W. A. Cantara, P. F. Crain, J. Rozenski, J. A. Mccloskey, K. A. Harris et al., The RNA modification database, RNAMDB: 2011 update, Nucleic Acids Research, vol.39, issue.Database, pp.195-201, 2011.
DOI : 10.1093/nar/gkq1028

A. K. Hopper and E. M. Phizicky, tRNA transfers to the limelight, Genes & Development, vol.17, issue.2, pp.162-180, 2003.
DOI : 10.1101/gad.1049103

M. J. Johansson, A. Esberg, B. Huang, G. R. Bjork, and A. S. Bystrom, Eukaryotic Wobble Uridine Modifications Promote a Functionally Redundant Decoding System, Molecular and Cellular Biology, vol.28, issue.10, pp.3301-3312, 2008.
DOI : 10.1128/MCB.01542-07

B. Huang, M. J. Johansson, and A. S. Bystrom, An early step in wobble uridine tRNA modification requires the Elongator complex, RNA, vol.11, issue.4, pp.424-436, 2005.
DOI : 10.1261/rna.7247705

B. Huang, J. Lu, and A. S. Bystrom, A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae, RNA, vol.14, issue.10, pp.2183-2194, 2008.
DOI : 10.1261/rna.1184108

F. Frohloff, L. Fichtner, D. Jablonowski, K. D. Breunig, and R. Schaffrath, Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin, The EMBO Journal, vol.20, issue.8, 1993.
DOI : 10.1093/emboj/20.8.1993

S. Glatt, J. Letoquart, C. Faux, N. M. Taylor, B. Seraphin et al., The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase, Nature Structural & Molecular Biology, vol.13, issue.3, pp.314-320, 2012.
DOI : 10.1038/13732

L. Fichtner and R. Schaffrath, KTI11 and KTI13, Saccharomyces cerevisiae genes controlling sensitivity to G1 arrest induced by Kluyveromyces lactis zymocin, Molecular Microbiology, vol.61, issue.3, pp.865-875, 2002.
DOI : 10.1046/j.1365-2958.2002.02928.x

H. R. Kalhor and S. Clarke, Novel Methyltransferase for Modified Uridine Residues at the Wobble Position of tRNA, Molecular and Cellular Biology, vol.23, issue.24, pp.9283-9292, 2003.
DOI : 10.1128/MCB.23.24.9283-9292.2003

P. Studte, S. Zink, D. Jablonowski, C. Bar, T. Von-der-haar et al., tRNA and protein methylase complexes mediate zymocin toxicity in yeast, Molecular Microbiology, vol.40, issue.5, pp.1266-1277, 2008.
DOI : 10.1111/j.1365-2958.2008.06358.x

S. K. Purushothaman, J. M. Bujnicki, H. Grosjean, and B. Lapeyre, Trm11p and Trm112p Are both Required for the Formation of 2-Methylguanosine at Position 10 in Yeast tRNA, Molecular and Cellular Biology, vol.25, issue.11, pp.4359-4370, 2005.
DOI : 10.1128/MCB.25.11.4359-4370.2005

V. Heurgue-hamard, M. Graille, N. Scrima, N. Ulryck, S. Champ et al., The Zinc Finger Protein Ynr046w Is Plurifunctional and a Component of the eRF1 Methyltransferase in Yeast, Journal of Biological Chemistry, vol.281, issue.47, pp.36140-36148, 2006.
DOI : 10.1074/jbc.M608571200

J. White, Z. Li, R. Sardana, J. M. Bujnicki, E. M. Marcotte et al., Bud23 Methylates G1575 of 18S rRNA and Is Required for Efficient Nuclear Export of Pre-40S Subunits, Molecular and Cellular Biology, vol.28, issue.10, pp.3151-3161, 2008.
DOI : 10.1128/MCB.01674-07

J. Letoquart, E. Huvelle, L. Wacheul, G. Bourgeois, C. Zorbas et al., -G1575 methylation occurs on late 40S precursor ribosomes, Proceedings of the National Academy of Sciences, vol.111, issue.51, pp.5518-5526, 2014.
DOI : 10.1073/pnas.1413089111

URL : https://hal.archives-ouvertes.fr/hal-01303131

R. Sardana and A. W. Johnson, The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits, Molecular Biology of the Cell, vol.23, issue.21, pp.4313-4322, 2012.
DOI : 10.1091/mbc.E12-05-0370

A. Patil, M. Dyavaiah, F. Joseph, J. P. Rooney, C. T. Chan et al., Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response, Cell Cycle, vol.3, issue.19, pp.3656-3665, 2012.
DOI : 10.4161/cc.21919

U. Begley, M. Dyavaiah, A. Patil, J. P. Rooney, D. Direnzo et al., Trm9-Catalyzed tRNA Modifications Link Translation to the DNA Damage Response, Molecular Cell, vol.28, issue.5, pp.860-870, 2007.
DOI : 10.1016/j.molcel.2007.09.021

A. Patil, C. T. Chan, M. Dyavaiah, J. P. Rooney, P. C. Dedon et al., Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications, RNA Biology, vol.9, issue.7, pp.990-1001, 2012.
DOI : 10.4161/rna.20531

D. Fu, J. A. Brophy, C. T. Chan, K. A. Atmore, U. Begley et al., Human AlkB Homolog ABH8 Is a tRNA Methyltransferase Required for Wobble Uridine Modification and DNA Damage Survival, Molecular and Cellular Biology, vol.30, issue.10, pp.2449-2459, 2010.
DOI : 10.1128/MCB.01604-09

Y. Fu, Q. Dai, W. Zhang, J. Ren, T. Pan et al., The AlkB Domain of Mammalian ABH8 Catalyzes Hydroxylation of 5-Methoxycarbonylmethyluridine at the Wobble Position of tRNA, Angewandte Chemie International Edition, vol.30, issue.47, pp.8885-8888, 2010.
DOI : 10.1002/anie.201001242

L. Songe-moller, E. Van-den-born, V. Leihne, C. B. Vagbo, T. Kristoffersen et al., Mammalian ALKBH8 Possesses tRNA Methyltransferase Activity Required for the Biogenesis of Multiple Wobble Uridine Modifications Implicated in Translational Decoding, Molecular and Cellular Biology, vol.30, issue.7, pp.1814-1827, 2010.
DOI : 10.1128/MCB.01602-09

K. Shimada, M. Nakamura, S. Anai, D. Velasco, M. Tanaka et al., A Novel Human AlkB Homologue, ALKBH8, Contributes to Human Bladder Cancer Progression, Cancer Research, vol.69, issue.7, pp.3157-3164, 2009.
DOI : 10.1158/0008-5472.CAN-08-3530

U. Begley, M. S. Sosa, A. Avivar-valderas, A. Patil, L. Endres et al., A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-??, EMBO Molecular Medicine, vol.27, issue.3, pp.366-383, 2013.
DOI : 10.1002/emmm.201201161

K. Wolf, K. Breunig, and G. Barth, Non-conventional yeasts in genetics, biochemistry and biotechnology : practical protocols, 2003.
DOI : 10.1007/978-3-642-55758-3

D. Liger, L. Mora, N. Lazar, S. Figaro, J. Henri et al., Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein, Nucleic Acids Research, vol.39, issue.14, pp.6249-6259, 2011.
DOI : 10.1093/nar/gkr176

URL : https://hal.archives-ouvertes.fr/hal-00624935

M. S. Longtine, A. Mckenzie, D. J. Demarini, N. G. Shah, A. Wach et al., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, Yeast, vol.13, issue.10, pp.953-961, 1998.
DOI : 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U

A. Toulmay and R. Schneiter, A two-step method for the introduction of single or multiple defined point mutations into the genome ofSaccharomyces cerevisiae, Yeast, vol.285, issue.11, pp.825-831, 2006.
DOI : 10.1002/yea.1397

F. W. Studier, Protein production by auto-induction in high-density shaking cultures, Protein Expression and Purification, vol.41, issue.1, pp.207-234, 2005.
DOI : 10.1016/j.pep.2005.01.016

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, Journal of Applied Crystallography, vol.26, issue.6, pp.795-800, 1993.
DOI : 10.1107/S0021889893005588

P. D. Adams, R. W. Grosse-kunstleve, L. W. Hung, T. R. Ioerger, A. J. Mccoy et al., : building new software for automated crystallographic structure determination, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.11, pp.1948-1954, 2002.
DOI : 10.1107/S0907444902016657

G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, and W. Paciorek, 2.0, Acta Crystallographica Section D Biological Crystallography, vol.59, issue.11, pp.2023-2030, 2003.
DOI : 10.1107/S0907444903017694

A. Vagin and A. Teplyakov, : an Automated Program for Molecular Replacement, Journal of Applied Crystallography, vol.30, issue.6, pp.1022-1025, 1997.
DOI : 10.1107/S0021889897006766

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, issue.2, pp.283-291, 1993.
DOI : 10.1107/S0021889892009944

C. Chen, B. Huang, J. T. Anderson, and A. S. Bystrom, Unexpected Accumulation of ncm5U and ncm5s2U in a trm9 Mutant Suggests an Additional Step in the Synthesis of mcm5U and mcm5s2U, PLoS ONE, vol.11, issue.6, p.20783, 2011.
DOI : 10.1371/journal.pone.0020783.s002

S. Avital and D. Elson, A convenient procedure for preparing transfer ribonucleic acid from Escherichia coli, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, vol.179, issue.2, pp.297-307, 1969.
DOI : 10.1016/0005-2787(69)90038-0

W. Cao, D. Cruz, and E. M. , Quantitative full time course analysis of nonlinear enzyme cycling kinetics, Scientific Reports, vol.511, p.2658, 2013.
DOI : 10.1038/srep02658

G. G. Krivov, M. V. Shapovalov, R. L. Dunbrack, and . Jr, Improved prediction of protein side-chain conformations with SCWRL4, Proteins: Structure, Function, and Bioinformatics, vol.3, issue.Pt 1, pp.778-795, 2009.
DOI : 10.1002/prot.22488

H. Grosjean, L. Droogmans, M. Roovers, and G. Keith, Detection of Enzymatic Activity of Transfer RNA Modification Enzymes Using Radiolabeled tRNA Substrates, Methods Enzymol, vol.425, pp.55-101, 2007.
DOI : 10.1016/S0076-6879(07)25003-7

M. H. Mazauric, L. Dirick, S. K. Purushothaman, G. R. Bjork, and B. Lapeyre, Trm112p is a 15 kDa zinc-finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast, Journal of Biological Chemistry, vol.285, issue.24, pp.18505-18515, 2010.
DOI : 10.1074/jbc.M110.113100

URL : https://hal.archives-ouvertes.fr/hal-00509840

H. L. Schubert, R. M. Blumenthal, and X. Cheng, Many paths to methyltransfer: a chronicle of convergence, Trends in Biochemical Sciences, vol.28, issue.6, pp.329-335, 2003.
DOI : 10.1016/S0968-0004(03)00090-2

Y. Suzuki, A. Noma, T. Suzuki, R. Ishitani, and O. Nureki, Structural basis of tRNA modification with CO2 fixation and methylation by wybutosine synthesizing enzyme TYW4, Nucleic Acids Research, vol.37, issue.9, pp.2910-2925, 2009.
DOI : 10.1093/nar/gkp158

S. Djordjevic and A. M. Stock, Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine, Structure, vol.5, issue.4, pp.545-558, 1997.
DOI : 10.1016/S0969-2126(97)00210-4

V. Stanevich, L. Jiang, K. A. Satyshur, Y. Li, P. D. Jeffrey et al., The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1, Molecular Cell, vol.41, issue.3, pp.331-342, 2011.
DOI : 10.1016/j.molcel.2010.12.030

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Research, vol.42, issue.W1, pp.320-324, 2014.
DOI : 10.1093/nar/gku316

H. Ashkenazy, E. Erez, E. Martz, T. Pupko, and N. Ben-tal, ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids, Nucleic Acids Research, vol.38, issue.Web Server, pp.529-533, 2010.
DOI : 10.1093/nar/gkq399