N. Baddoo, Stainless steel in construction: a review of research, applications, challenges and opportunities, J Constr Steel Res, vol.64, pp.1199-206, 2008.

J. Polak, K. Obrtlik, and M. Hajek, Cyclic plasticity in type 316L austenitic stainless steel, Fatigue Fract Eng Mater Struct, vol.17, pp.773-82, 1994.

M. Pham, C. Solenthaler, K. Janssens, and S. Holdsworth, Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel, Mater Sci Eng A, vol.528, issue.7-8, pp.3261-3270, 2011.

M. Gerland and P. Violan, Secondary cyclic hardening and dislocation structures in type 316 stainless steel at 600C, Mater. Sci. Eng, vol.84, issue.0, pp.23-33, 1986.

R. Alain, P. Violan, and J. Mendez, Low cycle fatigue behavior in vacuum of a 316L type austenitic stainless steel between 20 and 600C. Part I: fatigue resistance and cyclic behavior, Mater Sci Eng A, vol.229, pp.87-94, 1997.

J. Lemaitre and J. Chaboche, Mechanics of solid materials, 1994.

J. Huang, J. Yeh, S. Jeng, C. Chen, and R. Kuo, High-cycle fatigue behavior of type 316L stainless steel, Mat Trans, vol.47, pp.409-426, 2006.

E. Puchi-cabrera, M. Staia, C. Tovar, and E. Ochoa-pérez, High cycle fatigue behavior of 316L stainless steel, Int J Fatigue, vol.30, issue.12, pp.2140-2146, 2008.

K. Mohammad, E. Zainudin, M. Salit, N. Zahari, and A. Ali, Experimental determination of the fatigue behavior of austenitic 316L stainless steel under fatigue and creep-fatigue tests at high temperature, Int J Metal Steel Res Tech, vol.1, issue.1, pp.1-11, 2013.

S. Amiable, S. Chapuliot, A. Constantinescu, and A. Fissolo, A comparison of lifetime prediction methods for a thermal fatigue experiment, Int J Fatigue, vol.28, issue.7, pp.692-706, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00111459

S. Amiable, S. Chapuliot, A. Constantinescu, and A. Fissolo, A computational lifetime prediction for a thermal shock experiment. Part I: thermomechanical modeling and lifetime prediction, Fatigue Fract Eng Mater Struct, vol.29, pp.209-226, 2009.

S. Amiable, S. Chapuliot, A. Constantinescu, and A. Fissolo, A computational lifetime prediction for a thermal shock experiment. part II: discussion on different fatigue criteria, Fatigue Fract Eng Mater Struct, vol.29, pp.219-246, 2009.

L. Pécheur, A. Curtit, F. Clavel, M. Stephan, J. Rey et al., Thermomechanical FE model with memory effect for 304L austenitic stainless steel presenting microstructure gradient, Int J Fatigue, vol.45, pp.106-121, 2012.

A. Laamouri, H. Sidhom, and C. Braham, Evaluation of residual stress relaxation and its effect on fatigue strength of AISI 316L stainless steel ground surfaces: Experimental and numerical approaches, Int J Fatigue, vol.48, pp.109-130, 2013.

G. Winters and M. Nutt, Stainless steel for medical and surgical applications, ASMT International, 2003.

D. Bombac, M. Brojan, P. Fajfar, F. Kosel, and R. Turk, Review of materials in medical applications, Mater Geoenv, vol.54, pp.471-99, 2007.

C. Dumoulin and B. Cochelin, Mechanical behaviour of balloon expandable stents, J Biomech, vol.33, pp.1461-70, 2000.

U. Food and D. Administration, Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff

F. Harewood and P. Mchugh, Modeling of size dependent failure in cardiovascular stent struts under tension and bending, Ann Biomed Eng, vol.35, issue.9, pp.1539-53, 2007.

B. Murphy, P. Savage, P. Mchugh, and D. Quinn, The stressstrain behavior of coronary stent struts is size dependent, Ann Biomed Eng, vol.31, pp.686-91, 2003.

B. Murphy, H. Cuddy, F. Harewood, T. Connolley, and P. Mchugh, The influence of grain size on the ductility of micro-scale stainless steel stent struts, J Mater Sci: Mater Med, vol.17, issue.1, pp.1-6, 2006.

X. You, T. Connolley, P. Mchugh, H. Cuddy, and C. Motz, A combined experimental and computational study of deformation in grains of biomedical grade 316LVM stainless steel, Acta Mater, vol.54, pp.4825-4865, 2006.

S. Wiersma, F. Dolan, and D. Taylor, Fatigue and fracture in materials used for microscale biomedical components, Bio-med Mater Eng, vol.16, issue.2, pp.137-183, 2006.

T. Connolley, P. E. Mchugh, and M. Bruzzi, A review of deformation and fatigue of metals at small size scales, Fatigue Fract Eng Mater Struct, vol.28, issue.12, pp.1119-52, 2005.

S. Wiersma and D. Taylor, Fatigue of materials used in microscopic components, Fatigue Fract Eng Mater Struct, vol.28, issue.12, pp.1153-60, 2005.

E. Donnelly, Geometry effect in the fatigue behaviour of microscale 316L stainless steel specimens, 2012.

H. Santos, F. Auricchio, and M. Conti, Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity-damage model approach, J Mech Behav Biomed, vol.15, pp.78-92, 2012.

O. Barrera, A. Makradi, M. Abbadi, M. Azaouzi, and S. Belouettar, On high-cycle fatigue of 316L stents, Comput Methods Biomech Biomed Eng, vol.0, pp.1-12, 2012.

J. Mcgarry, B. Donnell, P. Mchugh, and J. Mcgarry, Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling, Comput Mater Sci, vol.31, pp.421-459, 2004.

C. Sweeney, P. Mchugh, J. Mcgarry, and S. Leen, Micromechanical methodology for fatigue in cardiovascular stents, Int J Fatigue, vol.44, pp.202-218, 2012.

M. Azaouzi, A. Makradi, and S. Belouettar, Fatigue life prediction of cardiovascular stent using finite element method, Comput Methods Biomech Biomed Eng, vol.15, issue.S1, pp.93-98, 2012.

F. Auricchio, D. Loreto, M. Sacco, and E. , Finite-element analysis of a stenotic artery revascularization through a stent insertion, Comput Methods Biomech Biomed Eng, vol.4, issue.3, pp.249-63, 2001.

A. Constantinescu, D. Van, K. Charkaluk, and E. , A unified approach for high and low cycle fatigue based on shakedown concepts, Fatigue Fract Eng Mater Struct, vol.26, pp.561-569, 2003.

. Dang-van-k, High-cycle metal fatigue in the context of mechanical design, CISM courses and lectures, vol.392, pp.57-88, 1999.

S. Manson, Behaviour of materials under conditions of thermal stresses, 1953.

L. Coffin, A study of the effects of cyclic thermal stresses on a ductile metal, Trans ASME, pp.931-50, 1953.

A. Korsunsky, D. Dini, F. Dunne, and M. Walsh, Comparative assessment of dissipated energy and other fatigue criteria, Int J Fatigue, vol.29, issue.9, pp.1990-1995, 2007.

E. Charkaluk and A. Constantinescu, Dissipative aspects in high cycle fatigue, Mech Mater, vol.41, issue.5, pp.483-94, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00376738

J. Grogan, S. Leen, and P. Mchugh, Influence of statistical size effects on the plastic deformation of coronary stents, J Mech Behav Biomed, vol.20, pp.61-76, 2013.

J. Mcgarry, B. Donnell, R. Mcmeeking, P. Mchugh, Ø. 'cearbhaill et al., Computational examination of the effect of material inhomogeneity on the necking of stent struts under tensile loading, J Appl Mech, vol.74, issue.5, pp.978-89, 2007.

F. Hofmann, G. Bertolino, A. Constantinescu, and M. Ferjani, Numerical exploration of the Dang Van high cycle fatigue criterion: application to gradient effects, J Mech Mater Struct, vol.4, issue.2, pp.293-308, 2009.

G. Bertolino, A. Constantinescu, M. Ferjani, and P. Treiber, A multiscale approach of fatigue and shakedown for notched structures, Theor Appl Fract Mech, vol.48, issue.2, pp.140-51, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167744

R. Guerchais, C. Robert, F. Morel, and N. Saintier, Micromechanical study of the loading path effect in high cycle fatigue, Int J Fatigue, vol.59, issue.0, pp.64-75, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084146

R. Guerchais, N. Saintier, F. Morel, and C. Robert, Micromechanical investigation of the influence of defects in high cycle fatigue, Int J Fatigue, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084156

D. Mcdowell and F. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation, Int J Fatigue, vol.32, issue.9, pp.1521-1563, 2010.

C. Sweeney, W. Vorster, S. Leen, E. Sakurada, P. Mchugh et al., The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation, J Mech Phys Solids, vol.61, pp.1224-1264, 2013.

C. Sweeney, B. O'brien, P. Mchugh, and S. Leen, Experimental characterisation for micromechanical modelling of CoCr stent fatigue, Biomaterials, vol.35, pp.36-48, 2014.

M. Lê, Propagation de fissure par fatigue en présence d'une pré-déformation et de contraintes résiduelles, 2013.

. Cast3m, Documentation Cast3M, 2013.

R. Skelton, Energy criterion for high temperature low cycle fatigue failure, Mater Sci Tech SER, vol.7, pp.427-466, 1991.

R. Skelton, Cyclic hardening, softening, and crack growth during high temperature fatigue, Mater Sci Tech SER, vol.9, pp.1001-1009, 1993.

E. Morhácová, Relation between monte carlo simulations of grain growth and real structures, Crystal Res Technol, vol.30, issue.1, pp.9-12, 1995.

A. Benallal and D. Marquis, Constitutive equations for nonproportional cyclic elastoviscoplasticity, J Eng Mater -T ASME, vol.109, pp.326-362, 1987.
URL : https://hal.archives-ouvertes.fr/hal-01718246

E. Krempl and F. Khan, Rate (time)-dependant deformation behavior: an overview of some properties of metal and solid polymers, Int J Plasticity, vol.19, pp.1069-95, 2003.

J. Chaboche, D. Van, K. Cordier, and K. , Modelisation of the strain memory effect on the cycle hardening of 316L stainless steel, Proceedings SMIRT 5, 1979.

W. Pilkey and D. Pilkey, Peterson? stress concentration factors, 2008.

J. Fayard, A. Bignonnet, and K. Van, Fatigue design criterion formability welded structures, Fatigue Fract Eng Mater Struct, vol.19, issue.6, pp.723-732, 1996.

D. Van, K. Bignonnet, A. Fayard, J. L. Janosch, and J. J. , Assessment of welded structures by a local multiaxial fatigue approach, Fatigue Fract Eng Mater Struct, vol.24, issue.5, pp.369-76, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00111337

F. Cano, A. Constantinescu, and H. Maitournam, Critere de fatigue polycyclique pour des materiaux anisotropes: application aux monocristaux, CR Mecanique, vol.332, issue.2, pp.115-136, 2004.

V. Monchiet, E. Charkaluk, and D. Kondo, A plasticity-damage based micromechanical modelling in high cycle fatigue, CR Mecanique, vol.334, issue.2, pp.129-165, 2006.

D. Van, K. Griveau, B. Message, and O. , On a new multiaxial fatigue limit criterion: theory and application, Biaxial and multiaxial fatigue, pp.479-96, 1989.

M. Ferjani, D. Averbuch, and A. Constantinescu, Semianalytical solution for the stress distribution in notched tubes, Int J Fatigue, vol.33, issue.4, pp.557-67, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00544303

M. Ferjani, D. Averbuch, and A. Constantinescu, A computational approach for the fatigue design of threaded connections, Int J Fatigue, vol.33, pp.610-633, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00544296

P. Wackers, M. Alquezar-getan, A. Constantinescu, H. Maitournam, and V. Arrieta, A modeling approach to predict fretting fatigue on highly loaded blade roots, J Eng Gas Turbines Power, vol.132, issue.8, pp.1-9, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00525622

S. Subash, Fatigue of materials, 1998.

A. Pelton, V. Schroeder, M. Mitchell, X. Gong, M. Barney et al., Fatigue and durability of Nitinol stents, J Mech Behav Biomed, vol.1, pp.153-64, 2008.

M. Maitournam, D. Van, K. Flavenot, and J. , Fatigue design of notched components with stress gradients and cyclic plasticity, Adv Eng Mater, vol.11, issue.9, pp.750-754, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00487509

D. Van, K. Maitournan, H. Flavenot, and J. , Security and reliability of damaged structures and defective materials. NATO science for peace and security series c: environmental security, pp.325-361, 2009.

D. Bucchianico and A. , Coefficient of determination (R2), Ltd, 2008.

S. Tabibian, E. Charkaluk, A. Constantinescu, F. Szmytka, and A. Oudin, TMF-LCF life assessment of a Lost Foam Casting A319 aluminum alloy, Int J Fatigue, vol.53, issue.0, pp.75-81, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00757313