F. Xu, N. Aravas, and P. Sofronis, Constitutive modeling of solid propellant materials with evolving microstructural damage, Journal of the Mechanics and Physics of Solids, vol.56, pp.2050-2073, 2008.

R. A. Schapery, A micromechanical model for non-linear viscoelastic behavior of particle reinforced rubber with distributed damage, Engineering Fracture Mechanic, vol.25, pp.845-853, 1986.

J. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects, Computer Methods in Applied Mechanics and Engineering, vol.60, pp.153-173, 1987.

P. Letallec and C. Rahier, Numerical models of steady rolling for nonlinear viscoelastic structures in finite deformations, International Journal for Numerical Methods in Engineering, vol.37, pp.1159-1186, 1994.

A. Payne, The dynamic properties of carbon black-loaded natural rubber vulcanizates. part i, Journal of Applied Polymer Science, vol.6, pp.5357-5369, 1962.

A. Lion and C. Kardelky, The Payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales, International Journal of Plasticity, vol.20, pp.1313-1345, 2004.

G. Ravichandran and C. T. Liu, Modeling constitutive behavior of particulate composites undergoing damage, International Journal of Solids Structure, vol.32, pp.979-983, 1995.

A. Amin, A. Lion, S. Sekita, and Y. Okui, Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: experimental identification and numerical verification, International Journal of Plasticity, vol.22, pp.1610-1657, 2006.

A. Thorin, A. Azoug, and A. Constantinescu, Influence of prestrain on mechanical properties of highly-filled elastomers: measurements and modeling, Polymer Testing, vol.31, pp.978-986, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00723704

A. Azoug, A. Thorin, R. Neviere, R. Pradeilles-duval, and A. Constantinescu, Influence of orthogonal prestrain on the viscoelastic behavior of highly-filled elastomers, Polymer Testing, vol.32, pp.375-384, 2013.

S. Ozupek, Constitutive Modeling of High Elongation Solid Propellants, 1989.

A. Azoug, Micromecanismes et comportement macroscopique d'un elastomere fortement chargement, 2010.

S. Ozupek and E. Becker, Constitutive modeling of high-elongation solid propellants, Journal of Engineering Material and Technology-Trans. ASME, vol.114, pp.111-115, 1992.

D. Jalocha, A. Constantinescu, and R. Niviere, Prestrain dependent viscosity of highly filled elastomer: experiments and model, Mechanics of Time Dependent Material, 2015.

A. Azoug, A. Constantinescu, R. Pradeilles-duval, M. F. Vallat, R. Neviere et al., Effect of the sol fraction and hydrostatic deformation on the viscoelastic behavior of prestrained highly filled elastomers, Journal of Applied Polymer Science, vol.127, pp.1772-1780, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00761141

A. Azoug, A. Constantinescu, R. M. Duval, and R. Neviere, Influence of cross-linking and plasticizing on the viscoelasticity of highly-filled elastomers, Journal of Applied Polymer Science, vol.131, pp.201-215, 2014.

A. Azoug, A. Constantinescu, R. M. Duval, and R. Neviere, Influence of fillers and bonding agents on the viscoelasticity of highlyfilled elastomers, Journal of Applied Polymer Science, vol.131, pp.321-325, 2014.

H. Brinson, Polymer Engineering Science and Viscoelasticity. An Introduction, 2008.

W. Findley, J. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, 1976.

W. Knauss, L. Emri, and H. Lu, Handbook of Experimental Solid Mechanics, 2006.

M. Baumgaertel and H. Winter, Interrelation between continuous and discrete relaxation time spectra, Journal of Non-Newtonian Fluid Mechanics, vol.44, pp.15-36, 1992.

P. De-gennes, Scaling Concept in Polymer Physics, 1979.

S. Bhattacharjee, A. Swamy, and J. Daniel, Continuous relaxation and retardation spectrum method for viscoelastic characterization of asphalt concrete, Mechanics of Time Dependent Materials, vol.16, pp.287-305, 2012.

V. Shtrauss and A. Kalpinsh, Determination of relaxation and retardation spectrum from modulus of complex frequency domain material functions, Transactions on Applied and Theoretical Mechanics, vol.7, pp.29-35, 2012.

. Simo, . Hughes, and J. M. Wiggins, Interdisciplinary Applied Mathematics, 1998.

T. Smith, Empirical equations for representing viscoelastic functions and for deriving spectra, Journal of Polymer Science, vol.35, pp.39-50, 1971.

, A new biaxial tension test fixture for uniaxial testing machine: a validation for hyper elastic behavior of rubber-like materials, Journal of Testing and Evaluation, vol.35, pp.35-44, 2007.

M. Johlitz and S. Diebels, Characterisation of a polymer using biaxial tension tests, Archive of Applied Mechanics, vol.81, pp.1333-1349, 2011.

N. Bhatnagar, R. Bhardwaj, P. Selvakumar, and M. Brieu, Development of a biaxial tensile test fixture for reinforced thermoplastic composites, Polymer Testing, vol.26, pp.154-161, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00145802

D. Bellett, F. Morel, A. Morel, and J. Lebrun, A biaxial fatigue specimen for uniaxial loading, Strain, vol.47, pp.227-240, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00953546

I. Zidane, C. Zhang, D. Guines, L. Eotoing, and E. Ragneau, Optimisation of biaxial tensile specimen shape from numerical investigations, Numisheet, vol.45, pp.235-248, 2008.

. Correlmanuv, , 2005.

R. Bracewell, Fast Fourier Transform and its Applications, McGraw Hill Higher Education, 1999.