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Abstract The breaking of internal tides is believed to provide a large part of the power needed to mix
the abyssal ocean and sustain the meridional overturning circulation. Both the fraction of internal tide
energy that is dissipated locally and the resulting vertical mixing distribution are crucial for the ocean state,
but remain poorly quanti“ed. Here we present a “rst worldwide estimate of mixing due to internal tides
generated at small-scale abyssal hills. Our estimate is based on linear wave theory, a nonlinear parameter-
ization for wave breaking and uses quasi-global small-scale abyssal hill bathymetry, strati“cation, and tidal
data. We show that a large fraction of abyssal-hill generated internal tide energy is locally dissipated over
mid-ocean ridges in the Southern Hemisphere. Signi“cant dissipation occurs above ridge crests, and, upon
rescaling by the local strati“cation, follows a monotonic exponential decay with height off the bottom, with
a nonuniform decay scale. We however show that a substantial part of the dissipation occurs over the
smoother ”anks of mid-ocean ridges, and exhibits a middepth maximum due to the interplay of wave
amplitude with strati“cation. We link the three-dimensional map of dissipation to abyssal hills characteris-
tics, ocean strati“cation, and tidal forcing, and discuss its potential implementation in time-evolving param-
eterizations for global climate models. Current tidal parameterizations only account for waves generated at
large-scale satellite-resolved bathymetry. Our results suggest that the presence of small-scale, mostly unre-
solved abyssal hills could signi“cantly enhance the spatial inhomogeneity of tidal mixing, particularly above
mid-ocean ridges in the Southern Hemisphere.

1. Introduction

The ocean circulation would look very different without turbulent diapycnal mixing, i.e., mixing across density
surfaces, in the ocean interior. Both the horizontal and vertical distribution of diapycnal mixing have been
shown to impact various aspects of the large-scale ocean circulation in numerous studies, ranging from idealized
simpli“ed models [Samelson, 1998;Munday et al., 2011;Nikurashin and Vallis, 2012] to comprehensive climate
models [Saenko and Merry“eld, 2005;Jayne, 2009;Canuto et al., 2010;Melet et al., 2013a, 2014]. However, turbu-
lent mixing in the ocean interior is poorly represented in present ocean andclimate models, and uncertainties
in current parameterizations of mixing propagate through the coupled climate system [Flato et al., 2013].

This work is part of an ongoing effort to improve parameterizations of tidal mixing in global climate models.
As much as 1 TW of tidal energy could be available for dissipation in the deep ocean [Munk and Wunsch,
1998;Egbert and Ray, 2000;Wunsch, 2000;Wunsch and Ferrari, 2004]. The deep-ocean mixing is primarily
sustained by breaking internal waves, generated by the interaction of the barotropic tide with the rough
sea”oor topography. These waves, calledinternal tides(seeGarrett and Kunze[2007] for a review), extract
energy from the barotropic tide, transport it as they radiate away from the sea”oor, and dissipate this
energy where and when they become unstable and break [Staquet and Sommeria, 2002]. The energy loss
accompanying wave breaking partly sustains the diapycnal mixing that is ultimately relevant to the ocean
global circulation. Consistently, high levels of diapycnal mixing have been observed above rough bathyme-
try in the deep ocean [Polzin et al., 1997;Ledwell et al., 2000;Kunze et al., 2006;Whalen et al., 2012], but its
full three-dimensional (3-D) distribution is still unknown.

In recent climate models, the dissipation of internal tides is often parameterized using the semiempirical
scheme formulated bySt. Laurent et al. [2002]. In this parameterization, the energy ”ux into internal tidesE0

is consistent with linear wave theory. It is calculated using available bathymetric data set, based on
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altimetric observations and sparse acoustic soundings. It therefore only account for waves generated at
large-scale satellite-resolved bathymetry. The local dissipation� is then prescribed empirically by consider-
ing that a fraction of the energy ”ux dissipates near the generation site and by specifying a vertical pro“le
of dissipation:

� ðx; y; zÞ � q E0ðx; yÞFðzÞ; (1)

where (x, y) denotes the horizontal longitude-latitude coordinates,z height above bottom, andE0ðx; yÞthe
bottom (z5 0) upward energy ”ux converted from the barotropic tide into the waves.q is the fraction of
energy dissipated locally near the wave generation site, following the vertical distributionFwith

ÐH
0 FðzÞdz5 1

(H(x, y) being the local ocean depth).Fis typically assumed to be exponentially decaying with a “xed, uniform
decay scale. To match observations in the Brazil basin and Hawaiian ridge, a vertical decay scale in the range
3002 500 m is usually chosen [St. Laurent and Nash, 2004]. The fraction of local dissipationq is set to a con-
stant value of 30% to match observations in the Brazil Basin. While both the fraction and vertical decay scale
are held constant in the parameterization, they most likely vary spatially and temporally in the ocean
[St. Laurent and Nash, 2004;Waterhouse et al., 2014].

Sparse observations highlight the spatial heterogeneity of the fraction of tidal energy that is dissipated
locally. Large abrupt ridges, such as the Hawaiian ridge, generate energetic internal tides that mostly radiate
away, up to thousands of kilometers from their generation site across ocean basins [St. Laurent and Nash,
2004;Zhao et al., 2012]. A small fraction of local dissipation has been observed over the Mendocino Escarp-
ment (as small asq5 1%) [Althaus et al., 2003] and over the steep Hawaiian ridge (q5 20%) [Klymak et al.,
2006;Carter et al., 2008]. A fraction of local dissipation ofq5 102 30% has been inferred from observations
in the Drake Passage [Sheen et al., 2013], the Kerguelen Plateau [Waterman et al., 2013], and the East Paci“c
rise [Thurnherr and St. Laurent, 2011] (also seeWaterhouse et al. [2014] for a compilation of vertical mixing
observations). A larger fraction of local dissipation,q5 40%, has been inferred from observations in the East
China Sea [Niwa and Hibiya, 2004] and at the Luzon Strait [Alford et al., 2011]. Rougher small-scale bathyme-
tries (scales ofOð12 10 km)) generate smaller-scale waves that are more prone to instabilities and local dis-
sipation. A large fraction of local dissipation has consistently been suggested over the rough Brazil Basin,
although the value of that fraction differs in the literature as different areas of the Brazil Basin are consid-
ered and the de“nition of local dissipation differs between the studies. Considering a small subset of the
Brazil Basin,Zilberman et al. [2009] suggestedq5 50%, while Polzin[2004] suggested that internal tides are
entirely dissipated (q5 100%) within a few tens of kilometers from their generation site in the eastern Brazil
Basin.

Therefore, observations strongly suggest that the fraction of local dissipation is impacted by the small-scale
topographic roughness. It has recently been noted that the contribution from small-scale, mostly unre-
solved bathymetry may be particularly important over mid-ocean ridges [Melet et al., 2013b]. However cur-
rent parameterizations of tidal mixing (equation (1)) only account for waves generated at large-scale
satellite-resolved bathymetry [e.g.,St. Laurent et al., 2002;Simmons et al., 2004;Jayne, 2009]. Here and in the
rest of the paper,small-scaleabyssal hills (or simply abyssal hills) refer to the bathymetry not resolved by
satellite altimetry, belowO(10) km [Macdonald et al., 1996;Goff et al., 1996;Goff and Arbic, 2010], whereas
large-scalebathymetry refers to large features resolved in satellite data [Smith and Sandwell, 1997]. The “ne
resolution required to accurately represent the abyssal hill statistics and the large domains required to
resolve large-scale bathymetry prevent us from accounting for both, and this paper focuses on small-scale
internal tides. It is unknown how abyssal hills contribute to tidal mixing, and this is the question addressed
in this study. Of particular interest is whether the spatial distribution of tidal mixing induced by abyssal hills
is highly inhomogeneous, since inhomogeneous mixing is known to impact the large-scale ocean circula-
tion. More precisely, the questions that we address are:

1. Can we derive a global map of the fraction of local dissipation of internal tides generated at abyssal hills?

2. What is the associated vertical pro“le of dissipation? How does it compare to the exponential and power
law decays used in parameterizations of dissipation from large-scale topography (equation (1))?

Although direct observations of abyssal hills are not available on a global scale, it is possible to predict the
statistical properties of abyssal hill roughness world-wide via the ridge orientation, ridge spreading rate,
and sediment thickness [Goff and Arbic, 2010].Globallyabyssal hills contribute about 10% of the total tidal
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energy, but locally the energy carried by the small-scale waves can be as large as the energy from large-
scale waves [Melet et al., 2013b]. This is typically the case at mid-ocean ridges, where abyssal hill roughness
is large and where strong bottom mixing levels have been observed [Polzin et al., 1997]. In those regions,
we expect tidal mixing to be dominated by small-scale abyssal hills, and therefore our results to be close to
measured dissipation rates. However, in other parts of the ocean, where abyssal hills are weak or absent, we
expect tidal mixing to be dominated by large-scale bathymetry, and therefore our results to largely under-
estimate the actual dissipation rates. Qualitatively, we believe that the inhomogeneity of the 3-D tidal dissi-
pation and mixing that this work suggests is robust. The addition of the small-scale induced mixing
computed here to the large-scale one in current tidal mixing parameterizations (equations (12) and (13)) is
discussed in section 5.

Small-scale waves are subject to nonlinear wave-wave interactions, or to fast instabilities such as convec-
tive and shear instabilities [St. Laurent and Garrett, 2002;Polzin, 2004;Muller and B uhler, 2009, hereafter
MB09;Polzin, 2009, hereafter P09;Nikurashin and Legg, 2011, hereafter NL11]. The present study aims at
estimating the dissipation of internal tides due to convective instabilities (shear instabilities are also
brie”y mentioned in section 2.2 and supporting information B). These two instabilities have the advant-
age of being more easily parameterizable (see MB09 and next paragraph), but this implies that the dissi-
pation obtained underestimates the actual one, since we neglect wave-wave nonlinear interactions
which are also believed to play an important role in tidal dissipation. Nonetheless, we believe that study-
ing the dissipation of internal tides due to convective instabilities provides one piece of the puzzle with
valuable insight into the spatial inhomogeneity of the mixing due to internal tides, and how it may be
in”uenced by geological features such as mid-ocean ridges. Our focus is on predicting the amount and
distribution of wave energy radiated at abyssal hills which is dissipated locally near the wave generation
site. The remaining fraction of wave energy is assumed to radiate away and its fate is beyond the scope
of this study.

Observations of tidal mixing in the abyssal oceanrequire “ne-scale measurements at depth, and are
therefore dif“cult and expensive to obtain. Numerical simulations of internal tides are also challenging,
since high resolutions are required to resolve wave breaking and the concomitant turbulence and mix-
ing. These can therefore only be done regionally and in idealized settings. To overcome these limita-
tions, we use theory and a semianalytical tool calledwave saturationto quantify the direct breaking of
internal tides through convective instabilities. This tool, originally introducedin MB09, is computation-
ally ef“cient and simple enough to be used globallyto derive a 3-D map of the dissipation of internal
tide energy. The wave saturation is based on the linear wave solution, and on a heuristic model for wave
breaking. We extend the work of MB09 to allow for nonconstant strati“cation. An empirical correction
for supercritical bathymetric slopes is also applied. Of particular interest is the relationship between
strati“cation variations, wave amplitudes, and the enhanced energy dissipation in the thermocline
observed byPolzin et al. [1997].

The paper is organized as follows. Section 2 describesthe wave saturation method used to estimate tidal
dissipation. Section 3 presents results of a regional study near the mid-Atlantic ridge, where the
dissipation pro“le obtained from the wave saturation is compared to observations. In section 4, the
global three-dimensional map of tidal dissipation over abyssal hills is derived.Implications for parame-
terizations of tidal mixing in climate models are thendiscussed in section 5. Conclusions and limitations
of this study are presented in section 6. Readers interested in the global results can proceed directly to
sections 4…6.

2. The Wave Saturation Method

In this section, we brie”y describe the wave saturation method. The idea behind this method, based on the
saturation of the linear wave amplitudes, is to use linear theory to predict its own breakdown. In this sec-
tion, we describe the method in detail. In a “rst step, the internal wave“eld above a given bathymetry is
computed according to linear theory. Where large unstable wave amplitudes are found, they are saturated
to a lower stable value, thereby modeling wave breaking. The stable wave“eld is then propagated upward
by a small increment, checked for instability, saturated if necessary, and so forth. Once the waves reach the
ocean surface, the vertical energy ”ux lost through the saturation process is computed, yielding an estimate
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of energy dissipation from wave instability and breaking in the whole water column. Originally introduced
by MB09 for constant strati“cation, we extend this method to allow for vertical variations in the
strati“cation.

2.1. Wave Generation
The setting is illustrated in Figure1a. The barotropic tide oscillates above the bathymetry with velocity
UTðtÞ5 ðU0cosx t; V0sinx tÞ, wherex denotes the tidal frequency, abouttwice a day for the largest lunar
semidiurnal tide. Since we are interested in the local, fast instabilities of small-scale internal tides, we
suppose that the ocean depth is in“nite, which is appropriate for small-scale waves believed to be dissi-
pated quickly, before they reach the ocean surface [St. Laurent and Garrett, 2002]. The bathymetry is
assumed to be subcritical, i.e., its slope is everywhere smaller than the slope of the wave characteristics
[Bell, 1975a,b;Garrett and Kunze, 2007]. Even with these simpli“cations, the problem is known to be dif-
“cult, and it is common to make the small excursion approximation, i.e., to assume that the tidal excur-
sion distancejjUTjj=x is small compared to the horizontal extent of the bathymetry [Llewellyn Smith and
Young, 2002;B uhler and Muller, 2007]. Nevertheless, since it is not valid at the small bathymetric scales
relevant for the instabilities addressed here (MB09), we shallnot make this approximation. Importantly,
we however only consider the wave response at the fundamental tidal frequencyx , which dominates
the wave“eld [Melet et al., 2013b]. The linear wave solution under those conditions can be derived in
Fourier space, and is recalled in supporting information A for constant and for slowly varying
strati“cation.

Figure 1. (a) Schematic illustration of the setting; the barotropic tide oscillates above the bathymetry with velocityUTðtÞ5 ðU0cosx t; V0sinx tÞ,
wherex denotes the tidal frequency, about twice a day for the largest lunar semidiurnal tide. (b and c) Illustration of the wave saturation in
the case of an idealized isolated topography (idealized example from MB09, see their Figure 1). Figure 1b shows the unstable amplitudeAand
corresponding pressurep; Figure 1c shows the corresponding “eldsAs and ps once saturation has been applied.

Journal of Geophysical Research: Oceans 10.1002/2014JC010598

LEFAUVE ET AL. GLOBAL MAP OF TIDAL DISSIPATION 4



2.2. Wave Breaking and Saturation
Prior to saturating the linear solution, we need a variable capable of signaling unstable wave“elds. The con-
vective instability is captured by the nondimensional wave amplitudeA, also referred to as ••wave steep-
ness•• in the literature [Staquet and Sommeria, 2002].A is related to the density gradient@q=@z:

2
g
q0

@q
@z

� N2 12 Re Aðx; y; zÞe2 ix t� �� �
; (2)

whereq0 denotes a reference density andN the mean strati“cation. IfjAj > 1, overturning of the isopycnals
(@q=@z > 0) occurs at some time of the tidal period and the linear waves are unstable. This signals convec-
tive instability, but one could introduce a similar amplitude to equation (2), based on the Richardson num-
ber, that would signal shear instability. The associated technical dif“culties are exposed in supporting
information B and we shall focus on convective instability in most of the rest of the paper.

In order to model wave breaking, we saturate the waves, i.e., we enforcejAj � 1, as illustrated in Figure 1
which shows an unstable wave amplitude and corresponding pressure (Figure 1b), and the saturated “elds
(Figure 1c). If the two-dimensional (2-D) bottom amplitudeAðx; y; z5 0Þis unstable, saturation is applied
and yields the stable amplitudeAsðx; y; z5 0Þ. At each altitudez, Asðx; y; zÞis then propagated upward by a
small vertical incrementdz to yield Aðx; y; z1 dzÞ, which is in turn checked for instability and saturated if
necessary before being propagated further up. Thus, only stable waves are allowed to propagate in the
ocean interior, and breaking and energy dissipation are resolved three dimensionally.

The saturation method requires two free parameters. The “rst one is the amplitude threshold at which satu-
ration occursas. Overturning occurs whenjAj > 1 suggesting an amplitude thresholdas5 1, which is what
shall be used in the following. However, overturning does not always imply wave breaking, suggesting
as� 1. The second parameter is the saturation lengthLs. Mathematically, the saturation method is a nonlocal
procedure (a convolution, in physical space) performed around the instability over a domain of sizeLs.
Physically,Ls may be thought of as the horizontal extent over which the wave“eld is impacted when a wave
breaks. MB09 pickLs5 Oð32 5 km) based on a maximization of the energy loss at the bottom. This criterion
is not practically usable in our global computation due to the high computational cost of trying several val-
ues ofLs in order to “nd the optimal one (maximizing the dissipation) at each location. Instead, we use a cri-
terion based on the spatial scale of the maximum wave amplitude.Ls may indeed be intuitively related to
the scale of the most unstable wave, whose breaking is expected to have an imprint of a few times its hori-
zontal wavelengthLA. A more detailed study suggests that the maximum bottom energy loss occurs when
Ls � 33 LA. Hence, we setLs5 33 LA in our model. More details about the whole generation and saturation
algorithm as well as the saturation method (how to implementjAj � 1) are given in supporting information
A. Our results are found to be robust to reasonable changes in the two free parametersas and Ls (see sup-
porting information C).

2.3. Energy Dissipation
We are interested in the vertical pro“le of the energy dissipation rate� , averaged over time (over one tidal
period) and over a given horizontal domain (see section 3.1 for information about the spatial domain):

� ðzÞ � 2
@Es

@z
; (3)

where Es denotes the saturated vertical energy ”uxq0 < psws > and <: > the time and horizontal average.
Nonzero dissipation due to wave breaking is achieved in our model by wave saturation (@Es=@z � 0Þ. Note
that without wave breaking,� ðzÞ5 0, since the vertical energy ”ux of linear waves is nondivergent.

2.4. Correction for Supercritical Slopes
It has been suggested that the energy ”ux plateaus as the nondimensional parameterc5 jjr hjj=s, which
determines the criticality of the bathymetry (ratio of the slope of the bathymetry to the slope of the wave
characteristicss), reaches unity [Khatiwala, 2003;Nycander, 2006;Balmforth and Peacock, 2009].

Based on this observation, a rescaling of the energy ”ux in 1=c2 at supercritical bathymetry (i.e., when
c > 1) has been proposed [Melet et al., 2013b;Falahat et al., 2014]. We apply this correction locally for super-
critical slopes in our estimates by reducing the bathymetry spectrum (given by equation (4) for the
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mid-Atlantic ridge region, and more generally by equation (1) ofGoff and Arbic[2010] for global abyssal
hills) by a factor 1=c2ðj Þif cðj Þ> 1, with cðj Þ5 ðj =2pÞh=sand j 5

������������
k21 l2

p
, the local bathymetric wave num-

ber. This operation reduces the energy ”ux into internal tides, and we “nd that it reduces the dissipation
slightly, but does not change the qualitative results of this paper.

3. Regional Study: Application to the Mid-Atlantic Ridge

3.1. Setting: Tidal Forcing, Bathymetry, and Stratification
The goal of this section is to test the wave saturation against the observational results ofPolzin et al. [1997]
in the Brazil Basin near the mid-Atlantic ridge. The barotropicM2 tidal forcing is ðU0; V0Þ5 ð2:1 cm s2 1,
2.5 cm s2 1), with tidal frequencyx 5 1:453 102 4 s2 1, and at this latitude (about 21.58S), the Coriolis fre-
quency isf52 5:33 102 5 s2 1.

As mentioned in section 1, we focus on internal tides generated by small-scale bathymetry (abyssal hills),
with horizontal scale below 10 km or so [e.g.,Macdonald et al., 1996]. Global maps of the sea”oor from satel-
lite altimetry only contain large-scale bathymetric features, with a resolution above 10 km [Smith and Sand-
well, 1997]. Small-scale bathymetry is only known deterministically where acoustic soundings were
performed, representing only 10% of the global ocean sea”oor, mostly located in coastal zones [Charette
and Smith, 2010]. Consequently, we follow MB09 and NL11 and take a statistical approach (described below
in equation (4)) to represent the bathymetry. In this region above the mid-Atlantic ridge, abyssal hill rough-
ness is large. We therefore expect tidal dissipation to be dominated by waves from small-scale bathymetry
and our results should be close to measured dissipation rates over this region. This is consistent with the
numerical simulations of NL11 who also only include internal tides generated by abyssal hills, and recover
the observed dissipation rates.

Goff and Arbic[2010] propose the following 2-D spectrum for small-scale bathymetry based on geological
constraints:

Cðk; lÞ �
4pmh2

l0k0

k2

k2
0

1
l2

l20
1 1

� � 2 ðm1 1Þ

: (4)

For the region of the mid-Atlantic ridge studied here, the bathymetric roll-off wave numbers arek05 2:23
102 4 m2 1 and l05 1:03 102 3 m2 1, m5 0:9 determines the roll-off slope at high wave numbers, and the root-
mean-square (rms) height of the bathymetry ish 5 110 m (P09). For a given spectrum, the simplest bathym-
etry that can be statistically generated in physical space is a random Gaussian “eld. We “rst draw 10 inde-
pendent, random, square bathymetry realizations (or samples) of typical horizontal sizeOð50 km) and
resolution of Oð100 m). Using vertical steps ofOð50 m), we then compute the whole energy ”ux pro“les
and the corresponding dissipation� ðzÞfor each bathymetry and average the results among the samples to
get a mean pro“le of energy dissipation. As long as the spatial domains are large enough, we “nd little
spread of the pro“le of energy dissipation over the 10 independent realizations (see the gray shading in Fig-
ure 3).

Figure 1a illustrates one realization of the bathymetry. Note that the spectrum is not isotropic, re”ecting the
anisotropy of abyssal hills (they tend to be aligned alongside the ridge where they are formed). In this
region, the bathymetry is smoother in thex direction and rougher in they direction.

For the strati“cation, an analytical “t ofN(z) to the observed pro“le in this region is used, similar to NL11
(see their Figure 4).

3.2. Instability of the Linear Solution at the Seafloor
We “rst look at the linear solution atz5 0. For those bottom values, we focus on they direction since it is the
direction where bathymetry is the roughest (Figure 1a). Looking at cross sections in two dimensions (x, z) or
(y, z)„where the one-dimensional c(k) or c(l) spectrum is obtained from the 2-D spectrum by integration
(MB09)„reveals that the waves in thex direction are stable, while the waves in they direction are unstable.
The amplitude of the whole 3-D wave“eld is very close to the 2-D amplitude in they direction. Physically, this
means that the waves are nearly 2-D, and that overturning occurs in they direction. Therefore, in this section,
we neglect anyx dependence and investigate the bottom “eldsA0ðx; yÞ � A0ðyÞ. This allows us to highlight
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the scales iny which dominate the wave energy
and the wave breaking. We will come back to the
full 3-D problem once wave saturation is applied
(section 3.3) and instabilities in they direction affect
the whole 3-D wave“eld.

Figure 2 shows the energy ”ux as a function of
wave numberl in the y direction, and the rms ampli-
tude for convective instability (A0ðyÞin equation (2),
see also MB09 equations (8) and (9)). We see that
the wave energy dominantly comes from bathyme-
tries with scalesOð10 km), while the scales responsi-
ble for instabilities are smaller, aroundLA5 Oð1 km).
The fact that the wave amplitude is large at small
bathymetric scales is consistent with the consensus
that small-scale waves are more easily subject to
fast, local dissipation. Mathematically, it can be
understood from the expression for the variance of
amplitude as a function of the one-dimensional
bathymetric spectrum,cðlÞ5

Ð
Cðk; lÞdk=2p (MB09):

jAj2 /
Ð

½l J1ðV0l=x Þ�2cðlÞdl, where J1ðxÞ is the
Bessel function of the “rst kind of order 1. The factor
l J1ðV0l=x Þampli“es small scales.

It has been pointed out in the literature [St. Lau-
rent and Garrett, 2002; NL11] that wave number by wave number, the amplitudes for shear or convective
stability are smaller than unity and waves could therefore be considered as stable. Our results also show
that wave number by wave number, internal tides are stable with regard to convective (and shear) instabil-
ities. However, once we allow for constructive interference between scales (by integrating over all wave
numbers), the amplitude has a rms larger than unity (

Ð
lA

2 dl5 1:32 as shown in Figure 2), i.e., the wave“eld
at z5 0 is unstable.

3.3. Saturation and Vertical Profile of Energy Dissipation
We now apply wave saturation. The scale of maximum amplitude beingLA � 1 km, we set the saturation
length to Ls5 3LA5 3 km. Atz5 0, the waves from linear theory are unstable, and yield a bottom dissipation
Eð0Þ2 Esð0Þ5 3:22 2:15 1:1 mW m2 2, corresponding to 34% loss.

The energy ”ux before saturationE(0) cannot easily be compared to observations or simulations, since the
unstable linear wave“eld would almost instantaneously break and adjust to a stable con“guration. The
energy ”ux after saturationEsð0Þ5 2:1 mW m2 2 is broadly consistent with the bottom energy ”ux of 1.8
mW m2 2 found in numerical simulations for the same bathymetry and forcing (NL11), though slightly
higher. This may be due to the absence of nonlinear effects in the boundary layer, such as ”ow separation
from sea”oor or hydraulic jumps.

The vertical pro“le of energy dissipation� ðzÞpredicted by the wave saturation method with constant strati-
“cation (N5 Nbottom) is shown in Figure 3. Also shown for comparison are the in situ observations ofPolzin
et al. [1997]. Wave saturation captures the general behavior of the dissipation pro“le in the deeper part of
the water column, up to 2 km above the sea”oor, though it underestimates its magnitude in the “rst kilo-
meter (compare the blue line and purple circles in Figure 3b). This may be because wave saturation only
accounts for wave breaking through convective instability, and neglects wave-wave interactions, which
likely contribute to the observed pro“le as well. We assessed the importance of the shear instability in sup-
porting information B. We found that, for the region studied here, the shear instability is either negligible or
yields similar results as the convective instability. Accounting for both instabilities generally does not pro-
vide additional insight, since once the wave“eld is saturated with respect to one amplitude, it is stable with
respect to the other. This motivates us to concentrate on convective instability for the global study in the
next section.

Figure 2. Regional study over the mid-Atlantic ridge: linear waves
at the sea”oor. (a) Energy ”ux and (b) squared amplitude for con-
vective instability atz5 0 versus horizontal wave numberl (in the
y direction). Note that internal tides are stable wave number by
wave number (A2ðlÞ< 1), but their superposition is not
(
Ð
lA

2 dl5 1:32 > 1).
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When variations of the strati“cation are accounted for (Figure 3), the agreement is improved above 2 km
above the sea”oor, where strati“cation variations become important (compare the black line with the pur-
ple circles in Figure 3b). In particular, wave saturation captures the increase of energy dissipation associated
with the increase in strati“cation expected from the theory of internal tides. As recalled in supporting infor-
mation A, the slope of the characteristics along which these waves propagate decreases whenN increases
as s5 jj =mj / ð N2ðzÞ2 x 2Þ2 1=2 � NðzÞ2 1, where m and j are the vertical and horizontal wave numbers,
respectively (the last approximation follows from the fact that in typical oceanic conditionsN=x � 1).
Above a given bathymetry, the vertical lengthscale of the waves thus decreases asN2 1ðzÞ, and the asymp-
totic WKB theory predicts that their amplitude increases asA /

����
m

p
/

���������
NðzÞ

p
. In other words, an increasing

strati“cation yields smaller-scale waves of larger amplitudes that are more prone to overturn and break. Our
results suggest that enhanced energy dissipation in the thermocline can be sustained by the dissipation of
internal tides radiated at the sea”oor, in addition to internal waves generated at the surface of the ocean.
Our analytical dissipation pro“le is close to but does not exactly match observations, which is likely due to
the simplifying assumptions of our approach. Yet, given the simplicity of our model, we believe that the
agreement is encouraging. We apply this methodology in section 4 over the global ocean.

4. Global Map of Tidal Dissipation

Unlike observations and numerical simulations, the wave saturation method has the advantage of being
simple enough (it only involves the fast Fourier transform and its inverse) that it can be applied globally. In
this section, we use it to derive a “rst 3-D world map of abyssal-hill generated internal-tide dissipation and
of the induced diapycnal mixing.

4.1. Setting: Tidal Forcing, Bathymetry, and Stratification
We useM2 tidal data from the TPXO 7.2 model ofEgbert and Erofeeva[2002] assimilating TOPEX/Poseidon
satellite radar altimetry data. The semidiurnal lunar tidal ”ow with frequencyx obeys an ellipse of

Figure 3. Regional study over the mid-Atlantic ridge: wave saturation. Vertical pro“les of (a) strati“cation and (b) wave energy dissipation
through wave saturation, with constant (blue) and varying (black) strati“cationN(z). The vertical pro“leN(z) is an analytical “t to observa-
tions in the region studied in section 3 [Polzin et al., 1997] (similar to the pro“le used in NL11). Observed dissipation pro“les [Polzin et al.,
1997; P09] are also shown in Figure 3b for comparison. The gray shading shows the spread (min and max) of estimates from the 10 bathy-
metric samples.
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parametric equation½U0cosðx tÞ; V0sinðx tÞ; 0� and major axis orientation angleh with respect to the North.
Global 1=4	 3 1=4	 maps ofU0, V0, andh were obtained using the Tide Model Driver (TMD) toolbox ofEgbert
and Erofeeva[2002]. Only the waves generated at the fundamental frequencyx are retained, as higher har-
monics only account for a minor fraction of the energy conversion [Melet et al., 2013b].

As in the mid-Atlantic ridge study, we only include the small-scale bathymetry, i.e., abyssal hills with hori-
zontal scales belowOð10 km). We use the spectrum proposed byGoff and Arbic[2010] (their equation
(1)), thereafter referred to asGA spectrum, which predicts statistical features of abyssal hills, such as height
covariance or anisotropic roughness from geological observations. The four parameters of the GA spec-
trum, the rms height of the hills, the local spreading axis angle with respect to longitude and latitude,
and their roughness normal and parallel to it, were provided by A. Goff and B. Arbic and vary in space at a
1=4	 3 1=4	 resolution. With typical values of domain sizeL5 Oð50 km), horizontal resolutiondx5 dy5 Oð100 m)
and vertical wave propagation/saturation incrementsdz5 50 m, a global computation required about a
week on a 16-core workstation. The parameters of the saturation model have been chosen as in the
regional study. More details about the computation and its sensitivity to parameters are given in supporting
information C.

The global buoyancy frequencyNðx; y; zÞis obtained by processing the World Ocean Circulation Experiment
(WOCE) 2004 data with the Gibbs Sea Water (GSW) toolbox [McDougall and Barker, 2011]. Interpolation was
performed from the original 1=2	 3 1=2	 to the 1=4	 3 1=4	 resolution of the GA spectrum, which is the reso-
lution used in our computations.

4.2. Horizontal Distribution of Local Dissipation
The horizontal distribution of the bottom energy ”uxE0 in equation (1) converted by abyssal hills into inter-
nal tides is shown in Figure 4a. The bottom energy ”ux is computed using linear theory as in section 3, with
the spectrum in equation (4) replaced by the GA spectrum at each location where the abyssal hill distribu-
tion is available (locations not in white in Figure 4, seeGoff and Arbic[2010] for details). WhereE0 reaches
unrealistic large values due to poor tidal data in shallow regions (few locations near Iceland), a bottom cap-
ping of Ecap

0 5 102 1 W m2 2 is enforced. Regions of high barotropic energy conversion are found to concen-
trate around mid-ocean ridges, where the hills are tallest and roughest. The conversion integrates to 105
GW globally (standard deviation among the 10 samples is< 0.1 GW), which is consistent with the earlier
estimate ofMelet et al. [2013b].

We now turn to the fraction of local dissipationq in equation (1), de“ned as the energy lost through satura-
tion when waves propagate from the sea”oor toz5 H:

qE05
ðH

0
� dz; (5)

where H is the ocean surface, unless a re”ection level is reached before the surface (NðzÞ5 x ). In the latter
case, the waves are re”ected back down [Sutherland, 2010] (this effect is ignored in our computation) andH
is set to the depth of the re”ection level. The fraction of local dissipation is computed only at locations with
nonnegligible wave energyE0 > 102 5 W m2 2 (not in gray in Figure 4).

The distribution ofq is shown in Figure 4b. Interestingly, its spatial distribution is far from homogeneous.
Vast regions exhibit very high values ofq, between 60% and 90%. Mostly located in the Southern Hemi-
sphere, these include the mid-Atlantic ridge, the central Indian ridge, and the East Paci“c rise, and are sur-
rounded by regions whereq decays but still exceeds 30%. Elsewhere in the deep ocean where abyssal hill
data are available, the fraction of local dissipation is lower than 10%. Globally, the energy dissipation
amounts to 64 GW, that is, 61% of the barotropic conversion by abyssal hills. About 80% of this dissipation
occurs at regions whereq > 60%. The map of the depth-integrated energy dissipationqE0 can be found in
supporting information E.

This estimate ofq only includes waves generated by abyssal hills, i.e.,q is the fraction of wave energy radi-
ated at abyssal hills which is dissipated through convective instability of those small-scale waves. We can
estimate the fraction of thetotal energy, including both small and large-scale waves, which is dissipated
through the instability of small-scale waves
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Figure 4. Horizontal distribution of the tidal energy dissipation. (a) Bottom vertical energy ”uxE0 converted by abyssal hills into internal tides. (b) Fraction of local dissipationq of E0. (c)
Fractionqtotal of the total ”ux E01 Elarge scale

0 dissipated locally (equation (6)). (d) Approximationqapprox of q using the rms bottom amplitudeArmsð0Þ(equation (8)). Smooth regions with
no bathymetry data (no abyssal hill) are shown in white. Regions whereE0 < 102 5 W m2 2 are shown in gray. All data are at 1=4	 3 1=4	 resolution.
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qtotal �
qE0

E01 Elarge scale
0

: (6)

If the waves generated by large-scale bathymetry did not contribute to the local dissipation and entirely
propagated away from their generation site,qtotal would be the total fraction of local dissipation. Small-
scale waves have been observed to dominate the local dissipation in places, for instance,St. Laurent and
Nash[2004] suggest that the dissipation level scales with the energy available in the high modes (i.e., scales
smaller than roughly 10…20 km for modes 5…10, see their Figure 5). In the region over the mid-Atlantic ridge
that they study, 75% of the energy is contained in modes higher than 5 (scales smaller than about 20 km).
However, in general, we expectqtotal to be a lower bound for the total fraction of local dissipation (see sec-
tion 5 for a more in-depth discussion).

The distribution of qtotal is shown in Figure 4c. The same hotspots emerge, albeit with lower magnitudes
(20…60%) and more patchiness, re”ecting the patchiness ofElarge scale

0 [Melet et al., 2013b]. Since abyssal hills
contribute about 10% of the global conversion (Elarge scale

0 � 875 GW), the global average fraction drops to
6% or 17% restricting the computation to the regions having some small-scale dissipation (not in gray or
white in Figure 4).

We “nd that q is not only sensitive to the bathymetry, but also to the tides and strati“cation. This depend-
ence may be reasonably well understood from the rms bottom linear wave amplitude [Bell, 1975b; MB09]

Figure 5. Existence of two vertical pro“les of dissipation. (a) Distribution of energy dissipation with respect toArmsð0Þand contribution of
each pro“le. The integral is the total dissipated energy 201 445 64 GW. Exponential and hump pro“les may be separated by the value
Armsð0Þ5 0:4. (b) Percentiles (with respect to energy dissipated) of all hump pro“les ofKq (50% curve corresponds to median pro“le). Note
the transition from midlevel maxima (most energetic percentiles) to pro“les with no bottom mixing and constant upper-level mixing. (c)
Percentiles of vertical pro“les ofKq for exponential pro“les. Note the logarithmic scale for the diapycnal diffusivity in Figures 5b and 5c.
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Armsðz5 0Þ5
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 !

dk dl

vu
u
t ; (7)

where ðK; LÞ5 ðkcosa2 lsina; ksina1 lcosaÞ is the wave number vector in the frame of the tidal
ellipse (see MB09 and supporting information A). By “tting the relationship betweenq and Armsð0Þ
of our results (see supporting information D), we derive the following simple empirical formula
for q:

qapprox5
87f 12 exp½2 4ðArmsð0Þ2 0:1Þ�g if Armsð0Þ> 0:1

0 otherwise:

(

(8)

Figure 4d shows that, despite solely relying on alinear measure of wave instabilityat the bottom, qapprox

captures the main features of the distribution ofq. This expression also reproduces the total dissipation (65
GW instead of 64 GW; see supporting information D for more details).

4.3. Vertical Distribution of Dissipation and Mixing
We now turn to the vertical structure of tidal dissipationF(z) in equation (1). We consider our pro“les
of F(z) to see if they have a universal shape in the vertical, such as the exponential proposed bySt.
Laurent et al. [2002] or a power law such as P09. To seek universal pro“les, the in”uence of the varying
buoyancy frequencyN(z) is reduced by stretching the vertical coordinatez to z
 using the WKB theory
[Gill, 1982]

Figure 6. Decay scale of the exponential pro“les. (a)e-folding valuez

0 determined by the linear regression on exponential pro“les of logðKqÞwith WKB-scaledz
 coordinate.

White stands for no abyssal hills as in Figure 4. Gray now indicates little dissipationqE0 < 102 5 W m2 2. Pink indicates regions of hump pro“les. (b)z
 approx
0 predicted by the bottom

amplitude Armsð0Þ(equation (10)). All data are at 1=4	 3 1=4	 resolution.
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z
 5

ðz

0

����������������������
N2ðz0Þ2 x 2

p
dz0

1
H

ðH

0

����������������������
N2ðz0Þ2 x 2

p
dz0

: (9)

As this coordinate stretching is insuf“cient, we further rescaleFby a power ofN. The scalingF=N2 proves to
be the best to collapse pro“les (see supporting information D), which is consistent with earlier studies [see
Polzin et al., 1995, and references therein]. Thus, to ease comparison with the literature, we present results
for the diapycnal diffusivityKq5 C�=N2 [Osborn and Cox, 1972], with a mixing ef“ciencyC5 0:2. Since both
exponential [St. Laurent et al., 2002] and power law (P09) decaying pro“les have been suggested forKq, we
carry a linear regression of logðKqÞin the z
 and logðz
 Þspaces. We restrict our analysis of vertical pro“les
to points with some dissipationqE0 > 102 5 W m2 2 (not in gray in Figure 6).

We “nd that the “t is better in the exponential case. However, not all the points obey this exponential
decay. We consider that a pro“le is exponentially decaying if the regression toKqðz
 Þ5 Kqð0Þe2 z
 =z


0 leads to
z


0 > 0 and to a coef“cient of determinationR2 > 0:6 (see supporting information D for details and exam-
ples of pro“les).

According to this criterion, exponentially decaying pro“les are found in 25% of the area covered by dissipa-
tion and are responsible for 68% of the dissipated energy. The remaining pro“les, covering the remaining
75% area and dissipating 32% of the energy, have in common to be nonmonotonic and many possess a
midlevel ••hump,•• hence the subsequent namehump pro“le.

The bottom-enhanced diffusivity of exponential pro“les is due to high bottom wave amplitudes, which are
more likely to be unstable close to their generation site. Hump pro“les by contrast exhibit stronger diffusiv-
ity higher up in the water column due to increased strati“cation. We therefore expect exponential pro“les
to dominate where the bottom amplitudes are large and vice versa. This is con“rmed by Figure 5a, showing
the distribution of the dissipated energy with respect to the rms amplitude of the linear wavesArmsð0Þ.
Although Figure 5a shows some overlap, the two pro“les may be reasonably well diagnosed a priori accord-
ing to the following criterion: if Armsð0Þ> 0:4, the diffusivity decays exponentially, otherwise it follows a
hump pro“le.

4.3.1. Exponential Profiles
The analysis of percentiles of the whole distribution of exponential pro“les is shown in Figure 5c. The most
energetic pro“les follow almost perfect exponential decay, and half of the energy (� 22 GW) is indeed found
to be dissipated by exponential pro“les havingR2 > 0:9 (see supporting information D for more details
including a map ofR2). At these locations,Kq typically reaches 102 42 102 3 m2 s2 1, in agreement with in situ
observations above rough bathymetry [Polzin et al., 1997;Kunze et al., 2006;Whalen et al., 2012;Klymak
et al., 2006]. Lower percentiles, though still exponential on average, continuously deform and end up resem-
bling more and more a hump pro“le.

The map of the exponential decay scalez

0 is reported in Figure 6a. Exponential pro“les (brown to blue)

clearly coincide with regions of high dissipation (hotspots ofq). This is expected since exponential decay
corresponds to large bottom amplitudes and hence, from equation (8), to large values ofq (larger than
87f 12 exp½2 4ð0:42 0:1Þ�g � 60%). The decay scale is typically smaller than 1000 m (80% of the dissipation).
The lower decay scales (250…750 m) are found over regions exhibiting the strongest energy ”ux into inter-
nal tides, such as mid-ocean ridges. The same behavior was reported inMelet et al. [2013a], although the
decay scale was for algebraically decaying dissipation pro“les, based on the analytical model developed by
P09 where internal tide dissipation is due to nonlinear wave-wave interactions. Regions near Iceland feature
z


0 < 250 m, though very large amplitudes due to poor tidal data give us little con“dence in these results.
Note that this decay scale is ane-folding value in the WKB-scaled vertical heightz
 . Pro“les inz coordinate
are found to correlate more weakly with exponential decay (see supporting information D).

The spatial distribution ofz

0 can also be reasonably well understood from the bottom amplitudeArmsð0Þ.

Physically, larger bottom amplitudes yield faster decay, and we indeed “nd thatð1=z

0Þ2 scales quasi-linearly

with Armsð0Þ. We propose the approximation
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z
 approx
0 5

440
�������������������������
Armsð0Þ2 0:3

p ; (10)

(this expression is only formally valid forArmsð0Þ> 0:3, which corresponds to the amplitude range
for exponential pro“les, see Figure 5a). Figure 6b shows that this expression recovers most of the
salient features observed in Figure 6a, and excellent energetic agreement is found (supporting
information D).

4.3.2. Hump Profiles
The analysis of the hump pro“les (Figure 5b) reveals that the most energetic percentiles 802 95
exhibit a prominent middepth diffusivity maximum atz


max=H � 0:32 0:5, which can be larger than
the oceanic background value 102 5 m2 s2 1. It is caused by an increased ambient strati“cation, not
compensated by the WKB and 1=N2 scalings. Although the strati“cation at these locations is not
stronger than elsewhere, the gradual increase of the buoyancy frequencyN(z) in the abyssal ocean
suf“ces to make these waves, stable at the bottom, break well above the sea”oor by decreasing
their vertical lengthscale and increasing their amplitude (more details in section 3.3). This mecha-
nism may substantiate the existing observationsof nonmonotonic diffusivity pro“les in various
regions [Toole et al., 1994;Polzin et al., 1997;Kunze et al., 2006;Whalen et al., 2012;Waterhouse
et al., 2014].

As before, we seek relations between the characteristics of those pro“les, namely the height and strength
of the middepth maximum, andArmsð0Þ. In the analysis of hump pro“les, we determine midlevel maximum
valuesKqðz


maxÞas follows. We start atz5 0 and list all points that are local maxima in the 300 m neighbor-
hood above them. We then reject the ••arti“cial•• ones occurring in a 300 m neighborhood of the global max-
imum of N (thermocline) and select the one having the greatestKq value. As seen in Figure 5b, only the
most energetic pro“les were found to possess such a maximum (indicated by a red dot), and Figures 7a
and 7b only deal with those pro“les.

The maximum diffusivityKqðz

maxÞincreases with the bottom amplitude (Figure 7a), and its median value

exceeds 102 5 m2 s2 1 for Armsð0Þ> 0:35. The relative heightz

max=H at which the maximum occurs is found

to decrease withArmsð0Þ(Figure 7b), which is consistent with the idea that more unstable bottom waves
break at lower heights, being more sensitive to the increase ofN(z).

However, the height of maximum dissipation cannot be determined precisely from the relationship
betweenArmsð0Þand z


max=H. To determine a priori the height of the diffusivity maximum, we re“ne the pre-
vious analysis by looking at the would-be amplitude at the height where the maximum occursArmsðz


maxÞ,
computed by the WKB theory as

Figure 7. Quantitative characteristics of the hump pro“les. (a) Maximum middepth diapycnal diffusivityKqðz

maxÞ. Note the quasi-exponential increase with the linear measure of bottom

wave instabilityArmsð0Þ. (b) Corresponding relative heightz

max=H decreasing withArmsð0Þ. In Figures 7a and 7b, the distribution is represented by the median (50%) and two extreme

percentiles (10% and 90%). (c) Distribution of energy dissipation with respect toArms at z
 5 0 andz

max (both integrals yield 20 GW). The distribution ofArmsð0Þis the same as in Figure

5a. Note the half-maximum width change, suggesting that the criterionArmsðz

maxÞ � 0:5 is sharper to determinez


max.
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Armsðz

maxÞ5 Armsð0Þ3

N2ðz

maxÞ2 x 2

N2ð0Þ2 x 2

� � 1=4

: (11)

(Where no maximum is found,Armsðz

maxÞ is

replaced byArmsð0Þin Figure 7c. This gives rise
to the slight bump around Armsðz


maxÞ5 0:2 and
con“rms that the points with a mid-water maxi-
mum account for the vast majority of energy
dissipation.) Despite ignoring the nonlinear sat-
uration that A undergoes between z
 5 0 and
z
 5 z


max, Figure 7c demonstrates thatArmsðz

maxÞ

� 0:5 may serve as a reasonable rule of thumb
to determine a priori the height of the diffusivity
maximum.

5. Implications for Tidal Dissipation
Parameterizations

Some recent climate models account for tidal dis-
sipation at large-scale bathymetry, parameterized
by equation (1) [St. Laurent et al., 2002], which we
rewrite here with superscripts ••large scale•• to dis-
tinguish from the small-scale contribution:

� large scaleðx; y; zÞ � qlarge scaleElarge scale
0 ðx; yÞFlarge scaleðzÞ: (12)

As mentioned in section 1, in this paper, large-scale bathymetry refers to bathymetry resolved by satellite
observations (Smith and Sandwell[1997], horizontal scales larger thanOð10 km), while small-scale bathyme-
try refers to the unresolved scales, which are only known statistically [Goff and Arbic, 2010].Elarge scale

0 (� 1
TW) is the bottom energy ”ux into internal tides radiated at large-scale bathymetry, the fraction of local dis-
sipation qlarge scale is typically set to 30%, and the vertical pro“leFlarge scaleðzÞis typically assumed to decay
exponentially with a decay scale of 500 m [St. Laurent and Nash, 2004]. The corresponding diapycnal diffu-
sivity is given byKq5 C�=N2 [Osborn and Cox, 1972], with a mixing ef“ciencyC5 0:2.

To this, large-scale tidal dissipation should be added the contribution from small-scale waves, which we can
parameterize similarly as

� small scaleðx; y; zÞ � qsmall scaleðx; yÞEsmall scale
0 ðx; yÞFsmall scaleðx; y; zÞ: (13)

We have shown that the inhomogeneous distribution of the fraction of local dissipationqsmall scaleand the
vertical dissipation pro“leFsmall scalecan both be captured by a single theoretical measure of the bottom lin-
ear wave amplitudeArmsð0Þgiven in equation (7).Armsð0Þis a function of the abyssal hill bathymetry, the
tidal forcing, and the bottom strati“cation. Technically, the modeled bottom and vertical pro“le of strati“ca-
tion is the only evolving “eld required as input for the analytical model presented in this study to determine
the time-evolving 3-D distribution of abyssal-hill radiated internal-tide dissipation. Evolving bathymetry and
tidal forcing are also natural inputs for our model in paleoclimate applications.

Speci“cally,qsmall scale is given by the approximate relationship equation (8).Fsmall scale corresponds toN2

times exponential decay ifArmsð0Þ � 0:4, and toN2 times a hump pro“le if Armsð0Þ< 0:4.

Exponential pro“lesFsmall scaleðz
 Þ=N2 / e2 z
 =z

0 have a decay scale given by equation (10) (in WKB-scaled

vertical heightz
 , equation (9)). As in the large-scale parameterization equation (12),Fsmall scaleis normalized
such that

ÐH
0 Fsmall scaleðzÞdz5 1, whereH(x, y) is the local ocean depth.

Given the small diffusivities associated with hump pro“les (Figure 5b), one possibility would be to simply
ignore them, especially those withArmsð0Þ< 0:3. But collectively, these small contributions add up to a non-
negligible dissipation (Figure 5a), and it may be desirable to account for them. Based on Figure 5b, we pro-
pose the following idealized pro“le for Fsmall scale=N2 / Kq (Figure 8): log10ðFsmall scaleðz
 Þ=N2Þ piecewise

Figure 8. Idealized vertical pro“le of dissipationFsmall scale=N2 for
hump pro“les (note the WKB-scaled vertical coordinatez
 ).
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linear, increasing fromc2 1 to c at z

max, and decreasing back toc2 1 at H. From Figure 7c,z


max is determined
by Armsðz


maxÞ5 0:5, whereArmsðz
 Þis given by equation (11). Finally, the value ofc is determined by applying
the energetic constraint

ÐH
0 Fsmall scaleðzÞdz5 1.

6. Conclusions and Discussion

Breaking internal tides are thought to provide a large part of the power needed to mix the abyssal ocean
and sustain the meridional overturning circulation. Despite the importance of internal-tide-driven mixing
for the ocean state, its spatial distribution remains poorly quanti“ed. In the present study, we focus on the
dissipation of the principal lunar semidiurnal (M2) internal tides generated at small-scale abyssal hills, which
dominate the sea”oor topography at scales smaller thanOð10 km). We provide a “rst worldwide estimate
of the fraction of energy that these waves lose locally, close to their generation site, due to convective insta-
bilities (density overturning), and of the associated vertical pro“le of dissipation. Our estimates are based
on an analytical model relying on linear wave theory and an ad hoc parameterization for wave breaking
called wave saturation. This simple and cost-ef“cient tool is “rst tested regionally over the mid-Atlantic
ridge where observations of internal-tide energy dissipation are available, and then applied globally using
statistical distributions of quasi-global small-scale abyssal hill bathymetry, strati“cation andM2 tidal
velocities.

Our results suggest that tidal mixing from abyssal hills is highly inhomogeneous, both horizontally and ver-
tically. A large fraction of abyssal-hill generated internal-tide energy is dissipated locally (60…90%) over large
parts of the mid-Atlantic ridge, the central Indian ridge, and the East Paci“c rise, where abyssal hills are
responsible for large barotropic to internal tide energy conversion. Globally, the dissipation amounts to
about 60% of the 0.1 TW of internal tides generated at abyssal hills. If the local energy dissipation is com-
pared to the energy converted from the barotropic to internal tides by all scales of bathymetry (not only
abyssal hills), then the fraction of local dissipation of abyssal-hill generated internal tides is still dominated
by the mid-ocean ridges of the Southern Hemisphere, but its magnitude is lowered to 20…60%.

The diapycnal diffusivity induced byM2 internal tides generated at abyssal hills follows two different types
of vertical pro“les: the widely used exponential decay, responsible for most of the dissipation, and a novel
hump pro“le with middepth maxima. Exponentially decaying pro“les dominate limited areas of strong
energy ”ux into internal tides and the corresponding vertical decay scale varies with space. Hump pro“les
dominate larger areas of less energetic, more stable bottom waves, which break and dissipate well above
the sea”oor as a result of increasing ocean strati“cation.

The heterogeneity of the mixing that this work points out could have important implications for the ocean
state, which has been shown to be signi“cantly impacted by both the horizontal and vertical distributions
of diapycnal mixing. The Southern Hemisphere seems to present favorable conditions for particularly high
mixing rates due to abyssal-hill generated internal tides. Given the central role of the Southern Ocean in
ventilating deep water masses [Jayne, 2009;Talley, 2013], the spatial distribution of mixing suggested by
our study could impact the ocean circulation and water mass transformation in the deep ocean. A recent
estimate indeed shows that 25% of the transformation of Antarctic Bottom Water driven by local internal-
tide mixing is attributed to internal tides generated at abyssal hills (C. de Lavergne et al., On the consump-
tion of Antarctic Bottom Water in the abyssal ocean, submitted toJournal of Physical Oceanography, 2015).

The potential implementation of a parameterization of internal-tide-driven mixing above abyssal hills has
also been presented in this study. The fraction of local dissipation and the vertical pro“le of dissipation can
be related to a linear wave amplitude at the sea”oor through simple empirical relationships. The corre-
sponding parameterization would allow the mixing to evolve in time as it depends on the strati“cation
simulated by the model, on static geological properties (abyssal hill bathymetry) and on the barotropic tidal
velocities.

Unlike observations and numerical simulations, the simplicity of the wave saturation method makes it possi-
ble to derive a global map of tidal dissipation at abyssal hills. However, the simplifying assumptions that go
into this model imply important limitations. First, the generation of internal tides uses linear subcritical
theory, whose validity is thought to extend beyond the formal limit of low bathymetric slopes [Garrett and
Kunze, 2007]. An empirical correction has however been applied to remove the smallest scales responsible
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for supercritical slopes. About half of the area covered by abyssal hills is found to be supercritical, and the
correction reduces the average bottom amplitude of the waves by 30%. But energetically, the global tidal
conversion is only reduced by 3%. This is because without the supercriticality correction, the amplitude of
some of the smallest scale waves is overestimated. These break at or very close to the sea”oor, without
altering the global picture, and overall our dissipation estimates are not strongly affected by this correction.
This being said, the correction is empirical, and it cannot be ruled out that a more accurate treatment of
supercriticality could impact our results more strongly. Second, the theory assumes a semiin“nite ocean,
neglecting the re”ection of the waves reaching the ocean surface back into the interior and their potential
interaction with upward-propagating waves. The waves that propagate away beyond one surface re”ection
are assumed to be dissipated nonlocally and to contribute to the background oceanic diffusivityOð102 5 m2

s2 1Þ. Additional uncertainties arise from the use of the WKB approximation (especially near the thermocline
when strati“cation variations can be large), from the statistical approach and geological parameters used to
represent abyssal hills, and from the ad hoc wave saturation scheme. The choice of parameters that go into
this scheme, such as the spatial domain length, resolution (both horizontal and vertical), saturation thresh-
old and ••impact length•• all in”uence our results to various degrees. A sensitivity analysis of the global dissi-
pation fraction (found to be around 60%) has been conducted, and shows reasonable robustness to those
parameters (dissipation always in the range 55…65%), with greatest sensitivity to spatial resolution (see sup-
porting information C). Although our regional study shows that wave saturation predicts the observed dissi-
pation pro“le in the Brazil Basin, the global validity of this simple analytical tool needs to be assessed. In
particular, it does not take into account the contribution from instabilities due to nonlinear wave-wave
interactions and topographic scattering. Quantitatively, our estimates are thus likely below actual dissipa-
tion rates. But qualitatively, we believe that the inhomogeneity of the 3-D tidal dissipation and mixing that
this work suggests and its enhancement over mid-ocean ridges of the Southern Hemisphere are robust.
Finally, a major limitation is that we only investigate abyssal-hill generated internal tides. The “ne resolution
required to satisfactorily resolve the small scales of the abyssal hill spectrum prevents us from accounting
for both the large-scale bathymetry from satellite measurements and the abyssal hills (the former requiring
large computational domains). We believe that including the large-scale bathymetry in future computations
would constitute an improvement and enable to assess its contribution to the spatial inhomogeneity of
tidal dissipation, both horizontally and vertically.
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