ih(n− 1)] = 1. Let us denote this lottery by L. Let

∆ denote the residual profit made by insurer j0. We have

∆ =
n∑
i=1

λi{
n∑
h=1

σ̃0ih[WN − (1− πi)W 1
0h − πi(W 2

0h + A)]}. (25)

We know from (15) that D∗(.) involves the full distribution of profits made by non-

deviant insurers on the set of contracts {Ĉi, i ∈ I}. Furthermore, we have σ̃1hi = 0 if

h < i − 1 when i /∈ I, because types h strongly prefer Ĉi−1 to Ĉi for all h < i − 1.24

Thus we have σ̃1hi = 0 if h ≤ i when i /∈ I, and consequently the profit made on Ĉi by

non-deviant insurers is non-negative when i /∈ I. We deduce that non-deviant insurers

j make non-negative residual profit. We thus have

n∑
i=1

λi{
n∑
h=1

σ̃1ih[WN − (1− πi)W 1
1h − πi(W 2

1h + A)]} ≥ 0. (26)

(25) and (26) then yield

∆ ≤
n∑
i=1

λi{
n∑
h=1

σ̃0ih[WN − (1− πi)W 1
0h − πi(W 2

0h + A)]

+(n− 1)

n∑
h=1

σ̃1ih[WN − (1− πi)W 1
1h − πi(W 2

1h + A)]}. (27)

24Note that we here use D∗i ≡ 0 and D∗i−1 ≡ 0 when i /∈ I, which follows from (17).
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Furthermore, we have

n∑
h=1

σ̃0`t,h[(1− π`t)u(W 1
0h) + π`θu(W 2

0h)]

+(n− 1)
n∑
h=1

σ̃1`t,h[(1− π`t)u(W 1
1h) + π`tu(W 2

1h)

≥ u∗`t for all t = 1, ..., T + 1 (28)

because (W 1
1`t
,W 2

1`t
) = (Ŵ 1

1`t
, Ŵ 2

1`t
) since D

1

`t = 0 from (17), and (1 − π`t)u(Ŵ 1
1`t

) +

π`tu(Ŵ 2
1`t

) = u∗`t , and {σ̃
0
`t,h, σ̃

1
`t,h, h = 1, ..., n} is an optimal contract choice strategy

of type `t individuals. The right-hand side of (27) is the expected profit associated

with L. Lemma 3 applied to lottery L then gives ∆ ≤ 0. Hence the deviation is

non-profitable, which completes the proof.

Proof of Proposition 2

In the proof of Proposition 1, it has been shown that the MWS allocation is sus-

tained by a market equilibrium where stage 1 deviations are non-profitable at all

continuation equilibrium. Hence this equilibrium allocation is robust.

Let {(W̃ 1
i , W̃

2
i ), i = 1, ..., n} be an equilibrium allocation that differs from the

MWS allocation, with expected utility ũi for type i. This allocation satisfies incentive

compatibility constraints (7) for all h = 1, ..., n−1, and it is sustained by a symmetric

Nash equilibrium of the market game with ma active insurers (ma ≤ m) where each

active insurer offers C̃ = (C̃1, C̃2, ..., C̃n, D̃(.)), with D̃(.) = (D̃1(.), D̃2(.), ..., D̃n(.)).

At such an equilibrium, insurers make non-negative residual profit, for otherwise they

would deviate to a "zero contract". Hence {(W̃ 1
i , W̃

2
i ), i = 1, ..., n} satisfies (8) for

i = n, rewritten as a weak inequality (with sign ≤). Since {(W̃ 1
i , W̃

2
i ), i = 1, ..., n}

satisfies (7) and (8) for i = n and it is not an optimal solution to Pn, we deduce

that there is i0 in {1, ..., n} such that ũi ≥ u∗i if i < i0 and ũi0 < u∗i0 . Thus, there

exists an allocation {(W 1
i ,W

2
i ), i = 1, ..., i0} in the neighbourhood of the optimal

solution to Pi0 , with expected utility ui for type i, that satisfies (6) and (7) as strong

inequalities and (8) rewritten as a strong inequality (with sign <) for i = i0. Let
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ki = WN −W 1
i and xi = W 2

i −WA for i ≤ i0. Let j0 be some insurer that belongs to

the set of inactive insurers if ma = 1 and that may be active or inactive if ma > 1.

Suppose insurer j0 deviates from C̃ to Cj0 = {Cj01 , C
j0
2 , ..., C

j0
n , D

j0(.)} with Dj0(.) =

(Dj0
1 (.), Dj0

2 (.), ..., Dj0
n (.)), where Cj0i = (ki, xi) if i ≤ i0, C

j0
i = (0, 0) if i > i0 and

Dj0
i (N j0

1 , P
j0
1 , ..., N

j0
n , P

j0
n ) =

{
0 if

∑i0
h=1N

j0
h P

j0
h > 0

−K if
∑i0

h=1N
j0
h P

j0
h ≤ 0

if i ≤ i0,

Dj0
i (N j0

1 , P
j0
1 , ..., N

j0
n , P

j0
n ) ≡ 0 if i > i0,

with K > 0. For K large enough, insurer j0 makes positive profit at any continuation

equilibrium after the deviation to Cj0 where it attracts some individuals. This is

the case when all type i0 individuals choose C
j0
i0
and reach expected utility ui0 (with

ui0 ≥ u∗i0 > ũi0) and possibly other individuals choose a contract in C
j0 . Thus, any

market equilibrium where insurer j0 does not attract some individuals after deviating

from C̃ to Cj0 is not based on robust beliefs. We deduce that {(W̃ 1
i , W̃

2
i ), i = 1, ..., n}

is not a robust equilibrium allocation.

References

Bisin, A. and P. Gottardi, 2006, "Effi cient competitive equilibria with adverse

selection", Journal of Political Economy, 114:3, 485-516.

Crocker, K.J. and A. Snow, 1985, "The effi ciency of competitive equilibria in in-

surance markets with asymmetric information", Journal of Public Economics, 26:2,

207-220.

Dasgupta, P. and E. Maskin, 1986a, "The existence of equilibrium in discontinuous

economic games, I: Theory", Review of Economic Studies, 53, 1-26.

Dasgupta, P. and E. Maskin, 1986b, "The existence of equilibrium in discontinuous

economic games, II: Applications", Review of Economic Studies, 53, 27-41.

Dubey, P. and J. Geanakoplos, 2002, "Competitive pooling: Rothschild and Stiglitz

reconsidered", Quarterly Journal of Economics, 117, 1529-1570.

33



Engers, M. and L. Fernandez, 1987, "Market equilibrium with hidden knowledge

and self selection", Econometrica, 55, 425-439.

Hellwig, M., 1987, "Some recent developments in the theory of competition in

markets with adverse selection", European Economic Review, 31, 319-325.

Inderst, R. and A. Wambach, 2001, "Competitive insurance markets under adverse

selection and capacity constraints", European Economic Review, 45, 1981-1992.

Maynard Smith, J., 1974, "The theory of games and the evolution of animal con-

flicts", Journal of Theoretical Biology, 47, 209-221.

Maynard Smith, J., 1982, Evolution and the Theory of Games, Cambridge : Cam-

bridge University Press.

Maynard Smith, J. and G.R. Price, 1973, "The logic of animal conflict", Nature,

246, 15-18.

Mimra, W. and A. Wambach, 2011, "A game-theoretic foundation for the Wilson

equilibrium in competitive insurance markets with adverse selection", CESifo Working

Paper Series N◦ 3412.

Mimra, W. and A. Wambach, 2014, "New developments in the theory of adverse

selection in competitive insurance", Geneva Risk and Insurance Review, 39, 136-152.

Miyazaki, H., 1977, "The rat race and internal labor markets", Bell Journal of

Economics, 8, 394-418.

Netzer, N., and F. Scheuer, 2014, "A game theoretic foundation of competitive

equilibria with adverse selection", International Economic Review, 55:2, 399-422.

Picard, P. 2014, "Participating insurance contracts and the Rothschild-Stiglitz

equilibrium puzzle", Geneva Risk and Insurance Review, 39, 153-175.

Prescott, E.C. and R.M. Townsend, 1984, "Pareto optima and competitive equi-

libria with adverse selection and moral hazard", Econometrica, 52, 21-45.

Riley, J., 1979, "Informational equilibrium", Econometrica, 47, 331-359.

Rosenthal, R.W. and A. Weiss, 1984, "Mixed-strategy equilibrium in a market with

asymmetric information", Review of Economic Studies, 51, 333-342.

34



Rothschild, M. and J.E. Stiglitz, 1976, "Equilibrium in competitive insurance mar-

kets: an essay on the economics of imperfect information”, Quarterly Journal of Eco-

nomics, 90, 630-649.

Spence, M., 1978, "Product differentiation and performance in insurance markets",

Journal of Public Economics, 10, 427-447.

Weibull, J., 1995, Evolutionary Game Theory, M.I.T. Press, Cambridge, MA.

Wilson, C., 1977, "A model of insurance markets with incomplete information",

Journal of Economic Theory, 16, 167-207.

35



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 3 4 5 i 

Profit on type i 
n = 5 

Figure 1 


	Participating contracts - n types 5
	Cahier n° 2015-12_P. PICARD
	Participating contracts - n types 4
	Figure 1  -  Participating Contract n types
	Figures-Participating Contracts n types



