H. Abouaïssa, M. Fliess, and C. Join, On short-term traffic flow forecasting and its reliability. 8th IFAC Conf, Manufact. Model. Manag. Contr

E. Ayache, The Blank Swan ? The End of Probability, 2010.

P. Bacher, H. Madsen, and H. A. Nielsen, Online short-term solar power forecasting, Solar Energy, vol.83, issue.10, pp.1772-1783, 2009.
DOI : 10.1016/j.solener.2009.05.016

R. Bourbonnais and M. Terraza, Analyse des séries temporelles (3 e éd, 2010.

P. Cartier and Y. Perrin, Integration over finite sets, Nonstandard Analysis in Practice, pp.195-204, 1995.
DOI : 10.1007/978-3-642-57758-1_9

J. D. Cryer and K. Chan, Time Series Analysis: With Applications in R, 2008.
DOI : 10.1007/978-0-387-75959-3

M. Diagne, M. David, P. Lauret, J. Boland, and N. Schmutz, Review of solar irradiance forecasting methods and a proposition for small-scale insular grids, Renewable and Sustainable Energy Reviews, vol.27, pp.65-76, 2013.
DOI : 10.1016/j.rser.2013.06.042

URL : https://hal.archives-ouvertes.fr/hal-01090087

C. Duchon and R. Hale, Time Series Analysis in Meteorology and Climatology: An Introduction, 2012.
DOI : 10.1002/9781119953104

M. Fliess, Analyse non standard du bruit, Comptes Rendus Mathematique, vol.342, issue.10, pp.797-802, 2006.
DOI : 10.1016/j.crma.2006.02.037

URL : https://hal.archives-ouvertes.fr/inria-00001134

M. Fliess and C. Join, A mathematical proof of the existence of trends in financial time series Online: https, Systems Theory: Modeling, Analysis and Control, pp.43-62, 2009.

M. Fliess and C. Join, Model-free control, International Journal of Control, vol.7, issue.4, pp.2228-2252, 2013.
DOI : 10.1016/j.conengprac.2009.03.005

URL : https://hal.archives-ouvertes.fr/hal-00828135

M. Fliess and C. Join, Towards a new viewpoint on causality for time series, ESAIM: Proceedings and Surveys, vol.49, pp.37-52, 2015.
DOI : 10.1051/proc/201549004

URL : https://hal.archives-ouvertes.fr/hal-00991942

M. Fliess and C. Join, Seasonalities and cycles in time series: A fresh look with computer experiments, Paris Finan. Manag. Conf
URL : https://hal.archives-ouvertes.fr/hal-01208171

M. Fliess, C. Join, and F. Hatt, Volatility made observable at last. 3 es, J. Identif. Modél. Expérim
URL : https://hal.archives-ouvertes.fr/hal-00562488

M. Fliess, C. Join, and F. Hatt, A-t-on vraiment besoin d'un modèle probabiliste en ingénierie financière?, Conf. Médit. Ingén. Sûre Syst. Compl

M. A. Jama, H. Noura, A. Wahyudie, and A. Assi, Enhancing the performance of heaving wave energy converters using model-free control approach, Renewable Energy, vol.83, pp.931-941, 2015.
DOI : 10.1016/j.renene.2015.05.015

M. Jarque and A. K. Bera, A Test for Normality of Observations and Regression Residuals, International Statistical Review / Revue Internationale de Statistique, vol.55, issue.2, pp.163-172, 1987.
DOI : 10.2307/1403192

C. Join, G. Robert, M. Fliess, M. Muselli, C. Nivet et al., Vers une commande sans modèle pour aménagements hydroélectriques en cascade . 6 e Conf Online: http://hal.archives-ouvertes.fr/inria-00460912 Short-term solar irradiance and irradiation forecasts via different time series techniques: A preliminary study, Internat. Francoph. Automat. Join, C. Voyant, M. Fliess, M 3rd Int. Symp. Environ. Friendly Energy Appl, 2010.

G. G. Judge, W. E. Griffiths, R. C. Hill, H. Lütkepohl, and T. Lee, Introduction to the Theory and Practice of Econometrics., Journal of the American Statistical Association, vol.83, issue.404, 1988.
DOI : 10.2307/2290184

P. Lauret, C. Voyant, T. Soubdhan, M. David, and P. Poggi, A benchmarking of machine learning techniques for solar radiation forecasting in an insular context, Solar Energy, vol.112, pp.446-457, 2015.
DOI : 10.1016/j.solener.2014.12.014

URL : https://hal.archives-ouvertes.fr/hal-01101564

L. Martín, L. F. Zarzalejo, J. Polo, A. Navarro, R. Marchante et al., Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning, Solar Energy, vol.84, issue.10, pp.1772-1781, 2010.
DOI : 10.1016/j.solener.2010.07.002

V. Meuriot, Une histoire des concepts des séries temporelles, 2012.

A. H. Murphy, What Is a Good Forecast? An Essay on the Nature of Goodness in Weather Forecasting, Weather and Forecasting, vol.8, issue.2, pp.281-293, 1993.
DOI : 10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2

G. Reikard, Predicting solar radiation at high resolutions: A comparison of time series forecasts, Solar Energy, vol.83, issue.3, pp.342-349, 2009.
DOI : 10.1016/j.solener.2008.08.007

H. C. Thode and J. , Testing for Normality, 2002.
DOI : 10.1201/9780203910894

J. R. Trapero, Estimation of solar irradiation prediction intervals combining volatility and kernel density estimates . ResearchGate Online: https://www.researchgate, 2015.

J. R. Trapero, N. Kourentzes, and A. Martin, Short-term solar irradiation forecasting based on Dynamic Harmonic Regression, Energy, vol.84, pp.289-295, 2015.
DOI : 10.1016/j.energy.2015.02.100

C. Voyant, C. Join, M. Fliess, M. Nivet, M. Muselli et al., On meteorological forecasts for energy management and large historical data: A first look Online: https, Renew. Ener. Power Quality J, vol.13, 2015.

C. Voyant, M. Muselli, C. Paoli, and M. Nivet, Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation, Energy, vol.36, issue.1, pp.348-359, 2011.
DOI : 10.1016/j.energy.2010.10.032

URL : https://hal.archives-ouvertes.fr/hal-00556471

C. Voyant, C. Paoli, M. Muselli, and M. Nivet, Multi-horizon solar radiation forecasting for Mediterranean locations using time series models, Renewable and Sustainable Energy Reviews, vol.28, pp.44-52, 2013.
DOI : 10.1016/j.rser.2013.07.058

URL : https://hal.archives-ouvertes.fr/hal-00846823

C. Voyant, T. Soubdhan, P. Lauret, M. David, and M. Muselli, Statistical parameters as a means to a priori assess the accuracy of solar forecasting models, Energy, vol.90, pp.671-679, 2015.
DOI : 10.1016/j.energy.2015.07.089

URL : https://hal.archives-ouvertes.fr/hal-01319666

R. Willink, Measurement Uncertainty and Probability, 2013.
DOI : 10.1017/CBO9781139135085

. Aryaputer, Forecasting of global horizontal irradiance by exponential smoothing, using decompositions. Energy, pp.111-119, 2015.