S. Adlakha, M. Sheikh, J. Wu, M. W. Burket, U. Pandya et al., Stent fracture in the coronary and peripheral arteries, J. Interv. Cardiol, vol.23, issue.4, pp.411-419, 2010.

A. Aghel and E. J. Armstrong, Recent advances in self-expanding stents for use in the superficial femoral and popliteal arteries, Expert Rev. Cardiovasc. Ther, vol.12, issue.7, pp.833-842, 2014.

B. Al-mangour, R. Mongrain, and S. Yue, Coronary stents fracture: an engineering approach (review), Mater. Sci. Appl, vol.4, issue.10, pp.606-621, 2013.

S. Amiable, S. Chapuliot, A. Constantinescu, and A. Fissolo, A comparison of lifetime prediction methods for a thermal fatigue experiment, Int. J. Fatigue, vol.28, issue.7, pp.692-706, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00111459

F. Auricchio, A. Constantinescu, M. Conti, and G. Scalet, A computational approach for the lifetime prediction of cardiovascular balloon-expandable stents, Int. J. Fatigue, vol.75, pp.69-79, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219744

F. Auricchio, A. Constantinescu, C. Menna, and G. , Scalet. A shakedown analysis of high cycle fatigue of shape memory alloys, 2015.

F. Auricchio, A. Constantinescu, and G. Scalet, Fatigue of 316L stainless steel notched lm-size components, Int. J. Fatigue, vol.68, pp.231-247, 2014.

F. Auricchio and L. Petrini, A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems, Int. J. Numer. Methods Eng, vol.6, pp.807-836, 2004.

F. Auricchio, R. L. Taylor, and J. Lubliner, Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Comput. Methods Appl. Mech. Eng, vol.146, pp.281-312, 1997.

M. Azaouzi, A. Makradi, and S. Belouettar, Fatigue life prediction of cardiovascular stent using finite element method, Comput. Methods Biomech. Biomed. Eng, vol.15, issue.S1, pp.93-95, 2012.

M. Azaouzi, A. Makradi, and S. Belouettar, Deployment of a self-expanding stent inside an artery: a finite element analysis, Mater. Des, vol.41, pp.410-420, 2012.

M. Azaouzi, A. Makradi, J. Petit, S. Belouettar, and O. Polit, On the numerical investigation of cardiovascular balloon-expandable stent using finite element method, Comput. Mater. Sci, vol.79, pp.326-335, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01366920

O. Barrera, M. A. Makradi, M. Abbadi, S. Azaouzi, and . Belouettar, On high-cycle fatigue of 316L stents. Comput, Methods Biomech. Biomed. Eng, vol.17, issue.3, pp.239-250, 2014.

G. Bertolino, A. Constantinescu, M. Ferjani, and P. Treiber, A multiscale approach of fatigue and shakedown for notched structures, Theor. Appl. Fract. Mech, vol.48, issue.2, pp.140-151, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167744

N. Bessias, G. Sfyroeras, and K. G. Moulakakis, Renal artery thrombosis caused by stent fracture in a single kidney patient, J. Endovasc. Ther, vol.12, pp.516-520, 2005.

C. K. Chang, C. P. Huded, B. W. Nolan, and R. J. Powell, Prevalence and clinical significance of stent fracture and deformation following carotid artery stenting, J. Vasc. Surg, vol.54, issue.3, pp.685-90, 2011.

E. Charkaluk, A. Constantinescu, F. Szmytka, and S. Tabibian, Probability density functions: from porosities to fatigue lifetime, Int. J. Fatigue, vol.63, pp.127-136, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00961217

C. Cheng, G. Choi, R. Herfkens, and C. Taylor, The effect of aging on deformations of the superficial femoral artery resulting from hip and knee flexion: Potential clinical implications, J. Vasc. Interv. Radiol, vol.21, issue.2, pp.195-202, 2010.

Q. Chen and G. A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng. R Rep, vol.87, pp.1-57, 2015.

W. S. Chung, C. S. Park, K. B. Seung, P. J. Kim, J. M. Lee et al., The incidence and clinical impact of stent strut fractures developed after drugeluting stent implantation, Int. J. Cardiol, vol.125, issue.3, pp.325-331, 2008.

A. Constantinescu, K. Van-dang, and M. H. Maitournam, A unified approach for high and low cycle fatigue based on shakedown concepts, Fatigue Fract. Eng. Mater. Struct, vol.26, pp.561-568, 2003.

G. Coppi, R. Moratto, J. Veronesi, E. Nicolosi, and R. Silingardi, Carotid artery stent fracture identification and clinical relevance, J. Vasc. Surg, vol.51, issue.6, pp.1397-405, 2010.

E. Donnelly, Geometry effect in the fatigue behaviour of microscale 316L stainless steel specimens, 2012.

E. Dordoni, A. Meoli, W. Wu, G. Dubini, F. Migliavacca et al., Fatigue behaviour of nitinol peripheral stents: the role of plaque shape studied with computational structural analyses, Med. Eng. Phys, vol.36, issue.7, pp.842-849, 2014.

E. Dordoni, L. Petrini, W. Wu, F. Migliavacca, G. Dubini et al., Computational modeling to predict fatigue behavior of NiTi stents: what do we need?, J. Funct. Biomater, vol.6, issue.2, p.299, 2015.

H. A. Santos, F. Auricchio, and M. Conti, Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity-damage model approach, J. Mech. Behav. Biomed, vol.15, pp.78-92, 2012.

J. Foerst, T. Ball, and A. V. Kaplan, Postmortem in situ micro-CT evaluation of coronary stent fracture, Catheter Cardiovasc. Interv, vol.76, issue.4, pp.527-558, 2010.

K. Gall and H. Sehitoglu, The role of texture in tensioncompression asymmetry in polycrystalline NiTi, Int. J. Plast, vol.15, pp.69-92, 1999.

L. Garcia, M. R. Jaff, C. Metzger, G. Sedillo, A. Pershad et al., Wire-interwoven nitinol stent outcome in the superficial femoral and proximal popliteal arteries twelve-month results of the superb trial, Circ. Cardiovasc. Interv, vol.8, issue.5, p.937, 2015.

M. Garcia-toca, H. E. Rodriguez, P. A. Naughton, A. Keeling, S. V. Phade et al., Are carotid stent fractures clinically significant?, Cardiovasc. Intervent Radiol, vol.35, pp.263-267, 2012.

S. Garg and P. W. Serruys, Coronary stents: current status, J. Am. Coll. Cardiol, vol.56, issue.10, pp.1-42, 2010.

D. Gastaldi, V. Sassi, L. Petrini, M. Vedani, S. Trasatti et al., Continuum damage model for bioresorbable magnesium alloy devices-application to coronary stents, J. Mech. Behav. Biomed. Mater, vol.4, pp.352-365, 2011.

R. Glenn and J. Lee, Accelerated pulsite fatigue testing of Ni-Ti coronary stents, Proceedings of the Second International Conference on Shape Memory and Superelastic Technologies, 1997.

X. Gong, A. Pelton, T. Duerig, N. Rebelo, and K. Perry, Finite element analysis and experimental evaluation of superelastic nitinol stent, Proceedings of the International Conference on Shape Memory and Superelastic Technologies (SMST2003), pp.453-462, 2003.

J. A. Grogan, S. B. Leen, and P. E. Mchugh, Comparing coronary stent material performance on a common geometric platform through simulated bench testing, J. Mech. Behav. Biomed. Mater, vol.12, pp.129-138, 2012.

J. A. Grogan, S. B. Leen, and P. E. Mchugh, Computational micromechanics of bioabsorbable magnesium stents, J. Mech. Behav. Biomed. Mater, vol.34, pp.93-105, 2014.

R. Guerchais, F. Morel, N. Saintier, and C. Robert, Influence of the microstructure and voids on the high-cycle fatigue strength of 316l stainless steel under multiaxial loading, Fatigue Fract. Eng. Mater. Struct, vol.38, issue.9, pp.1087-1104, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01309594

D. O. Halwani, P. P. Anderson, B. C. Brott, A. S. Anayiotos, and J. E. Lemons, The role of vascular calcificationin inducing fatigue and fracture of coronary stents, J. Biomed. Mater. Res. B Appl. Biomater, vol.100, issue.1, pp.292-304, 2012.

S. M. Harvey, Nitinol stent fatigue in a peripheral human artery subjected to pulsatile and articulation loading, J. Mater. Eng. Perform, vol.20, pp.697-705, 2011.

W. Higashiura, Y. Kubota, S. Sakaguchi, N. Kurumatani, M. Nakamae et al., Prevalence, factors, and clinical impact of self-expanding stent fractures following iliac artery stenting, J. Vasc. Surg, vol.49, issue.3, pp.645-652, 2009.

H. M. Hsiao, A. Nikanorov, S. Prabhu, and M. K. Razavi, Respiration-induced kidney motion on cobalt-chromium stent fatigue resistance, J. Biomed. Mater. Res. B Appl. Biomater, vol.91, issue.2, pp.508-516, 2009.

H. M. Hsiao, S. Prabhu, A. Nikanorov, and M. Razavi, Renal artery stent bending fatigue analysis, J. Med. Devices, vol.1, issue.2, pp.113-118, 2006.

H. M. Hsiao and M. T. Yin, An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents, Biomed. Microdevices, vol.16, issue.1, pp.133-174, 2014.

, International Standard ISO 25539-2. Cardiovascular implants-endovascular devices-Part 2: Vascular stents, 2012.

M. Jabbado and H. Maitournam, A high-cycle fatigue life model for variable amplitude multiaxial loading, Fatigue Fract. Eng. Mater. Struct, vol.31, issue.1, pp.67-75, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00418562

B. A. James and R. A. Sire, Fatigue-life assessment and validation techniques for metallic vascular implants, Biomaterials, vol.31, issue.2, pp.181-186, 2010.

K. Kapnisis, G. Constantinides, H. Georgiou, D. Cristea, C. Gabor et al., Multi-scale mechanical investigation of stainless steel and cobalt-chromium stents, J. Mech. Behav. Biomed. Mater, vol.40, pp.240-251, 2014.

K. K. Kapnisis, D. O. Halwani, B. C. Brott, P. G. Anderson, J. E. Lemons et al., Stent overlapping and geometric curvature influence the structural integrity and surface characteristics of coronary nitinol stents, J. Mech. Behav. Biomed. Mater, vol.20, pp.227-236, 2013.

S. Kinkel, N. Wollmerstedt, J. A. Kleinhans, C. Hendrich, and C. Heisel, Patient activity after total hip arthroplasty declines with advancing age, Clin. Orthop. Relat. Res, vol.467, issue.8, pp.2053-2058, 2009.

D. C. Lagoudas, D. J. Hartl, Y. Chemisky, L. Machado, and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, Int. J. Plast, vol.32, pp.155-183, 2012.

S. Lewitton and A. Babaev, Superficial femoral artery stent fracture that led to perforation, hematoma and deep venous thrombosis, J. Invasive Cardiol, vol.20, issue.9, pp.479-81, 2008.

J. Li, Q. Luo, Z. Xie, Y. Li, and Y. Zeng, Fatigue life analysis and experimental verification of coronary stent, Heart Vessels, vol.25, issue.4, pp.333-337, 2010.

Y. Lin, X. Tang, W. Fu, R. Kovach, J. C. George et al., Stent fractures after superficial femoral artery stenting: risk factors and impact on patency, J. Endovasc. Ther, vol.22, issue.3, pp.319-326, 2015.

R. V. Marrey, R. Burgermeister, R. B. Grishaber, and R. ,

O. Ritchie, Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis, Biomaterials, vol.27, 1988.

J. P. Mcgarry, B. P. O'donnell, P. E. Mchugh, and J. G. Mcgarry, Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling, Comput. Mater. Sci, vol.31, pp.421-438, 2004.

A. Meoli, E. Dordoni, L. Petrini, F. Migliavacca, G. Dubini et al., Computational study of axial fatigue for peripheral nitinol stents, J. Mater. Eng. Perform, vol.23, issue.7, pp.2606-2613, 2014.

S. Morlacchi, G. Pennati, L. Petrini, G. Dubini, and F. ,

. Migliavacca, Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement, J. Biomech, vol.47, issue.4, pp.899-907, 2014.

Z. Moumni, W. Zaki, and H. Maitournam, Cyclic behaviour and energy approach of the fatigue of Shape Memory Alloys, J. Mech. Mater. Struct, vol.4, issue.2, pp.395-411, 2009.

S. Mu¨ller-hu¨lsbeck, P. J. Scha¨fer, N. Charalambous, H. Yagi, M. Heller et al., Comparison of secondgeneration stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design, J. Endovasc. Ther, vol.17, issue.6, pp.767-776, 2010.

N. Neil, Stent fracture in the superficial femoral and proximal popliteal arteries: literature summary and economic impacts, Perspect. Vasc. Surg. Endovasc. Ther, vol.25, issue.1-2, pp.20-27, 2013.

M. Nichols, N. Townsend, P. Scarborough, and M. Rayner, Cardiovascular disease in europe 2014: epidemiological update, Eur. Heart J, vol.35, issue.42, pp.2950-2959, 2014.

A. Nikanorov, H. B. Smouse, K. Osman, M. Bialas, S. Shrivastava et al., Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions, J. Vasc. Surg, vol.48, issue.2, pp.435-440, 2008.

F. Paulsen and J. Waschke, Sobotta Atlas of Human Anatomy

M. Peigney, Shakedown theorems and asymptotic behaviour of solids in non-smooth mechanics, Eur. J. Mech. A, vol.29, issue.5, pp.784-793, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00839292

A. R. Pelton, V. Schroeder, M. R. Mitchell, X. Gong, M. Barney et al., Fatigue and durability of Nitinol stents, J. Mech. Behav. Biomed, vol.1, pp.153-164, 2008.

L. Petrini, W. Wu, E. Dordoni, A. Meoli, F. Migliavacca et al., Fatigue behavior characterization of nitinol for peripheral stents, Funct. Mater. Lett, vol.05, issue.01, p.1250012, 2012.

L. Petrini, E. Dordoni, W. Wu, C. Guala, C. Silvestro et al., Fatigue resistance of Nitinol peripheral stents, Proceedings of 6th ECCOMAS Conference on Smart Structures and Materials, 2013.

N. Rebelo, A. Zipse, M. Schlun, and G. Dreher, A material model for the cyclic behavior of nitinol, J. Mater. Eng. Perform, vol.20, pp.605-612, 2011.

S. W. Robertson, C. P. Cheng, and M. K. Razavi, Biomechanical response of stented carotid arteries to swallowing and neck motion, J. Endovasc Ther, vol.15, issue.6, pp.663-71, 2008.

S. W. Robertson, D. B. Jessup, I. J. Boero, and C. P. Cheng, Right renal artery in vivo stent fracture, J. Vasc. Interv. Radiol, vol.19, issue.3, pp.439-442, 2008.

S. W. Robertson, A. R. Pelton, and R. O. Ritchie, Mechanical fatigue and fracture of Nitinol, Int. Mater. Rev, vol.57, issue.1, pp.1-37, 2012.

S. W. Robertson and R. O. Ritchie, A fracture-mechanicsbased approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube, J. Biomed. Mater. Res. B, vol.84, issue.1, pp.26-33, 2008.

A. Runciman, D. Xu, A. R. Pelton, and R. O. Ritchie, An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices, Biomaterials, vol.32, pp.4987-4993, 2011.

D. Scheinert, S. Scheinert, J. Sax, C. Piorkowski, S. Braunlich et al., Prevalence and clinical impact of stent fractures after femoropopliteal stenting, J. Am. Coll. Cardiol, vol.45, pp.312-315, 2005.

G. Shechter, J. R. Resar, and E. R. Mcveigh, Displacement and velocity of the coronary arteries: cardiac and respiratory motion, IEEE Trans. Med. Imaging, vol.25, issue.3, pp.369-375, 2006.

, Sources: Cdc.gov-heart disease facts american heart association-2015 heart disease and stroke update, compiled by aha, cdc, nih and other governmental sources, 2014.

A. C. Souza, E. N. Mamiya, and N. Zouain, Three-dimensional model for solids undergoing stress-induced phase transformations, Eur. J. Mech. A-Solid, vol.17, pp.789-806, 1998.

C. A. Sweeney, P. E. Mchugh, J. P. Mcgarry, and S. B. Leen, Micromechanical methodology for fatigue in cardiovascular stents, Int. J. Fatigue, vol.44, p.80, 2012.

C. A. Sweeney, B. O'brien, F. P. Dunne, P. E. Mchugh, and S. B. Leen, Strain-gradient modelling of grain size effects on fatigue of cocr alloy, Acta Mater, vol.78, pp.341-353, 2014.

C. A. Sweeney, B. O'brien, F. P. Dunne, P. E. Mchugh, and S. B. Leen, Micro-scale testing and micromechanical modelling for high cycle fatigue of cocr stent material, J. Mech. Behav. Biomed. Mater, vol.46, pp.244-260, 2015.

C. A. Sweeney, B. O'brien, P. E. Mchugh, and S. B. Leen, Experimental characterisation for micromechanical modelling of CoCr stent fatigue, Biomaterials, vol.35, pp.36-48, 2014.

R. M. Tabanli, N. K. Simha, and B. T. Berg, Mean strain effects on the fatigue properties of superelastic NiTi. Metall, Mater. Trans. A, vol.32, pp.1866-1869, 2001.

, Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff, US Food and Drug Administration

, Food and Drug Administration, Centre for Devices and Radiological, Health, 2010.

K. Van-dang, High-cycle metal fatigue in the context of mechanical design, CISM Courses and, pp.57-88, 1999.

F. M. Weafer and M. S. Bruzzi, Influence of microstructure on the performance of nitinol: a computational analysis, J. Mater. Eng. Perform, vol.23, issue.7, pp.2539-2544, 2014.

S. Weiss, H. Szymczak, and A. Meissner, Fatigue and endurance of coronary stents, Materialwissenschaft und Werkstofftechnik, vol.40, issue.1-2, pp.61-64, 2009.

S. Wiersma, F. Dolan, and D. Taylor, Fatigue and fracture in materials used for micro-scale biomedical components, Biomed. Mater. Eng, vol.16, issue.2, pp.137-146, 2006.

S. Wiersma and D. Taylor, Fatigue of materials used in microscopic components, Fatigue Fract. Eng. Mater. Struct, vol.28, issue.12, pp.1153-1160, 2005.

, World Health Organization (WHO), 2014.

W. Zaki and Z. Moumni, A 3D model of the cyclic thermomechanical behavior of shape memory alloys, J. Mech. Phys. Solids, vol.55, issue.11, pp.2427-2454, 2007.