A. I. Caplan and D. Correa, The MSC: An Injury Drugstore, Cell Stem Cell, vol.9, issue.1, pp.11-15, 2011.
DOI : 10.1016/j.stem.2011.06.008

S. J. Engle and D. Puppala, Integrating Human Pluripotent Stem Cells into Drug Development, Cell Stem Cell, vol.12, issue.6, pp.699-712, 2013.
DOI : 10.1016/j.stem.2013.05.011

M. Dominici, K. L. Blanc, and I. Mueller, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, issue.4, pp.315-317, 2006.
DOI : 10.1080/14653240600855905

K. Takahashi, K. Tanabe, and M. Ohnuki, Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, issue.5, pp.861-872, 2007.
DOI : 10.1016/j.cell.2007.11.019

L. B. Hazeltine, J. A. Selekman, and S. P. Palecek, Engineering the human pluripotent stem cell microenvironment to direct cell fate, Biotechnology Advances, vol.31, issue.7, pp.1002-1019, 2013.
DOI : 10.1016/j.biotechadv.2013.03.002

J. Wagner, T. Kean, R. Young, J. E. Dennis, and A. I. Caplan, Optimizing mesenchymal stem cell-based therapeutics, Current Opinion in Biotechnology, vol.20, issue.5, pp.531-536, 2009.
DOI : 10.1016/j.copbio.2009.08.009

S. Sart, T. Ma, and Y. Li, Delivery, BioResearch Open Access, vol.3, issue.4, pp.137-149, 2014.
DOI : 10.1089/biores.2014.0012

T. Ishizuka, T. Hinata, and Y. Watanabe, Superoxide induced by a high-glucose concentration attenuates production of angiogenic growth factors in hypoxic mouse mesenchymal stem cells, Journal of Endocrinology, vol.208, issue.2, pp.147-159, 2011.
DOI : 10.1677/JOE-10-0305

W. Zhu, J. Chen, X. Cong, S. Hu, and X. Chen, Hypoxia and Serum Deprivation-Induced Apoptosis in Mesenchymal Stem Cells, Stem Cells, vol.37, issue.(suppl 1, pp.416-425, 2006.
DOI : 10.1634/stemcells.2005-0121

S. D. Barros, S. Dehez, and E. Arnaud, Aging-related Decrease of Human ASC Angiogenic Potential Is Reversed by Hypoxia Preconditioning Through ROS Production, Molecular Therapy, vol.21, issue.2, pp.399-408, 2013.
DOI : 10.1038/mt.2012.213

S. H. Lee, Y. J. Lee, and H. J. Han, Effect of arachidonic acid on hypoxia-induced IL-6 production in mouse ES cells: Involvement of MAPKs, NF-????B, and HIF-1????, Journal of Cellular Physiology, vol.333, issue.3, pp.574-585, 2010.
DOI : 10.1002/jcp.21973

S. Sart, S. N. Agathos, and Y. Li, Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors, Biochemical Engineering Journal, vol.84, pp.74-82, 2014.
DOI : 10.1016/j.bej.2014.01.005

J. F. Turrens, Mitochondrial formation of reactive oxygen species, The Journal of Physiology, vol.552, issue.2, pp.335-344, 2003.
DOI : 10.1113/jphysiol.2003.049478

M. Schmelter, B. Ateghang, S. Helmig, M. Wartenberg, and H. Sauer, Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation, The FASEB Journal, vol.20, issue.8, pp.1182-1184, 2006.
DOI : 10.1096/fj.05-4723fje

K. V. Tormos, E. Anso, and R. B. Hamanaka, Mitochondrial complex III ROS regulate adipocyte differentiation Nox1- dependent reactive oxygen generation is regulated by Rac1, Cell Metabolism Journal of Biological Chemistry, vol.14, issue.281 26, pp.537-544, 2006.

S. Varum, A. S. Rodrigues, and M. B. Moura, Energy Metabolism in Human Pluripotent Stem Cells and Their Differentiated Counterparts, PLoS ONE, vol.5, issue.6, 2011.
DOI : 10.1371/journal.pone.0020914.s003

C. Chen, Y. V. Shih, T. K. Kuo, O. K. Lee, and Y. Wei, Coordinated Changes of Mitochondrial Biogenesis and Antioxidant Enzymes During Osteogenic Differentiation of Human Mesenchymal Stem Cells, Stem Cells, vol.127, issue.4, pp.960-968, 2008.
DOI : 10.1634/stemcells.2007-0509

S. Dröse, Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1827, issue.5, pp.578-587, 2013.
DOI : 10.1016/j.bbabio.2013.01.004

S. L. Pereira, M. Grãos, and A. S. Rodrigues, Inhibition of Mitochondrial Complex III Blocks Neuronal Differentiation and Maintains Embryonic Stem Cell Pluripotency, PLoS ONE, vol.31, issue.12, 2013.
DOI : 10.1371/journal.pone.0082095.s002

A. Carrì-ere, T. G. Ebrahimian, and S. Dehez, Preconditioning by Mitochondrial Reactive Oxygen Species Improves the Proangiogenic Potential of Adipose-Derived Cells-Based Therapy, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.7, pp.1093-1099, 2009.
DOI : 10.1161/ATVBAHA.109.188318

W. Zhou, M. Choi, and D. Margineantu, HIF1?? induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition, The EMBO Journal, vol.6, issue.9, pp.2103-2116, 2012.
DOI : 10.1038/emboj.2012.71

A. D. Hofmann, M. Beyer, U. Krause-buchholz, M. Wobus, M. Bornhäuser et al., OXPHOS Supercomplexes as a Hallmark of the Mitochondrial Phenotype of Adipogenic Differentiated Human MSCs, PLoS ONE, vol.584, issue.4, 2012.
DOI : 10.1371/journal.pone.0035160.g004

C. L. Quinlan, I. V. Perevoshchikova, M. Hey-mogensen, A. L. Orr, and M. D. Brand, Sites of reactive oxygen species generation by mitochondria oxidizing different substrates, Redox Biology, vol.1, issue.1, pp.304-312, 2013.
DOI : 10.1016/j.redox.2013.04.005

G. C. Brown and V. Borutaite, There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells, Mitochondrion, vol.12, issue.1, pp.1-4, 2012.
DOI : 10.1016/j.mito.2011.02.001

S. Pervaiz, R. Taneja, and S. Ghaffari, Oxidative Stress Regulation of Stem and Progenitor Cells, Antioxidants & Redox Signaling, vol.11, issue.11, pp.2777-2789, 2009.
DOI : 10.1089/ars.2009.2804

I. A. Abreu and D. E. Cabelli, Superoxide dismutases???a review of the metal-associated mechanistic variations, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.2, pp.263-274, 2010.
DOI : 10.1016/j.bbapap.2009.11.005

V. Ribas, C. García-ruiz, and J. C. Fernández-checa, Glutathione and mitochondria, Frontiers in Pharmacology, vol.237, issue.14, 2014.
DOI : 10.1258/ebm.2011.011152

S. Lee, S. M. Kim, and R. T. Lee, Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance, Antioxidants & Redox Signaling, vol.18, issue.10, pp.1165-1207, 2013.
DOI : 10.1089/ars.2011.4322

J. Vlasits, C. Jakopitsch, M. Bernroitner, M. Zamocky, P. G. Furtmüller et al., Mechanisms of catalase activity of heme peroxidases, Archives of Biochemistry and Biophysics, vol.500, issue.1, pp.74-81, 2010.
DOI : 10.1016/j.abb.2010.04.018

T. Ishii and G. E. Mann, Redox status in mammalian cells and stem cells during culture in vitro: critical roles of, Nrf2 Oxidative Medicine and Cellular Longevity, vol.11

A. Valle-prieto and P. A. Conget, Human Mesenchymal Stem Cells Efficiently Manage Oxidative Stress, Stem Cells and Development, vol.19, issue.12, pp.1885-1893, 2010.
DOI : 10.1089/scd.2010.0093

R. Ebert, M. Ulmer, and S. Zeck, Selenium Supplementation Restores the Antioxidative Capacity and Prevents Cell Damage in Bone Marrow Stromal Cells In Vitro, Stem Cells, vol.78, issue.5, pp.1226-1235, 2006.
DOI : 10.1634/stemcells.2005-0117

M. Takarada-iemata, T. Takarada, Y. Nakamura, E. Nakatani, O. Hori et al., Glutamate preferentially suppresses osteoblastogenesis than adipogenesis through the cystine/glutamate antiporter in mesenchymal stem cells, Journal of Cellular Physiology, vol.93, issue.3, pp.652-665, 2011.
DOI : 10.1002/jcp.22390

M. Iemata, T. Takarada, E. Hinoi, H. Taniura, and Y. Yoneda, Suppression by glutamate of proliferative activity through glutathione depletion mediated by the cystine/glutamate antiporter in mesenchymal C3H10T1/2 stem cells, Journal of Cellular Physiology, vol.3, issue.3, pp.721-729, 2007.
DOI : 10.1002/jcp.21145

P. Loseva, S. Kostyuk, and E. Malinovskaya, Extracellular DNA oxidation stimulates activation of NRF2 and reduces the production of ROS in human mesenchymal stem cells, Expert Opinion on Biological Therapy, vol.7, issue.1, pp.85-97, 2012.
DOI : 10.1006/bbrc.2000.4170

URL : https://hal.archives-ouvertes.fr/hal-00760317

G. Saretzki, L. Armstrong, A. Leake, M. Lako, and T. Von-zglinicki, Stress Defense in Murine Embryonic Stem Cells Is Superior to That of Various Differentiated Murine Cells, Stem Cells, vol.22, issue.6, pp.962-971, 2004.
DOI : 10.1634/stemcells.22-6-962

Q. Wang, Z. Liu, and J. Wang, Glutathione peroxidase-1 is required for self-renewal of murine embryonic stem cells, Biochemical and Biophysical Research Communications, vol.448, issue.4, pp.454-460, 2014.
DOI : 10.1016/j.bbrc.2014.04.139

G. Saretzki, T. Walter, and S. Atkinson, Downregulation of Multiple Stress Defense Mechanisms During Differentiation of Human Embryonic Stem Cells, Stem Cells, vol.12, issue.2, pp.455-464, 2008.
DOI : 10.1634/stemcells.2007-0628

J. Jang, Y. Wang, H. Kim, M. A. Lalli, and K. S. Kosik, Nrf2, a Regulator of the Proteasome, Controls Self-Renewal and Pluripotency in Human Embryonic Stem Cells, STEM CELLS, vol.38, issue.10, pp.2616-2625, 2014.
DOI : 10.1002/stem.1764

Z. Huang, J. Li, S. Zhang, and X. Zhang, Inorganic arsenic modulates the expression of selenoproteins in mouse embryonic stem cell, Toxicology Letters, vol.187, issue.2, pp.69-76, 2009.
DOI : 10.1016/j.toxlet.2009.01.024

P. D. Ray, B. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cellular Signalling, vol.24, issue.5, pp.981-990, 2012.
DOI : 10.1016/j.cellsig.2012.01.008

J. H. Kim, S. Song, S. G. Park, S. U. Song, Y. Xia et al., Primary Involvement of NADPH Oxidase 4 in Hypoxia-Induced Generation of Reactive Oxygen Species in Adipose-Derived Stem Cells, Stem Cells and Development, vol.21, issue.12, pp.2212-2221, 2012.
DOI : 10.1089/scd.2011.0561

C. Busletta, E. Novo, L. Valfrè, and D. Bonzo, Dissection of the Biphasic Nature of Hypoxia-Induced Motogenic Action in Bone Marrow-Derived Human Mesenchymal Stem Cells, STEM CELLS, vol.29, issue.suppl 1, pp.952-963, 2011.
DOI : 10.1002/stem.642

S. Li, Y. Deng, J. Feng, and W. Ye, Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis, Cell Biology International, vol.33, issue.3, pp.411-418, 2009.
DOI : 10.1016/j.cellbi.2009.01.012

H. Huang, H. J. Kim, and E. Chang, IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling, Cell Death and Differentiation, vol.179, issue.10, pp.1332-1343, 2009.
DOI : 10.1038/sj.emboj.7601430

J. H. Kim, S. G. Park, S. Y. Song, J. K. Kim, and J. Sung, Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2, Cell Death and Disease, vol.88, issue.4, 2013.
DOI : 10.1016/j.jdermsci.2007.05.018

K. Yang, X. Q. Wang, and Y. S. He, Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells, Cardiovascular Diabetology, vol.9, issue.1, 2010.
DOI : 10.1186/1475-2840-9-66

E. C. Chan, F. Jiang, H. M. Peshavariya, and G. J. Dusting, Regulation of cell proliferation by NADPH oxidase-mediated signaling: Potential roles in tissue repair, regenerative medicine and tissue engineering, Pharmacology & Therapeutics, vol.122, issue.2, pp.97-108, 2009.
DOI : 10.1016/j.pharmthera.2009.02.005

A. Y. Jeong, M. Y. Lee, S. H. Lee, J. H. Park, and H. J. Han, PPAR?? agonist-mediated ROS stimulates mouse embryonic stem cell proliferation through cooperation of p38 MAPK and Wnt/??-catenin, Cell Cycle, vol.8, issue.4, pp.611-619, 2009.
DOI : 10.4161/cc.8.4.7752

T. Li and E. Marbán, Physiological Levels of Reactive Oxygen Species are Required to Maintain Genomic Stability in Stem Cells, STEM CELLS, vol.28, issue.7, pp.1178-1185, 2010.
DOI : 10.1002/stem.438

A. Finkensieper, M. M. Bekhite, and H. Fischer, Antibacterial Capacity of Differentiated Murine Embryonic Stem Cells During Defined In Vitro Inflammatory Conditions, Stem Cells and Development, vol.22, issue.14, pp.1977-1990, 2013.
DOI : 10.1089/scd.2012.0528

J. S. Teodoro, A. P. Rolo, and C. M. Palmeira, The NAD ratio redox paradox: why does too much reductive power cause oxidative stress?, Toxicology Mechanisms and Methods, vol.52, issue.5, pp.297-302, 2013.
DOI : 10.1172/JCI119392

M. Kim, C. Kim, Y. S. Choi, C. Park, and Y. Suh, Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: Implication to age-associated bone diseases and defects, Mechanisms of Ageing and Development, vol.133, issue.5, pp.215-225, 2012.
DOI : 10.1016/j.mad.2012.03.014

S. Kume, S. Kato, and S. Yamagishi, Advanced Glycation End-Products Attenuate Human Mesenchymal Stem Cells and Prevent Cognate Differentiation Into Adipose Tissue, Cartilage, and Bone, Journal of Bone and Mineral Research, vol.143, issue.144, pp.1647-1658, 2005.
DOI : 10.1359/JBMR.050514

S. Sart, T. Ma, and Y. Li, Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation, Biotechnology Progress, vol.10, issue.1, pp.143-153, 2013.
DOI : 10.1002/btpr.1653

M. L. Lan, M. M. Acharya, and K. K. Tran, Characterizing the Radioresponse of Pluripotent and Multipotent Human Stem Cells, PLoS ONE, vol.20, issue.12, 2012.
DOI : 10.1371/journal.pone.0050048.g006

M. Rodrigues, O. Turner, D. Stolz, L. G. Griffith, and A. Wells, Production of Reactive Oxygen Species by Multipotent Stromal Cells/Mesenchymal Stem Cells Upon Exposure to Fas Ligand, Cell Transplantation, vol.21, issue.10, pp.2171-2187, 2012.
DOI : 10.3727/096368912X639035

H. Song, M. J. Cha, and B. W. Song, Reactive Oxygen Species Inhibit Adhesion of Mesenchymal Stem Cells Implanted into Ischemic Myocardium via Interference of Focal Adhesion Complex, STEM CELLS, vol.28, issue.3, pp.555-563, 2010.
DOI : 10.1002/stem.302

A. Borodkina, A. Shatrova, P. Abushik, N. Nikolsky, and E. Burova, Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells, Aging, vol.6, issue.6, pp.481-495, 2014.
DOI : 10.18632/aging.100673

M. Harbo, S. Koelvraa, N. Serakinci, and L. Bendix, Telomere dynamics in human mesenchymal stem cells after exposure to 12

Y. Guo, S. Chakraborty, S. S. Rajan, R. Wang, and F. Huang, Effects of Oxidative Stress on Mouse Embryonic Stem Cell Proliferation, Apoptosis, Senescence, and Self-Renewal, Stem Cells and Development, vol.19, issue.9, pp.1321-1331, 2010.
DOI : 10.1089/scd.2009.0313

J. Lee, M. Lee, B. Moon, S. H. Shim, A. J. Fornace-jr et al., Senescent Growth Arrest in Mesenchymal Stem Cells Is Bypassed by Wip1-Mediated Downregulation of Intrinsic Stress Signaling Pathways, Stem Cells, vol.67, issue.8, pp.1963-1975, 2009.
DOI : 10.1002/stem.121

S. V. Boregowda, V. Krishnappa, and J. W. Chambers, Atmospheric Oxygen Inhibits Growth and Differentiation of Marrow-Derived Mouse Mesenchymal Stem Cells via a p53-Dependent Mechanism: Implications for Long-Term Culture Expansion, STEM CELLS, vol.67, issue.suppl 1, pp.975-987, 2012.
DOI : 10.1002/stem.1069

T. D. Ngoc, Y. Son, and S. Lim, Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways, Toxicology and Applied Pharmacology, vol.259, issue.3, pp.329-337, 2012.
DOI : 10.1016/j.taap.2012.01.010

F. W. Wang, Z. Wang, and Y. M. Zhang, Protective effect of melatonin on bone marrow mesenchymal stem cells against hydrogen peroxide-induced apoptosis in vitro, Journal of Cellular Biochemistry, vol.8, issue.10, pp.2346-2355, 2013.
DOI : 10.1002/jcb.24582

C. Wu and S. B. Bratton, Regulation of the Intrinsic Apoptosis Pathway by Reactive Oxygen Species, Antioxidants & Redox Signaling, vol.19, issue.6, pp.546-558, 2013.
DOI : 10.1089/ars.2012.4905

B. R. Imhoff and J. M. Hansen, Abstract, Cellular and Molecular Biology Letters, vol.16, issue.1, pp.149-161, 2011.
DOI : 10.2478/s11658-010-0042-0

J. H. Kim, S. Kim, and S. Y. Song, Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation, Cell Biology International, vol.30, issue.1, pp.32-40, 2014.
DOI : 10.1002/cbin.10170

K. Schröder, K. Wandzioch, I. Helmcke, and R. P. Brandes, Nox4 Acts as a Switch Between Differentiation and Proliferation in Preadipocytes, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.2, pp.239-245, 2009.
DOI : 10.1161/ATVBAHA.108.174219

M. Higuchi, G. J. Dusting, and H. Peshavariya, Differentiation of Human Adipose-Derived Stem Cells into Fat Involves Reactive Oxygen Species and Forkhead Box O1 Mediated Upregulation of Antioxidant Enzymes, Stem Cells and Development, vol.22, issue.6, pp.878-888, 2013.
DOI : 10.1089/scd.2012.0306

N. Puri, K. Sodhi, and M. Haarstad, Heme induced oxidative stress attenuates sirtuin1 and enhances adipogenesis in mesenchymal stem cells and mouse pre-adipocytes, Journal of Cellular Biochemistry, vol.96, issue.12, pp.1926-1935, 2012.
DOI : 10.1002/jcb.24061

L. Qiao and J. Shao, SIRT1 Regulates Adiponectin Gene Expression through Foxo1-C/Enhancer-binding Protein ?? Transcriptional Complex, Journal of Biological Chemistry, vol.281, issue.52, pp.39915-39924, 2006.
DOI : 10.1074/jbc.M607215200

E. Jing, S. Gesta, and C. R. Kahn, SIRT2 Regulates Adipocyte Differentiation through FoxO1 Acetylation/Deacetylation, Cell Metabolism, vol.6, issue.2, pp.105-114, 2007.
DOI : 10.1016/j.cmet.2007.07.003

D. Zhang, Y. Pan, and C. Zhang, Wnt/??-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production, Molecular and Cellular Biochemistry, vol.29, issue.1, pp.13-20, 2013.
DOI : 10.1007/s11010-012-1498-1

C. C. Teixeira, Y. Liu, L. M. Thant, J. Pang, G. Palmer et al., Foxo1, a Novel Regulator of Osteoblast Differentiation and Skeletogenesis, Journal of Biological Chemistry, vol.285, issue.40, pp.31055-31065, 2010.
DOI : 10.1074/jbc.M109.079962

P. Simic, K. Zainabadi, and E. Bell, SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating ??-catenin, EMBO Molecular Medicine, vol.7, issue.3, pp.430-440, 2013.
DOI : 10.1002/emmm.201201606

N. Sun, L. Yang, and Y. Li, Effect of advanced oxidation protein products on the proliferation and osteogenic differentiation of rat mesenchymal stem cells, International Journal of Molecular Medicine, vol.32, issue.2, pp.485-491, 2013.

S. K. Ki, W. C. Hae, E. Y. Hee, and Y. K. Ick, Reactive oxygen species generated by NADPH oxidase 2 and 4 are required for chondrogenic differentiation, The Journal of Biological Chemistry, vol.285, issue.51, pp.40294-40302, 2010.

C. Buhrmann, F. Busch, P. Shayan, and M. Shakibaei, Sirtuin-1 (SIRT1) Is Required for Promoting Chondrogenic Differentiation of Mesenchymal Stem Cells, Journal of Biological Chemistry, vol.289, issue.32, pp.22048-22062, 2014.
DOI : 10.1074/jbc.M114.568790

H. H. Lee, C. C. Chang, and M. J. Shieh, Hypoxia Enhances Chondrogenesis and Prevents Terminal Differentiation through PI3K/Akt/FoxO Dependent Anti-Apoptotic Effect, Scientific Reports, vol.7, 2013.
DOI : 10.1038/srep02683

Y. M. Cho, S. Kwon, and Y. K. Pak, Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells, Biochemical and Biophysical Research Communications, vol.348, issue.4, pp.1472-1478, 2006.
DOI : 10.1016/j.bbrc.2006.08.020

S. Varum, O. Mom?ilovi´mom?ilovi´c, C. Castro, A. Ben-yehudah, J. Ramalho-santos et al., Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain, Stem Cell Research, vol.3, issue.2-3, pp.142-156, 2009.
DOI : 10.1016/j.scr.2009.07.002

Y. Yao, Y. Lu, and W. Chen, Cobalt and Nickel Stabilize Stem Cell Transcription Factor OCT4 through Modulating Its Sumoylation and Ubiquitination, PLoS ONE, vol.21, issue.1, 2014.
DOI : 10.1371/journal.pone.0086620.g007

Z. Xu, L. Zhang, X. Fei, X. Yi, W. Li et al., The miR-29b???Sirt1 axis regulates self-renewal of mouse embryonic stem cells in response to reactive oxygen species, Cellular Signalling, vol.26, issue.7, pp.1500-1505, 2014.
DOI : 10.1016/j.cellsig.2014.03.010

X. Zhang, S. Yalcin, and D. Lee, FOXO1 is an essential regulator of pluripotency in human embryonic stem cells, Nature Cell Biology, vol.284, issue.9, pp.1092-1101, 2011.
DOI : 10.1242/dev.018200

A. Brunet, L. B. Sweeney, and J. F. Sturgill, Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase, Science, vol.303, issue.5666, pp.2011-2015, 2004.
DOI : 10.1126/science.1094637

S. Kim, Y. Park, and J. Kim, Dominant Role of Peroxiredoxin/JNK Axis in Stemness Regulation During Neurogenesis from Embryonic Stem Cells, STEM CELLS, vol.28, issue.4, pp.998-1011, 2014.
DOI : 10.1002/stem.1593

L. Sandieson, J. T. Hwang, and G. M. Kelly, Redox Regulation of Canonical Wnt Signaling Affects Extraembryonic Endoderm Formation, Stem Cells and Development, vol.23, issue.10, pp.1037-1049, 2014.
DOI : 10.1089/scd.2014.0010

J. W. Wen, J. T. Hwang, and G. M. Kelly, Reactive oxygen species and Wnt signalling crosstalk patterns mouse extraembryonic endoderm, Cellular Signalling, vol.24, issue.12, pp.2337-2348, 2012.
DOI : 10.1016/j.cellsig.2012.07.024

A. Ji, S. Ku, and M. S. Cho, Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage, Experimental and Molecular Medicine, vol.39, issue.3, pp.175-186, 2010.
DOI : 10.3858/emm.2010.42.3.018

J. Li, M. Stouffs, and L. Serrander, The NADPH Oxidase NOX4 Drives Cardiac Differentiation: Role in Regulating Cardiac Transcription Factors and MAP Kinase Activation, Molecular Biology of the Cell, vol.17, issue.9, pp.3978-3988, 2006.
DOI : 10.1091/mbc.E05-06-0532

L. Ding, X. Liang, Y. Hu, D. Zhu, and Y. Lou, Involvement of p38MAPK and Reactive Oxygen Species in Icariin-Induced Cardiomyocyte Differentiation of Murine Embryonic Stem Cells In Vitro, Stem Cells and Development, vol.17, issue.4, pp.751-760, 2008.
DOI : 10.1089/scd.2007.0206

L. Zhou, B. Zheng, L. Tang, Y. Huang, and D. Zhu, Involvement of PIKE in icariin induced cardiomyocyte differentiation from murine embryonic stem cells, Pharmazie, vol.69, issue.3, pp.198-202, 2014.

Q. Xiao, Z. Luo, A. E. Pepe, A. Margariti, L. Zeng et al., Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2, AJP: Cell Physiology, vol.296, issue.4, pp.711-723, 2009.
DOI : 10.1152/ajpcell.00442.2008

L. Armstrong, K. Tilgner, and G. Saretzki, Human Induced Pluripotent Stem Cell Lines Show Stress Defense Mechanisms and Mitochondrial Regulation Similar to Those of Human Embryonic Stem Cells, STEM CELLS, vol.69, issue.19, pp.661-673, 2010.
DOI : 10.1002/stem.307

A. Prigione, B. Fauler, R. Lurz, H. Lehrach, and J. Adjaye, The Senescence-Related Mitochondrial/Oxidative Stress Pathway is Repressed in Human Induced Pluripotent Stem Cells, STEM CELLS, vol.461, issue.Spec No. 2, pp.721-733, 2010.
DOI : 10.1002/stem.404

M. A. Esteban, T. Wang, and B. Qin, Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells, Cell Stem Cell, vol.6, issue.1, pp.71-79, 2010.
DOI : 10.1016/j.stem.2009.12.001

J. Ji, V. Sharma, and S. Qi, Antioxidant Supplementation Reduces Genomic Aberrations in Human Induced Pluripotent Stem Cells, Stem Cell Reports, vol.2, issue.1, pp.44-51, 2014.
DOI : 10.1016/j.stemcr.2013.11.004

N. Mah, Y. Wang, and M. Liao, Molecular Insights into Reprogramming-Initiation Events Mediated by the OSKM Gene Regulatory Network, PLoS ONE, vol.3, issue.Pt 7, 2011.
DOI : 10.1371/journal.pone.0024351.s010

E. Perales-clemente, C. D. Folmes, and A. Terzic, Metabolic Regulation of Redox Status in Stem Cells, Antioxidants & Redox Signaling, vol.21, issue.11, pp.1648-1659, 2014.
DOI : 10.1089/ars.2014.6000

T. Lo, J. H. Ho, M. Yang, and O. K. Lee, Glucose Reduction Prevents Replicative Senescence and Increases Mitochondrial Respiration in Human Mesenchymal Stem Cells, Cell Transplantation, vol.20, issue.6, pp.813-825, 2011.
DOI : 10.3727/096368910X539100

Y. H. Kim, J. S. Heo, and H. J. Han, High glucose increase cell cycle regulatory proteins level of mouse embryonic stem cells via PI3-K/Akt and MAPKs signal pathways, Journal of Cellular Physiology, vol.253, issue.1, pp.94-102, 2006.
DOI : 10.1002/jcp.20706

L. B. Buravkova, Y. V. Rylova, and E. R. Andreeva, Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells, BBA)?General Subjects, pp.4418-4425, 2013.
DOI : 10.1016/j.bbagen.2013.05.029

C. E. Forristal, D. R. Christensen, and F. E. Chinnery, Environmental Oxygen Tension Regulates the Energy Metabolism and Self-Renewal of Human Embryonic Stem Cells, PLoS ONE, vol.350, issue.5, 2013.
DOI : 10.1371/journal.pone.0062507.s001

M. Calvani, G. Comito, E. Giannoni, P. Chiarugi-]-e, J. Närvä et al., Timedependent stabilization of hypoxia inducible factor-1alpha by different intracellular sources of reactive oxygen species, Continuous hypoxic culturing of human embryonic stem cells enhances SSEA-3 and MYC levels, 2012.

J. Mathieu, W. Zhou, and Y. Xing, Hypoxia-Inducible Factors Have Distinct and Stage-Specific Roles during Reprogramming of Human Cells to Pluripotency, Cell Stem Cell, vol.14, issue.5, pp.592-605, 2014.
DOI : 10.1016/j.stem.2014.02.012

M. Fukata, M. Nakagawa, and K. Kaibuchi, Roles of Rho-family GTPases in cell polarisation and directional migration, Current Opinion in Cell Biology, vol.15, issue.5, pp.590-597, 2003.
DOI : 10.1016/S0955-0674(03)00097-8

P. M. Duquette and N. Lamarche-vane, Rho GTPases in embryonic development, Small GTPases, vol.70, issue.2, 2014.
DOI : 10.1016/j.ajhg.2011.07.009

P. Kleniewska, A. Piechota, B. Skibska, and A. Gor?acagor?aca, The NADPH Oxidase Family and its Inhibitors, Archivum Immunologiae et Therapiae Experimentalis, vol.281, issue.3, pp.277-294, 2012.
DOI : 10.1007/s00005-012-0176-z

S. Sart, A. Errachid, Y. Schneider, and S. N. Agathos, Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors, Journal of Tissue Engineering and Regenerative Medicine, vol.467, issue.12, pp.537-551, 2013.
DOI : 10.1002/term.545

A. R. Cameron, J. E. Frith, G. A. Gomez, A. S. Yap, and J. J. Cooper-white, The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells, Biomaterials, vol.35, issue.6, pp.1857-1868, 2014.
DOI : 10.1016/j.biomaterials.2013.11.023

H. N. Suh and H. J. Han, Laminin regulates mouse embryonic stem cell migration: involvement of Epac1/Rap1 and Rac1/cdc42, AJP: Cell Physiology, vol.298, issue.5, pp.1159-1169, 2010.
DOI : 10.1152/ajpcell.00496.2009

L. Gao, R. Mcbeath, and C. S. Chen, Stem cell shape regulates a chondrogenic versus myogenic fate through rac1 and Ncadherin, Stem Cells, vol.28, issue.3, pp.564-572, 2010.

L. Mattias, A. Haque, N. Adnan, and T. Akaike, The effects of artificial E-cadherin matrix-induced embryonic stem cell scattering on paxillin and RhoA activation via ??-catenin, Biomaterials, vol.35, issue.6, pp.1797-1806, 2014.
DOI : 10.1016/j.biomaterials.2013.11.042

J. S. Heo and J. Lee, ??-catenin mediates cyclic strain-stimulated cardiomyogenesis in mouse embryonic stem cells through ROS-dependent and integrin-mediated PI3K/Akt pathways, Journal of Cellular Biochemistry, vol.97, issue.7, pp.1880-1889, 2011.
DOI : 10.1002/jcb.23108

R. Li, B. Chen, G. Wang, B. Yu, G. Ren et al., Effects of mechanical strain on oxygen free radical system in bone marrow mesenchymal stem cells from children, Injury, vol.42, issue.8, pp.753-757, 2011.
DOI : 10.1016/j.injury.2010.11.015

Y. Sun, W. Li, and Z. Lu, Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix, The FASEB Journal, vol.25, issue.5, pp.1474-1485, 2011.
DOI : 10.1096/fj.10-161497

G. Fan, L. Wen, and M. Li, Isolation of mouse mesenchymal stem cells with normal ploidy from bone marrows by reducing oxidative stress in combination with extracellular matrix, BMC Cell Biology, vol.12, issue.1, 2011.
DOI : 10.1038/nature05934

J. Egea, A. G. García, J. Verges, E. Montell, and M. G. López, Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans, Osteoarthritis and Cartilage, vol.18, issue.1, pp.24-27, 2010.
DOI : 10.1016/j.joca.2010.01.016

M. Pei, Y. Zhang, J. Li, and D. Chen, Antioxidation of Decellularized Stem Cell Matrix Promotes Human Synovium-Derived Stem Cell-Based Chondrogenesis, Stem Cells and Development, vol.22, issue.6, pp.889-900, 2013.
DOI : 10.1089/scd.2012.0495

S. P. Yun, S. Lee, and S. Y. Oh, Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells, British Journal of Pharmacology, vol.104, issue.13, pp.3283-3297, 2014.
DOI : 10.1111/bph.12681

S. Sart, A. Tsai, Y. Li, and T. Ma, Three-Dimensional Aggregates of Mesenchymal Stem Cells: Cellular Mechanisms, Biological Properties, and Applications, Tissue Engineering Part B: Reviews, vol.20, issue.5, pp.365-380, 2014.
DOI : 10.1089/ten.teb.2013.0537

Q. Zhang, A. L. Nguyen, and S. Shi, Three-Dimensional Spheroid Culture of Human Gingiva-Derived Mesenchymal Stem Cells Enhances Mitigation of Chemotherapy-Induced Oral Mucositis, Stem Cells and Development, vol.21, issue.6, pp.937-947, 2012.
DOI : 10.1089/scd.2011.0252

B. Kalyanaraman, V. Darley-usmar, and K. J. Davies, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations, Free Radical Biology and Medicine, vol.52, issue.1, pp.1-6, 2012.
DOI : 10.1016/j.freeradbiomed.2011.09.030