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CACHE MISS ESTIMATION FOR NON-STATIONARY
REQUEST PROCESSES

By Felipe Olmos∗,†, Carl Graham† and Alain Simonian∗

Orange Labs∗ and CMAP, École Polytechnique†

The aim of the paper is to evaluate the miss probability of a
Least Recently Used (LRU) cache, when it is offered a non-stationary
request process given by a Poisson cluster point process. First, we
construct a probability space using Palm theory, describing how to
consider a tagged document with respect to the rest of the request
process. This framework allows us to derive a general integral for-
mula for the expected number of misses of the tagged document.
Then, we consider the limit when the cache size and the arrival rate
go to infinity proportionally, and use the integral formula to derive
an asymptotic expansion of the miss probability in powers of the in-
verse of the cache size. This enables us to quantify and improve the
accuracy of the so-called Che approximation.

1. Introduction. Since the early days of the Web, cache servers have
been used to provide users faster document retrieval while saving network
resources. In recent years, there has been a renewed interest in the study of
these systems, since they are the building bricks of Content Delivery Net-
works (CDNs), a key component of today’s Internet. In fact, these systems
handle nowadays around 60% of all video traffic, and it is predicted that
this quantity will increase to more than 70% by 2019 [4]. Caches also play
an important role in the emergent Information Centric Networking (ICN)
architecture, that incorporates them ubiquitously into the network in order
to increase its overall capacity [1].

In order to improve network efficiency, cache servers are placed close to
the users, storing a subset of the catalog of available documents. Upon a
user request for a document:

• If the document is already stored in the cache, then the cache uploads
it directly to the user, without connecting to the repository server.
• Otherwise, the request is forwarded to the repository server, which up-

loads a copy to the user, and possibly to the cache for future requests.
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Since the cost of storage is a constraint, the cache can contain only a
fraction of the catalog, and needs to eliminate some documents to obtain
free space for new ones. Since the cache must decide to do so in real time,
it uses simple elimination heuristics, called cache eviction policies.

To simplify the analysis, we will assume that all documents have the same
size, and therefore that the disk of the cache can be represented as a list of
documents of size C ≥ 1.

We will here focus our efforts on the Least Recently Used (LRU) cache
eviction policy. It evicts content upon a user request as follows (see Figure 1):

• If the document is already stored in the cache, then it is moved to the
front of the list, while all documents that were in front of it are shifted
down by one slot.
• Otherwise, a copy of the requested document is placed at the front of

the list, and all other documents are shifted down by one slot except
the last document which is eliminated.

Intuitively, this simple policy works well, since highly requested docu-
ments should stay near the front of the list, whereas unpopular ones should
be quickly eliminated.

Hit Request 

Miss Request  
out 

Fig 1: The LRU eviction policy handling a hit and a miss request on a cache
of size C = 5.

Early theoretical studies on LRU caching performance further assumed
that the catalog is fixed and finite, and that documents there have each an
intrinsic probability to be requested independently, thus defining a popular-
ity distribution. The request process is then modeled as an i.i.d. sequence,
where at each time step a document is requested according to its popularity.
This framework is commonly referred to as the Independent Reference Model
(IRM) in the literature, see for instance [13].

While the IRM setting has been proved to be a good model for short
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time-scales, it is less accurate for larger ones. In fact, other phenomena
occurring within longer time-scales must also be taken into account, notably
the dynamic nature of the catalog and of user preferences.

In order to capture these phenomena, a new model based on Poisson clus-
ter point processes has been independently proposed by Traverso et al. [19]
and Olmos et al. [18]. It allows to address the catalog and preference dynam-
ics, and thus to obtain more accurate results in both large and small time
scales. Its properties have only received heuristic analysis in these works.

The object of the present paper is to build a sound mathematical frame-
work for the analysis of this model, and to provide rigorous proofs for the
estimation of the hit probability (or of the complementary miss probability).

Before describing our main contributions, we briefly review the literature
on caching performance, mentioning only papers relevant to our present
work (see [10] and references therein for a more comprehensive bibliography
of the subject). The modern treatment of the subject started with Fill and
Holst [9], which introduced the embedding of the request sequence into a
marked Poisson process, in order to analyze the related problem of the search
cost for the Move-to-Front list. Independently, Che et al. [3] also used marked
Poisson processes to model the requests. In their work, they express the hit
probability of a LRU cache in terms of a family of exit times of the documents
from the cache. In order to simplify the analysis, they approximated this
family by a single constant called the characteristic time. This heuristic,
called the “Che approximation” in the literature, proved to be empirically
accurate even outside of its original setting. The question of quantifying the
error incurred in the approximation has been partially answered by Fricker
et al. [13], where the authors provide a justification for a Zipf popularity
distribution when the cache size C grows to infinity and scales linearly with
the catalog size. The error incurred by the approximation is estimated for
the exit times, but not, however, for the hit probability.

In the present paper, we succeed in adapting the “Che approximation”
to the more complex setting of the cluster point process model. The ap-
proximation accuracy has been considered first by Leonardi and Torrisi [15],
where limit theorems for the exit time are provided for C going to infinity,
together with an upper bound of the error for the hit probability. However,
the latter bound depends on an additional variable, whose optimal value is
not explicitly given in terms of system parameters.

The contribution of our paper is threefold. In Sections 2 and 3, by means
of the Palm distribution for the system, we first provide a probability space
where an “average document” can be tagged and analyzed independently
from the rest. Secondly, in Section 4, thanks to the latter independence
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structure, we deduce an integral formula for the expected number of misses
for a document, generalizing the development in [18]. Thirdly, in Section 5,
using scaling methods, we deduce an asymptotic expansion for the average
number of misses, showing that the error term in the “Che approximation”
is of order O(1/C). In contrast to the upper bound provided in [15], our
error estimation depends simply on system parameters and can be readily
calculated. Section 6 is devoted to a numerical study validating the accuracy
of the asymptotic expansion. Section 7 contains concluding remarks, and
Section 8 details some technical proofs.

2. Request Model. Our request model consists in a cluster point pro-
cess on the real line R (see Figure 2). A ground process Γg, hereafter called
the catalog arrival process, dictates the consecutive arrivals of new doc-
uments to the catalog. We assume Γg to be a homogeneous Poisson process
with intensity γ > 0, and denote its generic arrival time by a.

Time 

Catalog Arrival Process 

Document Request Processes 

Total Request Process 

Fig 2: A sample of the document arrival and request processes. Top: Each
catalog arrival triggers a function representing the request intensity for the
corresponding document. Bottom: A sample of the document request pro-
cesses. Their superposition generates the total request process.

The cluster at an arrival time a of Γg is denoted by ξa, and belongs to
the space M#(R) of point processes on R. It represents the document
request process for the document arriving to the catalog at that time. We
assume that ξa is a Cox process directed by a stochastic intensity function
λa ≥ 0 having the following properties.
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• Given Γg, the intensities λa for a ∈ Γg are jointly independent.
• The intensities λa are causal : each function t 7→ λa(t) is zero for t < a;

thus requests for a document occur only after its arrival at the catalog.
• The distribution of λa is stationary : for each arrival time a ∈ R, the

processes λa(·) and λ0(· − a) have the same distribution.

These three conditions allow to sample the sequence (λa)a∈Γg using indepen-
dent samples of a canonical intensity function λ with support in [0,∞),
adequately shifted to every arrival time a.

For a document arriving at time a, we denote by Λa both the mean
function associated to the request intensity λa and the average number
of requests (with abuse of notation for conciseness)

Λa(t) =

∫ t

a
λa(u) du , t ≥ a , Λa = Λa(∞) .

We assume that Λa <∞ almost surely, and denote by Λ̄a the complemen-
tary mean function

Λ̄a(t) = Λa − Λa(t) =

∫ ∞
t

λa(u) du , t ≥ a .

When referring to the canonical document, which corresponds to an ar-
rival at time zero, we remove the time index a; for instance we write Λ and
Λ̄(t). The superposition of all processes ξa for a ∈ Γg given by

Γ =
∑
a∈Γg

ξa

constitutes the total request process for all documents. We assume that

(1) γ

∫ t

−∞
E
[
1− e−(Λa(t)−Λa(s))

]
da <∞

for t ≥ s. This is a sufficient and necessary condition for the process Γ to be
locally finite almost surely, see [5, Theorem 6.3.III].

3. The Point of View of a Document. The key of our analysis is
to tag one document of the system and treat the remaining process as an
external environment. To do this, we follow [6, p.279]. Let Qu,ν be the local
Palm distribution at point (u, ν) in R×M#(R) for the marked point process

Γ̃ =
∑
a∈Γg

δa,ξa
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constituted by the ground process Γg marked with the document request
processes, which constitutes as a Poisson point process on R × M#(R).
Define the mark-averaged Palm distribution Qu on M#(R) by

Qu(·) = E[Qu,ξu(·)] .

Under this distribution Qu, the process has the structure given by the fol-
lowing proposition, illustrated by Figure 3.

(1) Tagged Document (2) Rest of the Process 

Original Process Γ  

Distribution preserved 

Independent from each other 

Fig 3: Illustration of request process ξ under the averaged Palm distribution.
The original process is decomposed into: (1) the tagged document and (2)
the rest of the process. These are mutually independent, and the rest of the
process has the same distribution as the original process.

Proposition 1
Under the distribution Qu, the process Γ̃ has almost surely a point at time
u. Furthermore:

• The distribution of the mark ξu is the same as the original one.
• The distribution of the remaining process Γ̃ \ δu,ξu is the same than

that of the original process Γ̃.
• The mark ξu and the process Γ̃ \ δu,ξu are independent.

Proof. The Slivnyak-Mecke Theorem [6, Prop. 13.1.VII] characterizes
the Laplace functional of Poisson point processes under their Palm distri-
butions. Here, for (u, ν) in R ×M#(R), the Laplace functional Lu,ν of Γ̃
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under the Palm distribution Qu,ν can be expressed by

Lu,ν [f ] = e−f(u,ν) · L[f ]

for any measurable function f : R×M#(R)→ R+, where L is the Laplace
functional on the original probability space. The Laplace functional Lu under
Qu is consequently given by

Lu[f ] = E[Lu,ξu [f ]] = E
[
e−f(u,ξu)

]
L[f ] .

Note that the expectation in the right-hand side is the Laplace functional
of the point process δu,ξu . Since Laplace functionals characterize point pro-
cesses, the conclusion follows.

Proposition 1 allows us to consider a probability space for which there is
a document arrival at time a = 0, almost surely. We call this document the
tagged document, and the complementary process the rest.

In the next section, we shall see that for the LRU caching discipline, the
independence of the tagged document from the rest allows us to derive a
general integral formula for the miss probability.

4. A General Integral Formula. As stated in the previous section,
we will consider a tagged document at time zero, so that its associated
distribution is the canonical one. For a LRU cache with size C, let N and
µC be the random number of requests and number of misses for the tagged
document. The total miss probability is defined by

pC =
E[µC ]

E[N ]
,

which is also the average per-document hit ratio µC/N under the size biased
distribution of N . Since N is a mixed Poisson variable with random mean
Λ, we have

E[N ] = E[E[N |Λ]] = E[Λ] ,

and it is left to study µC .
Let (Θr)

N
r=1 be the sequence of request times for the tagged document,

with the understanding that it is the empty set if N = 0. The first request
being always a miss, the number of misses can be written as

(2) µC = 1{N ≥ 1}+ 1{N ≥ 2}
N∑
r=2

1{Request at Θr is a miss}.
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Under the LRU policy, a document requested at time s will be erased from
the cache at the first time, after the last request for this document, that C
distinct other documents have been requested.

For s ∈ R, let Xs = (Xs
t )t≥s denote the process that counts the number

of distinct documents in the rest of the process requested on the interval
[s, t]. We also define the family of exit times (T sC)s∈R as the first passage
time to level C of Xs. This quantity is the time that a document requested
at time s can spend in the cache before being evicted. Denoting by F s(ξa)
the first arrival time of ξa in [s,∞), the process Xs and exit times T sC can
be expressed as

(3)

{
Xs
t = #{(a, ξa) in Γ̃ \ δ0,ξ0 : F s(ξa) ≤ t} , t ≥ s ,

T sC = inf{t ≥ s : Xs
t = C} .

The above definitions allow us to express the miss events as

{Request at Θr is a miss} = {XΘr−1

Θr
≥ C} = {Θr > T

Θr−1

C } , r ≥ 2 ,

since such a miss occurs if and only if at least C distinct other documents
have been requested in the interval [Θr−1,Θr]. Hence (2) can be written as

(4) µC = 1{N ≥ 1}+ 1{N ≥ 2}
N∑
r=2

1
{

Θr > T
Θr−1

C

}
.

To proceed further, we study the consequences of the structure of the
cluster point process on the structure of the families Xs and T sC .

Proposition 2 (Characterization of Xs and T sC)
The process Xs = (Xs

t )t≥s defined by (3) is an inhomogeneous Poisson
process with intensity function

(5) Ξs(t) = E[Xs
t ] = γ

∫ t

−∞
E
[
1− e−(Λa(t)−Λa(s))

]
da , t ≥ s .

In particular, T sC − s
d
= TC , where TC = T 0

C is the exit time of a document
requested at time zero.

Proof. By condition (1), we have Ξs(t) <∞ for t ≥ s . Now, for h ≥ 0,
the process (Xs

u)s≤u≤t is defined by counting the points (a, ξa) in the rest

Γ̃ \ δ0,ξ0 such that F s(ξa) falls in [s, t]; on the other hand, the increment
Xs
t+h−Xs

t counts only those points such that F s(ξa) falls in (t, t+h]. Since
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the corresponding two subsets of R ×M#(R) are disjoint and Γ̃ \ δ0,ξ0 is
Poisson, we conclude that Xs has independent increments. In consequence,
since Xs is a counting process, it is a inhomogeneous Poisson process.

The mean function for this process is then given by

E[Xs
t ] = E

[∑
a∈Γg

1{F s(ξa) ∈ [s, t]}

]
= E

[∑
a∈Γg

1{ξa[s, t] ≥ 1}

]
.

Formula (5) follows from the latter expression and the fact that the mean
measure η of Γ̃ \ δ0,ξ0 is defined by

η([t1, t2]×B) = γ

∫ t2

t1

P[ξa ∈ B] da

for any Borel subset B of M#(R).

Equation (4), Proposition 2, and the independence between the tagged
document and the rest of the process now yield an integral formula for E[µC ].

Proposition 3
The expected number of misses is given by

(6) E[µC ] = E[m(TC)]

where TC = T 0
C denotes the exit time for a document requested at time zero,

see (3), and the function m is defined by

(7) m(t) = E

[∫ ∞
0
λ(u)e−(Λ(u+t)−Λ(u)) du

]
, t ≥ 0 .

Moreover, limt→∞ ↓ m(t) = m0, where m0 = E
[
1− e−Λ

]
.

The proof of Proposition 3 will follow from the following lemma, which
holds for a class of functionals of the holding times of a Poisson process.

Lemma 4 (Functionals of holding times)
Let ξ be an inhomogeneous Poisson process on [0,∞) with deterministic
intensity function λ. Let the mean function Λ satisfy Λ(∞) <∞, so that ξ
has a finite random number N of points (Θr)

N
r=1. Then, for any F : R+ → R,

E

[
1{N ≥ 2}

N∑
r=2

F (Θr −Θr−1)

]

=

∫ ∞
0

dwF (w)

∫ ∞
0

duλ(u)λ(u+ w)e−(Λ(u+w)−Λ(u)) .
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We refer to Section 8.1 for the proof of this lemma.

Proof of Proposition 3. Since N is a mixed Poisson random variable
with random mean Λ, the expectation of the first term on the r.h.s. of (4) is
P[N ≥ 1] = E

[
1− e−Λ

]
= m0. Consider now the second term on the r.h.s.

of (4). Since the family T sC for s ≥ 0 is defined on the rest of the process and

thus is independent from the request process ξ =
∑N

r=1 δΘr for the tagged
document, it holds that

E

[
1{N > 2}

N∑
r=2

1
{

Θr > T
Θr−1

C

}
| ξ

]

= E

[
1{n > 2}

n∑
r=2

1
{
tr > T

tr−1

C

}]∣∣∣∣∣
(n,t1,...,tn)=(N,Θ1,...,ΘN )

= E

[
1{n > 2}

n∑
r=2

1{tr − tr−1 > TC}

]∣∣∣∣∣
(n,t1,...,tn)=(N,Θ1,...,ΘN )

where the last equality follows from T sC−s
d
= TC (see Proposition 2). Taking

the expectation and summing with the expectation of the first term yields

E[µC ] = m0 + E

[
1{N > 2}

N∑
r=2

1{Θr −Θr−1 > TC}

]
.

Since the canonical intensity λ and exit time TC are independent from the
request process of the tagged document, Lemma 4 yields that

E[µC ] = m0 + E

[∫ ∞
0

dw 1{w > TC}
∫ ∞

0
duλ(u)λ(u+ w)e−(Λ(u+w)−Λ(u))

]
= m0 + E

[∫ ∞
0
λ(u)

(
e−(Λ(u+TC)−Λ(u))

)
du−

∫ ∞
0

λ(u)e−(Λ−Λ(u)) du

]
= E

[∫ ∞
0
λ(u)

(
e−(Λ(u+TC)−Λ(u))

)
du

]
,

where we use for the last equality that, since Λ(∞) = Λ and Λ(0) = 0,∫ ∞
0

λ(u)e−(Λ−Λ(u)) du =
[
e−(Λ−Λ(u))

]∞
0

= 1− e−Λ .

This last equation and dominated convergence imply that limt→∞ ↓ m(t) =
E
[
1− e−Λ

]
, which concludes the proof.
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The above analysis would identically apply if the random variable TC were
deterministic and equal to some positive constant t. This would correspond
to the cache discipline known as Time to Live (TTL), where the cache evicts
a document after a fixed amount of time t. Therefore, m(t) is simply the
average number of misses for a TTL cache of eviction time t. We can thus
regard the number of misses in a LRU cache as a time randomization of the
misses in a TTL cache.

Indeed, the integral formula (7) in Proposition 3 can by rewritten using
integration by parts as

m(t) = E

[∫ ∞
0

λ(u) e−(Λ(u)−Λ(u−t)) du

]
which can be informally interpreted with as follows. The exponential term

e−(Λ(u)−Λ(u−t))

is simply the conditional probability P[ξ[u− t, u] = 0 |λ]. Thus a request at
time u will contribute to the intensity of the miss process if there were no
requests in the interval [u − t, u], which is exactly a miss event in a t-TTL
cache. This relationship between the miss probabilities of TTL and LRU
caches has been already noted by Fofack et al. in [11].

5. Asymptotic Expansion. Following Proposition 3, it holds that
limt→∞ ↓ m(t) = m0 . Moreover, by Proposition 2, the exit time TC in-
creases to infinity with C. Hence, (6) and dominated convergence yield that

lim
C→∞

E[µC ] = m0 .

This formula is not very interesting, since it basically tells us that the first
request for a document is the unique miss for infinite capacity.

A more interesting way to derive asymptotics for E[µC ] is to scale some
system parameters with respect to C. An intuitively good choice is to scale
the catalog arrival rate γ proportionally to the cache size C. In the follow-
ing, with help of the results of the previous sections, we shall provide an
asymptotic expansion for E[µC ] as C grows large in this scaling.

We first note from Proposition 2 that the canonical exit time TC is the
first passage time to level C of an inhomogeneous Poisson process with
mean function Ξ = Ξ0. To pursue the analysis, we first prove a key relation
between Ξ and m.
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Proposition 5
The functions Ξ and m in (5) and (7) satisfy Ξ′(t) = γ m(t), and hence

Ξ(t) = γM(t) , where M(t) =

∫ t

0
m(s) ds , t ≥ 0 .

Proof. Since the processes λa(·) and λ0(·−a) have the same distribution,
and Λa(0) = 0 for a ≥ 0, we may write Ξ(t) as

Ξ(t) = γ

∫ 0

−∞
E
[
1− e−(Λ(t−a)−Λ(−a))

]
da+ γ

∫ t

0
E
[
1− e−Λ(t−a)

]
da .

We denote the first integral by I1(t) and the second by I2(t). The change of
variables a 7→ −a yields

I1(t) =

∫ 0

−∞
E
[
1− e−(Λ(t−a)−Λ(−a))

]
da =

∫ ∞
0
E
[
1− e−(Λ(t+a)−Λ(a))

]
da

and thus, using d
dae
−(Λ(t+a)−Λ(a)) = −(λ(t+ a)− λ(a))e−(Λ(t+a)−Λ(a)),

I ′1(t) =

∫ ∞
0
E
[
λ(t+ a)e−(Λ(t+a)−Λ(a))

]
da

= E
[
e−Λ(t) − 1

]
+ E

[∫ ∞
0
λ(a)e−(Λ(t+a)−Λ(a)) da

]
= E

[
e−Λ(t) − 1

]
+m(t) .

Now, the change of variables a 7→ t− a yields

I2(t) =

∫ t

0
E
[
1− e−Λ(t−a)

]
da =

∫ t

0
E
[
1− e−Λ(a)

]
da ,

and hence I ′2(t) = E
[
1− e−Λ(t)

]
. Thus Ξ′(t) = γ(I ′1(t) + I ′2(t)) = γ m(t) as

claimed. We conclude by integrating this, since Ξ(t) = 0.

A consequence of Proposition 5 is that Ξ(t) = y ⇔M(t) = y/γ and thus

(8) Ξ−1(y) = M−1

(
y

γ

)
, y ≥ 0 ,

(for definiteness, we consider left-continuous inverses). Besides, the exit time
TC is the first passage time to level C of an inhomogeneous Poisson process
with mean function Ξ (see Proposition 2), which can be expressed by

(9) TC = Ξ−1(T̂C) ,
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where T̂C is the first passage time to level C of an unit Poisson process and
has a Gamma(C, 1) distribution. From Proposition 3 and (9), we derive that

E[µC ] = E[m(TC)] = E
[
m(Ξ−1(T̂C))

]
, and (8) eventually yields that

(10) E[µC ] = E

[
m

(
M−1

(
T̂C
γ

))]
.

Now, the strong law of large numbers yields that limC→∞ T̂C/C = 1
almost surely, and thus (10) strongly suggests to consider the scaling

(11) C = γθ for some θ > 0 .

This scaling is quite natural, since Little’s law ([2, Section 3.1.2]) applied
to the cache system yields that C = γ E

[
T in
C

]
, where

T in
C =

∫ ∞
0
1{Object is in the cache at t} dt

is the sojourn time of an object in the cache. Note that we do consider
the objects without any requests as entering the system, but we set their
sojourn time to T in

C = 0. As a consequence, the asymptotic analysis under the
scaling (11) amounts to fixing the average sojourn time θ = E

[
T in
C

]
= C/γ

and the distribution of the canonical intensity function λ while letting C
grow to infinity.

Under the scaling (11), eq. (10) and limC→∞ T̂C/C = 1 a.s. imply using
dominated convergence that

lim
C→∞

E[µC ] = m(tθ) , tθ = M−1(θ) .

In the following, the quantity tθ will be called the characteristic time.
The asymptotics of E[µC ] will be expressed in terms of tθ. In this aim, we
first recall two basic results regarding the Gamma(C, 1) distribution.

Lemma 6
Let T̂C follow a Gamma(C, 1) distribution, and XC = T̂C

C . Then:

i) For any C > 1 and η > 0,

P[|XC − 1| ≥ η] ≤ 2e−C·ϕ(1+η) ,

where ϕ(x) = x−1−log x is the rate function of an exponential random
variable of parameter 1.
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ii) For any C > 1 and k > 1,

E
[
(XC − 1)k

]
= O(C−d

k
2
e) .

We refer to Section 8.2 for the classic proofs. We now formulate our central
result concerning the asymptotics for the average number of misses.

Theorem 7
Assume that the function m is twice continuously differentiable in (0,∞),
and let tθ = M−1(θ), see Prop. 5. Then, as C goes to infinity with the scaling
C = γθ for fixed θ > 0, it holds that

(12) E[µC ] = m(tθ) +
e(tθ)

C
+ o

(
1

C

)
where

e(tθ) =

[
θ2

2m(tθ)2

(
m′′(tθ)−

m′(tθ)
2

m(tθ)

)]
.

Proof. Define the function fθ by

fθ(z) = m(M−1(θz)) = m(tθz).

With the scaling C = γθ, Equation (10) can be then written as

(13) E[µC ] = E

[
fθ

(
T̂C
C

)]
.

Let again XC = T̂C/C as in Lemma 6, and fix η > 0. Write the expecta-
tion (13) as E[µC ] = AC +BC where

AC = E
[
fθ(XC)1|XC−1|≥η

]
, BC = E

[
fθ(XC)1|XC−1|<η

]
.

For AC , recall that the function m is bounded by E[Λ] <∞, and so is fθ.
Then, by Lemma 6 (i), we have

AC ≤ E[Λ]P[|XC − 1| ≥ η] ≤ 2E[Λ] e−C·ϕ(1+η) = o(1/C) .

For BC , we write a Taylor expansion of fθ at 1 of order two in the form

fθ(XC) = fθ(1) + f ′θ(1) (XC − 1) +
f ′′θ (YC)

2
(XC − 1)2

= hθ(XC) + kθ(XC , YC) ,
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where YC is a random variable in the random interval [1, XC ]∪ [XC , 1], and
hθ(XC) = fθ(1) + f ′θ(1) (XC − 1) +

f ′′θ (1)

2
(XC − 1)2 ,

kθ(XC , YC) =
f ′′θ (YC)− f ′′θ (1)

2
(XC − 1)2 .

Then BC = DC + EC where

DC = E
[
hθ(XC)1|XC−1|<η

]
, EC = E

[
kθ(XC , YC)1|XC−1|<η

]
.

We then compute

(14) DC = E[hθ(XC)]− E
[
hθ(XC)1|XC−1|≥η

]
where

E[hθ(XC)] = fθ(1) +
f ′′θ (1)

2C

since E[XC − 1] = 0 and E
[
(XC − 1)2

]
= 1/C. Besides, to deal with the

second term E
[
hθ(XC)1|XC−1|≥η

]
in the right-hand side of (14), we use the

Cauchy-Schwarz inequality to write∣∣E[hθ(XC)1|XC−1|≥η
]∣∣ ≤√E[hθ(XC)2]

√
P[|XC − 1| ≥ η]

and note that E
[
hθ(XC)2

]
= O(1) for all C > 1 by Lemma 6 (ii). Ap-

plying Lemma 6 (i) then eventually shows that E
[
hθ(XC)1|XC−1|≥η

]
is

O(e−
C
2
·ϕ(1+η)) which is, in particular, o(1/C). At this stage, we therefore

conclude from (14) and the latter discussion that

(15) DC = fθ(1) +
f ′′θ (1)

2C
+ o

(
1

C

)
.

Lastly, we show that the term EC is o(1/C). To this aim, it is sufficient
to show that the sequence WC = C · kθ(XC , YC) for C > 1 converges in
probability to zero and that it is uniformly integrable ([21, Theorem 13.7]).
• To prove the convergence in probability, note that since XC → 1 a.s.

when C → ∞ and YC ∈ [1, XC ] ∪ [XC , 1], then YC → 1 a.s. It follows from
the continuity of f ′′θ in the interval (1−η, 1+η) that f ′′θ (1)−f ′′θ (YC)→ 0 a.s.

and, in particular, in probability. On the other hand, since XC = T̂C/C is an
average of C i.i.d. random variables with mean 1, the continuous mapping
theorem for weak limits implies that C(XC − 1)2 converges in distribution
(the limit distribution is χ2 with parameter 1 but this specific limit has no
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importance for the present proof). Finally, since 1{|XC − 1| < η} → 1 a.s.,
Slutsky’s theorem ([14, Th. 11.4]) allows us to conclude that

WC =
f ′′θ (1)− f ′′θ (YC)

2
× C(XC − 1)2 × 1{|XC − 1| < η} → 0

in distribution as C →∞, and thus in probability as well.
• To prove the uniform integrability of WC , it suffices to show that

(16) sup
C≥1

E
[
W 2
C

]
<∞

(see [21, Theorem 13.3]). Since fθ is twice continuously differentiable,∣∣∣∣f ′′θ (1)− f ′′θ (YC)

2
1|XC−1|<η

∣∣∣∣ ≤ K
for any C > 1 and for some constantK depending on η only. By Lemma 6, we

further have E
[
C2 (XC − 1)4

]
= C2 ×O(C−2) = O(1). We finally conclude

that E
[
W 2
C

]
< K2 ×O(1) <∞, which proves the claimed property (16).

Finally gathering E[µC ] = AC +BC = AC +DC +EC with AC = o(1/C),
EC = o(1/C) and DC expanded in (15), we thus have proved that

(17) E[µC ] = fθ(1) +
f ′′θ (1)

2C
+ o

(
1

C

)
as C → ∞. To conclude the proof, we now express the function fθ and its
derivatives at 1 in terms of function m and its derivatives at tθ. By implicit
differentiation,

f ′θ(z) =
m′(tθz)

m(tθz)
θ, f ′′θ (z) =

θ2

m(tθz)2

(
m′′(tθz)−

m′(tθz)
2

m(tθz)

)
,

and the values of f ′θ and f ′′θ at z = 1 consequently follow. Replacing them
into (17), we finally prove the expansion (12), as claimed.

Theorem 7 justifies the accuracy of the estimations that use the “Che
approximation”. In the present setting, this heuristic consists in replacing
the exit time TC in (6) by the constant t̃C = Ξ−1(C), therefore estimating
E[µC ] by m(t̃C). Now, under the scaling C = γθ, the identity (8) entails
that

t̃C = Ξ−1(C) = M−1

(
C

γ

)
= M−1(θ) = tθ.
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The quantity t̃C is called in the literature the “characteristic time”, and this
identity justifies this naming for tθ as well. More importantly, the asymp-
totic expansion of E[µC ] in Theorem 7 shows that the error in the “Che
approximation” is of order 1/C and specifies it precisely, for large C and
fixed average sojourn time θ.

Remark 8
If the function m has derivatives of higher order, the proof of Theorem 7
together with Lemma 6 allow us to derive higher order expansions of E[µC ]
in powers of 1/C. Specifically, to obtain an expansion at order n, we must

expand fθ to the 2n-th order, since E
[
(XC − 1)k

]
is O(1/Cd

k
2
e) by Lemma 6.

We then eventually obtain

E[µC ] =

2n∑
k=0

f
(k)
θ (1)

j!

φk(C)

Ck
+ o

(
1

Cn

)
where φk is a polynomial of degree bk/2c, as shown in the proof of Lemma 6.

Remark 9
Theorem 7 can be proved by purely analytical methods. Indeed, (13) can be
written in integral form, after using the change of variables w 7→ w/C, as

E[µC ] =
CC

Γ(C)

∫ ∞
0

e−C(w−log(w)) fθ(w)

w
dw .

Theorem 7 then follows by expanding this integral using the Laplace method
(see [17, (3.15)]) and Γ(C) using the Stirling formula. This method is more
complicated, since it involves the expansion of both numerator and denomi-
nator in powers of

√
C.

The smoothness assumptions on the function m in Theorem 7 can usually
be checked readily on a case by case basis, by justifying interchange of deriva-
tion and expectation in (7) using dominated convergence. Nevertheless, it is
difficult to give a general result.

To conclude this section, we show that these smoothness assumptions hold
for a class of random intensities λ which is suitable for modeling purposes.
This class is built by randomly scaling a deterministic shape function in both
domain and range. It includes the families used in previous works [19, 18].

Proposition 10
Let f ∈ C1(0,∞) be a strictly positive unimodal function satisfying that∫
f = 1,

∫
f2 < ∞, and

∫
|f ′| < ∞. Let (R,L) be a couple of positive
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random variables with a smooth joint density, satisfying that E[R] <∞ and
E[RL] <∞. If the canonical document request intensity is of the form

(18) λ(u) = R · f
(u
L

)
, u ≥ 0,

then the function m is C2(0,∞) with derivatives given for t > 0 by

(19)



m′(t) = −E
[
R2L

∫ ∞
0

f(u)f

(
u+

t

L

)
e−RL(F(u+ t

L)−F (u)) du

]
,

m′′(t) = E

[
R3L

∫ ∞
0

f(u)f

(
u+

t

L

)2

e−RL(F(u+ t
L)−F (u)) du

]

− E
[
R2

∫ ∞
0

f(u)f ′
(
u+

t

L

)
e−RL(F(u+ t

L)−F (u)) du

]
,

where F (u) =
∫ u

0 f(v)dv.

We defer the proof of the latter proposition to Section 8.3.
Note that Proposition 10 only imposes mild conditions on the distribution

of (R,L). The admitted shape functions f include exponential and power law
decreasing profiles, and Gaussian curves restricted to [0,∞). In addition, the
assumption of f being strictly positive on [0,∞) can be weakened to that of
being positive only in a compact interval; this in turn implies that f ′ is not
differentiable everywhere and the second derivative of m will thus contain
additional terms from the integral of f ′. These terms can be obtained by
integration by parts (see [12, Th. 3.36] for a generalized form).

One example of such a family with compact support is given by the “Box
Model”, previously analyzed in [18], which can be constructed by simply
taking f = 1[0,1]. In this case, m and its derivatives reduce to

(20)


m(t) = E

[(
1− e−RL

)
1L≤t +

(
1− e−Rt +R(L− t)e−Rt

)
1L>t

]
,

m′(t) = −E
[
R2(L− t)e−Rt 1L>t

]
,

m′′(t) = E
[
(R2 +R3(L− t))e−Rt 1L>t

]
.

We will use this model for a numerical illustration in the next section.

6. Numerical Experiments. We provide some numerical results to
validate the accuracy of asymptotic expansion (12), by comparing it to the
values obtained from the system simulation. In our experiments, we used
the “Box Model” in which the canonical intensity function is given by

λ(u) = R · 1{0 ≤ u ≤ L}, u ≥ 0,
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where the random pair (R,L) represents the request rate and lifespan of a
document. In view of (12), we obtain the zero order and first order approx-
imations for the hit probability qC , namely

(21) qC = 1− pC = 1− E[µC ]

E[Λ]
≈


1− m(tθ)

E[Λ]
, 0-th Order

1− m(tθ) + e(tθ)/C

E[Λ]
, 1-st Order

where E[Λ] = E[RL].
For a given general distribution of (R,L), we cannot deduce explicit ex-

pressions form,m′,m′′,M , andM−1 from (20). In particular, there is usually
no formula for tθ in terms of θ. In consequence, we resorted to numerical
integration and inversion to obtain the hit ratio estimates in (21).

As argued in [18], actual data traces suggest that the distributions of
variable R and L are heavy tailed with infinite variance, that is, with tail
index α ∈ (1, 2). For our experiments, we consequently chose R and L to be
distributed as independent Pareto-Lomax variables, with probability density
ασα/(σ + x)α+1 for x > 0, with respective parameters (α = 1.9, σ = 22.5)
and (α = 1.7, σ = 0.07). Such values have been taken so that the simulation
time is not excessive; they provide a “box” of average width 0.1 and height
25 with high volatility since neither R nor L have a finite variance.

We generated the request process associated with these intensity functions
for various values of γ ranging from 10 to 1,000. For each request sequence,
we simulated an LRU cache and obtained the empirical hit probability for
various capacities C.

To obtain reliable results, the heavy tailed nature of the input distribu-
tions requires to use the stable-law central limit theorem (see [20, Th. 4.5.1]).
Specifically, there exists a so-called stable law Sα(σ, β, µ) with scaling pa-
rameter σ and a constant Kα such that, in distribution,

lim
n→∞

1

Kα

1

n1/α

n∑
i=1

(Li − nE[L]) = Sα(1, 1, 0) .

This allows to heuristically quantify the convergence rate for the law of large
numbers by considering that

1

n

n∑
i=1

(Li − nE[L]) ≈
n→∞

Sα

(
Kα

n1−1/α
, 1, 0

)
(in the present case, α = 1.7 for L). We then chose the simulation time S
such that the average number of observed documents n = γS×E

[
1− e−RL

]
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Fig 4: Comparison between hit ratio curves obtained analytically and by sim-
ulations of the model.

is such that scaling parameter Kα/n
1−1/α is smaller than 10−3 (such a value

of n ensures the same accuracy for the request rate R with larger tail index
α = 1.9). Besides, we also chose S large enough to ensure that there is
enough time for all observable documents to appear in the simulated trace.

We show in Figure 4a some of the resulting hit ratio curves from these
experiments. We observe that the zero order approximation in (21) is exact
for γ = 500 already. The error incurred by the approximation for lower γ
can be corrected by using the first order approximation in (21), as shown in
Figure 4b for γ = 50. For even lower intensities, this correction might not
be enough to approximate the real hit ratio, as illustrated in Figure 4c for
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γ = 10; the higher order expansion of Remark 8 would then be needed.
The above numerical results therefore illustrate the accuracy of the asymp-

totic expansion for the hit ratio.

7. Concluding Remarks. In this paper, we have estimated the hit
probability of a LRU cache for a traffic model based on a Poisson cluster
point process. In this endeavor, we have built using Palm theory a probability
space where a tagged document can be analyzed independently from the rest
of the process. In the case of the LRU replacement policy, this property is
key for the analysis, since it allowed us to derive an integral expression for
the expected number of misses of the tagged object.

Using this expression, we were able to obtain an asymptotic expansion
of this integral for large C under the scaling C = γθ for fixed θ > 0. This
expansion quantifies rigorously and in precise fashion the error made when
applying the commonly used “Che approximation”. We have further shown
that the latter expansion is valid for a sub-class of processes suitable for
modeling purposes. Finally, the accuracy of our theoretical results has been
illustrated by numerical experiments.

Our framework could be used to analyze other caching policies satisfying
that the eviction policy for the canonical document depends only on the rest
of the document request process. Examples of such caching policies found in
the literature are RANDOM, which evicts a uniformly chosen document
when adding a new document to the cache, and FIFO, which works as
LRU except that it does not move a requested document that is already
in the cache to the front of it. Such alternative policies may be relevant in
that the replacement operations are somewhat simpler than LRU, and this
may compensate their probable lesser performance in terms of the hit ratio.
However, the miss events for this policies are more intricate to analyze, since
they depend on the missed requests in the rest Γ̃ \ δ0,ξ0 .

Another possible extension of our study would be to take into account
the fact that documents have random sizes. These sizes and the cache size
C should be measured for instance in bits, packets, or by a continuous value
in R+. The document sizes can be incorporated as additional marks to the
cluster point process. In this case, the process X defining the canonical exit
time becomes a compound inhomogeneous Poisson process, summing up
these file sizes. The exit time to consider for a canonical document of size S
is then the first passage time of X strictly above C − S.

8. Technical Proofs.
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8.1. Proof of Lemma 4. Recall that, conditionally on the fact that the
process ξ has k points, the request times (Θr)

k
r=1 have the distribution of the

order statistics of a random variable with density g(t) = λ(t)/Λ for t ≥ 0,
and thus with c.d.f. G given by G(t) = Λ(t)/Λ for t ≥ 0. Let G = 1 − G
be the complement of G. From order statistics theory, it is known that the
holding times Θr −Θr−1 for 2 ≤ r ≤ k have density g̃k,r given for w ≥ 0 by

g̃k,r(w) =
k!

(r − 2)!(k − r)!

∫ ∞
0

Gr−2(u)g(u)g(u+ w)G
k−r

(u+ w) du .

Consequently, for k ≥ 2 we have

E[F (Θr −Θr−1) |N = k] =

∫ ∞
0

F (w)g̃k,r(w) dw

and hence

E

[
1{N ≥ 2}

N∑
r=2

F (Θr −Θr−1)

]
=
∞∑
k=2

k∑
r=2

E[F (Θr −Θr−1) |N = k] e−Λ Λk

k!

=

∫ ∞
0

F (w) e−Λ
∞∑
k=2

k∑
r=2

g̃k,r(w)
Λk

k!
dw .(22)

Now, using the Binomial Theorem,

k∑
r=2

k!

(r − 2)!(k − r)!
Gr−2(u)G

k−r
(u+ w) = k(k − 1)[G(u) +G(u+ w)]k−2

and thus

k∑
r=2

g̃k,w(w)
Λk

k!
=

∫ ∞
0

[G(u) +G(u+ w)]k−2 Λk

(k − 2)!
g(u)g(u+ w) du ,

and we conclude that

e−Λ
∞∑
k=2

k∑
r=2

g̃k,w(w)
Λk

k!
= Λ2

∫ ∞
0

e−Λ(1−G(u)−G(u+w))g(u)g(u+ w) du .

Since Λ(1−G(u)−G(u+w)) = Λ(G(u+w)−G(u)) = Λ(u+w)−Λ(u) and
g(u)g(u + w) = λ(u)λ(u + w)/Λ2, Equation (22) together with the latter
intermediate results yields the proof of Lemma 4.
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8.2. Proof of Lemma 6.

i) This is the classic optimized exponential Markov inequality which is
used for the upper bound in Cramer’s large deviations Theorem, see [7,
Theorem 2.2.3, Remark (c)].

ii) Expanding the k-th order central moment of XC in terms of the known
moments of T̂C yields

E
[
(XC − 1)k

]
=

k∑
i=0

(
k

i

)E[(T̂C)i
]

Ci
(−1)k−i

=
1

Ck

k∑
i=0

(
k

i

)
(−C)k−i

Γ(C + i)

Γ(C)

=
1

Ck
φk(C) ,

where φk is a polynomial of degree at most k. As shown in [16], the
polynomial φk is actually of degree bk/2c, which allows us to conclude.

8.3. Proof of Proposition 10. Differentiating (7) under the integral sign,
with λ(u) expressed by (18), readily gives formulas (19) after using the
change of variables u 7→ u/L. The validity of these formulas can then be
simply proved by showing that these integrals for m′ and m′′ are finite.

Given t > 0 and L, define u∗ = u∗(t, L) = inf{u : f(u) > f(u+ t/L)}, so
that f(u) ≤ f(u + t/L) for u ≤ u∗ and f(u) > f(u + t/L) for u > u∗. The
existence of u∗ is ensured from the unimodality of f , and we have u∗ = 0
if and only if f is non-increasing. Finally, define ũ = inf{u : f(u) = max f}
(see Figure 5 for a schematic view of these definitions).

Since f is differentiable and unimodal, it is quasi-concave (see [8, Lemma
2.4.1]), that is, for any 0 ≤ η ≤ 1 we have f(ηu1 +(1−η)u2) ≥ f(u1)∧f(u2)
for u1, u2 ≥ 0. As a consequence, for any t > 0, the area under the graph of
f in the interval [u, u+ t/L] can be bounded below by

(23) F (u+ t/L)− F (u) ≥

{
f(u) · t/L, u ≤ u∗,
f(u+ t/L) · t/L, u > u∗.

We now partition the integrals in (19) into their contributions from in-
tervals [0, u∗] and [u∗,∞), respectively, and bound them separately. For the
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f(u) 

u 

f(u+t/L) 

u* u ~ 0 

Fig 5: Schema for unimodal f

first derivative m(t), the lower bounds (23) yield

|m′(t)| ≤ E

[
RL

∫ u∗

0
f(u+ t/L)Rf(u)e−Rf(u)t du

]

+ E

[
RL

∫ ∞
u∗

f(u)Rf(u+ t/L)e−Rf(u+t/L)t du

]
≤ 2

et
E[RL]

where the last inequality is justified by the bound xe−ax ≤ 1/ae for any
fixed a > 0, and the fact that

∫
f = 1.

For the second derivative m′′(t), we introduce the integrals

A1(t) = E

[
RL

∫ ∞
0

R2f(u)f(u+ t/L)2e−RL(F (u+t/L)−F (u)) du

]
,

A2(t) = E

[
R

∫ ∞
0

Rf(u)f ′(u+ t/L)e−RL(F (u+t/L)−F (u)) du

]
so that |m′′(t)| ≤ |A1(t)|+ |A2(t)|. For A1(t), we have

|A1(t)| ≤ E

[
RL

∫ u∗

0
f(u+ t/L)2f(u)R2e−Rf(u)t du

]

+ E

[
RL

∫ ∞
u∗

f(u)R2f(u+ t/L)2e−Rf(u+t/L)t du

]
≤ E

[
4RL

e2t2f(0)

∫
f2

]
+ E

[
RL

et

]
≤ 1

et

(
1 +

4

f(0)et

∫
f2

)
E[RL] <∞

where the last inequality follows from the bounds xe−ax ≤ 1/ae, x2e−ax ≤
4/a2e2 for any fixed a > 0, and the fact that 0 < f(0) ≤ f(u) ≤ f(u+ t/L)
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for u ∈ [0, u∗]. Regarding A2(t), we have

|A2(t)| ≤ E

[
R

∫ u∗

0
Rf(u)|f ′(u+ t/L)|e−Rf(u)t du

]

+ E

[
R

∫ ∞
u∗

Rf(u)|f ′(u+ t/L)|e−Rf(u+t/L)t du

]
= B1(t) +B2(t).

Using again xe−ax ≤ 1/ae, we have

B1(t) ≤ E[R]

et

∫
|f ′| <∞.

Finally, to deal with B2(t) we note that f ′(u + t/L) ≤ 0 for u ∈ [u∗,∞)
and thus |f ′(u+ t/L)| = −f ′(u+ t/L). We then use integration by parts to
obtain

B2(t) = −1

t
E

[
R

([
−e−Rf(u+t/L)tf(u)

]∞
u=u∗

+

∫ ∞
u∗

f ′(u)e−Rf(u+t/L)t du

)]
= −1

t
E
[
Rf(u∗)e−Rf(u∗+t/L)

]
− E

[
R

∫ ũ

u∗
f ′(u)e−Rf(u+t/L)t du

]
− E

[
R

∫ ∞
ũ

f ′(u)e−Rf(u+t/L)t du

]
.

The first term in the latter expression is trivially negative; the second is also
negative since f is non-decreasing in [0, ũ). As a consequence both terms
can be ignored to obtain

B2(t) ≤ 1

t
E

[
R

∫ ∞
ũ
|f ′(u)|e−Rf(u+t/L)t du

]
≤ E[R]

t

∫
|f ′| <∞

where the last inequality again follows from xe−ax ≤ 1/ae, thus concluding
the proof.
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Centre de Mathématiques Appliquées
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