P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Cryst, vol.66, pp.213-221, 2010.

J. Adelaide, P. Finetti, I. Bekhouche, L. Repellini, J. Geneix et al., Integrated Profiling of Basal and Luminal Breast Cancers, Cancer Research, vol.67, issue.24, pp.11565-11575, 2007.
DOI : 10.1158/0008-5472.CAN-07-2536

M. A. Algire, D. Maag, and J. R. Lorsch, Pi Release from eIF2, Not GTP Hydrolysis, Is the Step Controlled by Start-Site Selection during Eukaryotic Translation Initiation, Molecular Cell, vol.20, issue.2, pp.251-262, 2005.
DOI : 10.1016/j.molcel.2005.09.008

P. J. Artymiuk, A. R. Poirrette, D. W. Rice, and P. Willett, Biotin carboxylase comes into the fold, Nature Structural Biology, vol.7, issue.2, pp.128-132, 1996.
DOI : 10.1016/0263-7855(88)80054-7

C. Cole, J. Barber, and G. Barton, The Jpred 3 secondary structure prediction server, Nucleic Acids Research, vol.36, issue.Web Server, pp.197-201, 2008.
DOI : 10.1093/nar/gkn238

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, 2010.

C. Fan, P. C. Moews, Y. Shi, C. T. Walsh, K. et al., A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and D-alanine:d-alanine ligase of Escherichia coli., Proceedings of the National Academy of Sciences, vol.92, issue.4, pp.1172-1176, 1995.
DOI : 10.1073/pnas.92.4.1172

M. V. Fawaz, M. E. Topper, and S. M. Firestine, The ATP-grasp enzymes, Bioorganic Chemistry, vol.39, issue.5-6, pp.185-191, 2011.
DOI : 10.1016/j.bioorg.2011.08.004

M. Y. Galperin and E. V. Koonin, A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity, Protein Science, vol.229, issue.12, pp.2639-2643, 1997.
DOI : 10.1002/pro.5560061218

F. Gebauer and M. W. Hentze, Molecular mechanisms of translational control, Nature Reviews Molecular Cell Biology, vol.19, issue.10, pp.827-835, 2004.
DOI : 10.1126/SCIENCE.1064023

A. G. Hinnebusch, AND THE GENERAL AMINO ACID CONTROL OF YEAST, Annual Review of Microbiology, vol.59, issue.1, pp.407-450, 2005.
DOI : 10.1146/annurev.micro.59.031805.133833

A. G. Hinnebusch, Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes, Microbiology and Molecular Biology Reviews, vol.75, issue.3, pp.434-467, 2011.
DOI : 10.1128/MMBR.00008-11

Y. Ho, A. Gruhler, A. Heilbut, G. D. Bader, L. Moore et al., Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry, Nature, vol.415, issue.6868, pp.180-183, 2002.
DOI : 10.1038/415180a

M. Holcik and N. Sonenberg, Translational control in stress and apoptosis, Nature Reviews Molecular Cell Biology, vol.8, issue.4, pp.318-327, 2005.
DOI : 10.1038/nrm1618

L. Holm and C. Sander, Dali: a network tool for protein structure comparison, Trends in Biochemical Sciences, vol.20, issue.11, pp.478-480, 1995.
DOI : 10.1016/S0968-0004(00)89105-7

H. K. Huang, H. Yoon, E. M. Hannig, and T. F. Donahue, GTP hydrolysis controls stringent selection of the AUG start codon during translation initiation in Saccharomyces??cerevisiae, Genes & Development, vol.11, issue.18, pp.2396-2413, 1997.
DOI : 10.1101/gad.11.18.2396

W. J. Kabsch, Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector, Journal of Applied Crystallography, vol.21, issue.6, pp.916-924, 1988.
DOI : 10.1107/S0021889888007903

R. A. Laskowski, M. Arthur, M. W. Moss, D. S. , T. et al., PROCHECK: a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, issue.2, pp.283-291, 1993.
DOI : 10.1107/S0021889892009944

J. Lorsch and T. Dever, Molecular View of 43 S Complex Formation and Start Site Selection in Eukaryotic Translation Initiation, Journal of Biological Chemistry, vol.285, issue.28, pp.21203-21207, 2010.
DOI : 10.1074/jbc.R110.119743

G. J. Miller, M. P. Wilson, P. W. Majerus, H. , and J. H. , Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1, Mol Cell, vol.3, issue.18, pp.4-5, 2005.

M. Naveau, C. Lazennec-schurdevin, M. Panvert, E. Dubiez, Y. Mechulam et al., Roles of yeast eIF2?? and eIF2?? subunits in the binding of the initiator methionyl-tRNA, Nucleic Acids Research, vol.41, issue.2, pp.1047-1057, 2013.
DOI : 10.1093/nar/gks1180

URL : https://hal.archives-ouvertes.fr/hal-00840386

K. Ohno, A. Okuda, M. Ohtsu, and G. Kimura, Genetic analysis of control of proliferation in fibroblastic cells in culture. I. Isolation and characterization of mutants temperature-sensitive for proliferation or survival of untransformed diploid rat cell line 3Y1, Somatic cell and molecular genetics, pp.17-28, 1984.
DOI : 10.1007/BF01534469

A. Okuda and G. Kimura, An Amino Acid Change in Novel Protein D123 Is Responsible for Temperature-Sensitive G1-Phase Arrest in a Mutant of Rat Fibroblast Line 3Y1, Experimental Cell Research, vol.223, issue.2, pp.242-249, 1996.
DOI : 10.1006/excr.1996.0078

N. Pedulla, R. Palermo, D. Hasenohrl, U. Blasi, P. Cammarano et al., The archaeal eIF2 homologue: functional properties of an ancient translation initiation factor, Nucleic Acids Research, vol.33, issue.6, pp.1804-1812, 2005.
DOI : 10.1093/nar/gki321

A. F. Perzlmaier, F. Richter, and W. Seufert, Translation Initiation Requires Cell Division Cycle 123 (Cdc123) to Facilitate Biogenesis of the Eukaryotic Initiation Factor 2 (eIF2), Journal of Biological Chemistry, vol.288, issue.30, pp.21537-21546, 2013.
DOI : 10.1074/jbc.M113.472290

A. Roll-mecak, P. Alone, C. Cao, T. E. Dever, and S. K. Burley, X-ray Structure of Translation Initiation Factor eIF2??: IMPLICATIONS FOR tRNA AND eIF2?? BINDING, Journal of Biological Chemistry, vol.279, issue.11, pp.10634-10642, 2004.
DOI : 10.1074/jbc.M310418200

D. I. Roper, T. Huyton, A. Vagin, and G. Dodson, The molecular basis of vancomycin resistance in clinically relevant Enterococci: Crystal structure of D-alanyl-D-lactate ligase (VanA), Proceedings of the National Academy of Sciences, vol.97, issue.16, 2000.
DOI : 10.1073/pnas.150116497

E. Schmitt, S. Blanquet, and Y. Mechulam, The large subunit of initiation factor aIF2 is a close structural homologue of elongation factors, The EMBO Journal, vol.21, issue.7, pp.1821-1832, 2002.
DOI : 10.1093/emboj/21.7.1821

URL : https://hal.archives-ouvertes.fr/hal-00770921

E. Schmitt, M. Naveau, and Y. Mechulam, Eukaryotic and archaeal translation initiation factor 2: A heterotrimeric tRNA carrier, FEBS Letters, vol.20, issue.2, pp.405-412, 2010.
DOI : 10.1016/j.febslet.2009.11.002

URL : https://hal.archives-ouvertes.fr/hal-00498253

E. Schmitt, M. Panvert, C. Lazennec-schurdevin, P. D. Coureux, J. Perez et al., Structure of the ternary initiation complex aIF2???GDPNP???methionylated initiator tRNA, Nature Structural & Molecular Biology, vol.430, issue.4, pp.450-454, 2012.
DOI : 10.1107/S0021889895007047

URL : https://hal.archives-ouvertes.fr/hal-00764443

L. Schrodinger, The PyMOL Molecular Graphics System, Version 1, 2010.

V. Sloane, C. Z. Blanchard, F. Guillot, and G. L. Waldrop, Site-directed Mutagenesis of ATP Binding Residues of Biotin Carboxylase. INSIGHT INTO THE MECHANISM OF CATALYSIS, Journal of Biological Chemistry, vol.276, issue.27, pp.24991-24996, 2001.
DOI : 10.1074/jbc.M101472200

S. Artigas, M. Loth, D. W. Wain, L. V. Gharib, S. A. Obeidat et al., Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function, Nature Genetics, vol.79, issue.11, pp.1082-1090, 2011.
DOI : 10.1371/journal.pgen.1000534

E. Stolboushkina, S. Nikonov, A. Nikulin, U. Blasi, D. J. Manstein et al., Crystal Structure of the Intact Archaeal Translation Initiation Factor 2 Demonstrates Very High Conformational Flexibility in the ??- and ??-Subunits, Journal of Molecular Biology, vol.382, issue.3, pp.680-691, 2008.
DOI : 10.1016/j.jmb.2008.07.039

L. C. Storoni, A. J. Mccoy, and R. J. Read, Likelihood-enhanced fast rotation functions, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.3, pp.432-438, 2004.
DOI : 10.1107/S0907444903028956

L. Yatime, Y. Mechulam, S. Blanquet, and E. Schmitt, Structural Switch of the ?? Subunit in an Archaeal aIF2???? Heterodimer, Structure, vol.14, issue.1, pp.119-128, 2006.
DOI : 10.1016/j.str.2005.09.020

URL : https://hal.archives-ouvertes.fr/hal-00502073

L. Yatime, Y. Mechulam, S. Blanquet, and E. Schmitt, Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states, Proceedings of the National Academy of Sciences, vol.104, issue.47, pp.18445-18450, 2007.
DOI : 10.1073/pnas.0706784104

URL : https://hal.archives-ouvertes.fr/hal-00767380

L. Yatime, E. Schmitt, S. Blanquet, and Y. Mechulam, Functional Molecular Mapping of Archaeal Translation Initiation Factor 2, Journal of Biological Chemistry, vol.279, issue.16, pp.15984-15993, 2004.
DOI : 10.1074/jbc.M311561200

URL : https://hal.archives-ouvertes.fr/hal-00770710

E. Zeggini, L. J. Scott, R. Saxena, B. F. Voight, J. L. Marchini et al., Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes, Nature Genetics, vol.447, issue.5, pp.638-645, 2008.
DOI : 10.1038/ng1457

G. Zhao, Z. Jin, Y. Wang, N. M. Allewell, M. Tuchman et al., -glutamyl ligase enzyme, Proteins: Structure, Function, and Bioinformatics, vol.261, issue.10, pp.1847-1854, 2013.
DOI : 10.1002/prot.24311

URL : https://hal.archives-ouvertes.fr/hal-00807197

L. Arnold, S. Hockner, and W. Seufert, Insights into the cellular mechanism of the yeast ubiquitin ligase APC/C-Cdh1 from the analysis of in vivo degrons, Molecular Biology of the Cell, vol.26, issue.5, pp.843-858, 2015.
DOI : 10.1091/mbc.E14-09-1342

G. David and J. Perez, Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline, Journal of Applied Crystallography, vol.42, issue.5, pp.892-900, 2009.
DOI : 10.1107/S0021889809029288

P. Gouet, E. Courcelle, D. I. Stuart, and F. Metoz, ESPript: analysis of multiple sequence alignments in PostScript, Bioinformatics, vol.15, issue.4, pp.305-308, 1999.
DOI : 10.1093/bioinformatics/15.4.305

URL : https://hal.archives-ouvertes.fr/hal-00314288

P. V. Konarev, V. V. Volkov, M. V. Petoukhov, and D. I. Svergun, 2.1, a program package for small-angle scattering data analysis, Journal of Applied Crystallography, vol.39, issue.2, pp.277-286, 2006.
DOI : 10.1107/S0021889806004699

M. Larkin, G. Blackshields, N. Brown, R. Chenna, P. Mcgettigan et al., Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, issue.21, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

M. S. Longtine, A. Mckenzie, D. J. Demarini, N. G. Shah, A. Wach et al., Additional modules for versatile and economical PCR???based gene deletion and modification in Saccharomyces cerevisiae, Yeast, vol.14, issue.10, pp.953-961, 1998.
DOI : 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.3.CO;2-L

B. W. Miles, J. B. Thoden, H. M. Holden, and F. M. Raushel, Inactivation of the Amidotransferase Activity of Carbamoyl Phosphate Synthetase by the Antibiotic Acivicin, Journal of Biological Chemistry, vol.277, issue.6, pp.4368-4373, 2002.
DOI : 10.1074/jbc.M108582200

G. J. Miller, M. P. Wilson, P. W. Majerus, H. , and J. H. , Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1, Mol Cell, vol.3, issue.18, pp.4-5, 2005.

T. Ouchi, T. Tomita, A. Horie, A. Yoshida, K. Takahashi et al., Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus, Nature Chemical Biology, vol.276, issue.4, pp.277-283, 2013.
DOI : 10.1186/1471-2105-5-113

A. F. Perzlmaier, F. Richter, and W. Seufert, Translation Initiation Requires Cell Division Cycle 123 (Cdc123) to Facilitate Biogenesis of the Eukaryotic Initiation Factor 2 (eIF2), Journal of Biological Chemistry, vol.288, issue.30, pp.21537-21546, 2013.
DOI : 10.1074/jbc.M113.472290

D. I. Roper, T. Huyton, A. Vagin, and G. Dodson, The molecular basis of vancomycin resistance in clinically relevant Enterococci: Crystal structure of D-alanyl-D-lactate ligase (VanA), Proceedings of the National Academy of Sciences, vol.97, issue.16, 2000.
DOI : 10.1073/pnas.150116497

M. Schwab, M. Neutzner, D. Mocker, and W. Seufert, Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC, The EMBO Journal, vol.20, issue.18, pp.5165-5175, 2001.
DOI : 10.1093/emboj/20.18.5165

R. S. Sikorski and P. Hieter, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, vol.122, pp.19-27, 1989.

D. I. Svergun, C. Barberato, and M. H. Koch, ??? a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, Journal of Applied Crystallography, vol.28, issue.6, pp.768-773, 1995.
DOI : 10.1107/S0021889895007047

A. Waterhouse, J. Procter, D. Martin, M. Clamp, and G. Barton, Jalview Version 2--a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, issue.9, pp.1189-1191, 2009.
DOI : 10.1093/bioinformatics/btp033

L. Yatime, Y. Mechulam, S. Blanquet, and E. Schmitt, Structural Switch of the ?? Subunit in an Archaeal aIF2???? Heterodimer, Structure, vol.14, issue.1, pp.119-128, 2006.
DOI : 10.1016/j.str.2005.09.020

URL : https://hal.archives-ouvertes.fr/hal-00502073

G. Zhao, Z. Jin, Y. Wang, N. M. Allewell, M. Tuchman et al., -glutamyl ligase enzyme, Proteins: Structure, Function, and Bioinformatics, vol.261, issue.10, pp.1847-1854, 2013.
DOI : 10.1002/prot.24311

URL : https://hal.archives-ouvertes.fr/hal-00807197