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Output-based allocations in pollution markets with
uncertainty and self-selection

Guy Meunier, Juan-Pablo Montero and Jean-Pierre Ponssard∗

May 6, 2016

Abstract

We study pollution permit markets in which a fraction of permits are allocated to
firms based on their output. Output-based allocations, which are receiving increasing
attention in the design of carbon markets around the world (e.g., Europe, California,
New Zealand), are shown to be optimal under demand and supply volatility despite
the output distortions they may create. In a market that covers multiple sectors,
the optimal design combines auctioned permits with output-based allocations that are
specific to each sector and increasing in its volatility. When firms are better informed
about the latter or must self select, the regulator resort to some free (i.e., lump-sum)
allocations to sort firms out. Numerical exercises illustrate the policy relevance of our
results: the gains from considering output-based allocations can be substantial.

JEL Classification: D24, L13, H23, L74
Keywords: pollution markets, output-based allocations, market volatility, self-

selection, climate policy

1 Introduction

In the last 25 years we have seen a dramatic increase in the use of permit markets to control
pollution.1 In all of them the allocation of permits has been a critical issue. In some
markets permits are allocated for free according to historic emissions, while in others they
are auctioned off, at least a fraction of them. The carbon market in Europe, for example, is
moving away from free allocations in favor of auctions.2 Another issue, which is the focus

∗Meunier (guy.meunier@ivry.inra.fr): INRA–UR1303 ALISS and Department of Economics, Ecole Poly-
technique. Montero (jmontero@uc.cl): Department of Economics and Center for Global Change, PUC-Chile.
Ponssard (jean-pierre.ponssard@polytechnique.edu): Department of Economics, Ecole Polytechnique. We
thank Carolyn Fischer, Natalia Fabra and seminar participants at the 2015 EAERE Meeting in Helsinki,
the 2015 PET conference in Luxembourg, and the 2016 Workshop on Developments in Energy Economics
in Madrid for comments. Meunier and Ponssard also thank the financial support of the chair Energy and
Prosperity, the Ecole Polytechnique - EDF chair for Sustainable Development, and ANR/Investissements
d’avenir (ANR -11- IDEX-0003-02), and Montero of Fondecyt (Grant No. 1130998).

1See Kossoy et al. (2015) and Newell et al. (2013) for an overview of existing carbon markets around the
world.

2http://ec.europa.eu/clima/policies/ets/cap/allocation/index en.htm
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of this article, is whether the total number of permits to be allocated should be fixed from
the start, as in the sulfur market in the US (Schmalensee et al., 1998), or vary according
to market conditions. The carbon market in California, for example, considers a price floor
and ceiling to which the total number of permits must adjust for the permit price to move
within that range (Borenstein et al., 2015).

Since the seminal work of Weitzman (1974) much has been written on the design of
permit markets subject to demand and supply shocks. Weitzman (1974) anticipated that
any regulatory design, whether is based on prices or quantities, is subject to errors in the
presence of market fluctuations, so the policy design challenge is to keep those errors at
a minimum. Roberts and Spence (1976) were the first to respond to the challenge with a
hybrid permit scheme in which the regulator is ready to issue extra permits if the price hits
a pre-determined ceiling and buy back permits if it reaches a floor.3 Letting firms to move
permits intertemporally has also been proposed (Rubin, 1996) and used in different markets
(e.g. Ellerman and Montero, 2007) as a way to smooth market shocks. More recently, Newell
and Pizer (2008) and Branger and Quirion (2014) propose to index the allocation of permits
to any exogenous variable, such as GDP, that could be correlated to shocks affecting permit
prices. And in the specific context of the carbon market in the EU, there are proposals to
introduce a market stability reserve from or to which auctioned permits could be withdrawn
or add as the number of unused (i.e., banked) permits in the market reaches a critical level
that could push permit prices either too high or too low (Kollenberg and Taschini, 2015).

In this article we are also interested in ways in which permit markets can accommodate
to market fluctuations. We are particularly interested in market schemes in which a fraction
of the permits are allocated to firms based on their output while the remaining fraction
is allocated through either auctioning or grandfathering. Output-based allocation (OBA)
schemes have been introduced and considered in a number of existing and proposed permit
markets, most notably, the carbon markets in California, the EU and New Zealand.4 Because
OBA schemes have the ability to directly affect firms’ output decisions, they have received
considerable attention to deal with leakage problems. By preventing firms not affected by the
permits market to increase their output and, hence, their emissions relative to affected firms,
OBA schemes has been proposed as an alternative, albeit inferior, to border tax adjustments
(Fischer and Fox, 2007; Quirion, 2009; Monjon and Quirion, 2011; Fischer and Fox, 2012;
Meunier et al., 2014).5 They have also been proposed to deal with market power problems
(Fischer, 2011; Fowlie et al., 2016).

In this article we abstract from leakage and market power issues and focus exclusively on
the performance of OBA schemes under uncertainty, a problem that has received much less
attention in the literature, if at all.6 One possible explanation for this lack of attention is

3Berglann (2012) also proposes a hybrid scheme in which firms trade pollution-permit shares and pay
taxes depending on their emissions and number of shares they hold.

4In Sweden, a refunded emission payments program based on firms’ output was introduced in 1992 to
control NOx emissions. It was made output-based to facilitate the industry acceptance to the regulation (for
an evaluation of this scheme see Sterner and Isaksson, 2006).

5For example, Burtraw et al. (2015) suggested that OBA should be considered to mitigate leakage within
the US since the implementation of the Clean Power Plan may lead to state-specific regulations.

6The only article that study OBA schemes under uncertainty is Meunier et al. (2014), but again the
focus is on leakage not on the implication of having a flexible permit allocation. Nevertheless, in the
numerical section of the article we run an exercise where leakage is also present. Our numbers indicate that
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that in the absence of leakage and/or market power there is no reason to subsidy production,
which is what OBA schemes ultimately do. In the presence of uncertainty, however, these
subsidies play an additional role, which is to let the total number of permits to adjust to
demand and supply shocks. For instance, if there is a positive demand shock, firms will
respond with more output and a higher demand for permits. If the total number of permits
is fixed, this higher demand will translate in an inefficiently high permit price (i.e., above
the marginal harm from pollution); unless the total number of permits is increased, which
is what an OBA scheme would endogenously do.

Any OBA scheme still presents the regulator with a trade-off because the adjustment
in the number of permits comes at the cost of distorting production away from the socially
optimal level. This trade-off raises several questions that we tackle in different sections of
the article. We start in Section 2 by asking whether an OBA scheme would ever be optimal
for an industrial sector with a large number of firms. We establish that an OBA scheme
should be considered whenever we observe a positive covariance between permit prices and
output under a fixed permit allocation (Proposition 1). This is true even if the market design
already considers a price stability mechanism such as price thresholds at which the regulator
is ready to either sell or buy back permits to stabilize prices (following Roberts and Spence,
1976, and the California market). Whenever these price thresholds are optimally set, we
establish (for linear demand and marginal costs) that introducing OBAs is indeed optimal
(Proposition 2).

To understand why an OBA scheme can be welfare enhancing, suppose the regulator
issues a fixed number of permits such that the expected permit price is equal to the marginal
harm from pollution. If in addition, the regulator issues a few permits based on firms’
output, these few OBA permits will lead to both more output (the subsidy effect) and
more emissions relative to the fixed allocation. The increase in output is clearly inefficient
but becomes of second order as the fraction of OBA permits goes to zero. Conversely, the
increase in emissions can be a good or bad depending on whether the demand/supply shocks
are positive or negative. Since the marginal increase in emissions is exactly equal to output
as the OBA rate goes to zero,7 if the correlation between output and permit prices is positive
the increase in emissions will be larger when the permit price is above the marginal harm
than when it is below, which results in a net welfare gain.

This positive result is only reinforced as we introduce several sectors. Because firms
covered by a permit market are never identical, as they belong to different productive sectors
or regions, in Section 3 we look at the optimal OBA design when there are multiple sectors
subject to different shocks. Sector heterogeneity introduces a covariance between permit
prices and sector output —which vary from sector to sector in magnitude and sometimes
direction— making OBA always worth implementing. The optimal OBA scheme has, in
addition to a fraction of auctioned permits, sectors subject to bigger shocks receiving higher
OBA rates (Propositions 3 and 4).

One potential implementation problem with this multi-sector OBA scheme is that it
discriminates across sectors creating perverse incentives for sectors to pretend they face

demand/supply uncertainty can be far more important a factor for the use OBAs than leakage is.
7Recall that we are assuming perfect compliance, so total emissions are equal to some fixed amount of

permits (which can be auctioned off or grandfathered) plus the OBA rate times output.
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bigger shocks than they actually do or to simply lobby for larger OBA rates.8 So, even
if the regulator knows sectors well, it may be unfeasible for her to sort them out without
relying on self selection. Fortunately, there is a simple way for the regulator to go around
this selection problem while preserving the optimal OBA outcome: to use a fraction of
the auctioned permits to construct menus of OBA rates and free (i.e., lump-sum) permits
(Proposition 5). Sectors facing smaller shocks are ready to take lower OBA rates because
they are compensated with a larger fraction of lump-sum permits. The “single-crossing
property” that allows for this separation of sectors is that more volatile sectors are willing
to pay more for a marginal increase in the OBA rate.

Motivated by discussions on how to reform carbon markets around the world and in
Europe in particular,9 in Section 4 we use our model to revisit several critical issues in the
design of these markets. In particular, we look at how different OBA schemes manage permit
price fluctuations and what are the implications of deducting OBA permits (the majority
going to trade-exposed and carbon intensive sectors) from the overall permit allocation so as
to keep the global cap on emissions fixed (as it is the case in California and is contemplated
in the EU). Our numerical results show that an OBA scheme can significantly reduce carbon
price fluctuation as long as its implementation considers a flexible cap on total emissions.
Insisting on a fixed cap would only increase price fluctuations and induce severe welfare losses
on non-OBA sectors (mainly electricity). Furthermore, the introduction of OBA permits
together with a flexible global cap generate almost no distortion in these non-OBA sectors.
Our results also indicate that self selection (i.e., lobbying for more OBA rates) is much less of
problem, if at all; all simulations show that there are enough auctioned permits to cope with
it. All these results indicate that supply and demand shocks make a strong case for the use
of OBAs, even more than leakage does. In any case, these preliminary results derived from
our simple framework are quite illuminating for policy analysis and should deserve further
work.

The rest of the article is organized as follows. We start in the next section with a permit
market that covers a single-sector with a large number of firms to demonstrate that the
optimality of OBA schemes holds quite generally. In Section 3 we extend the analysis to
cover multiple sectors, each of which facing independent shocks. Section 4 contains the
numerical exercises illustrating that the gains from using OBA schemes can be substantial,
but only if properly designed. We conclude in Section 5.

2 A single-sector model

Consider a competitive market for an homogeneous good subject to demand and supply
shocks. Inverse demand is given by P (q; θ) where q is total consumption and θ ∈ [θmin, θmax]
is a demand shock. Function P (·) is positive, differentiable and decreasing in q and increasing

8This asymmetric information problem is different from the problems of asymmetric information and
pollution control we find in the literature (e.g. Dasgupta et al., 1980; Spulber, 1988; Lewis, 1996; Montero,
2008). One reason is that the full-information OBA scheme is not first best; another is that the sorting
condition required to separate sectors is endogenous to the regulatory design.

9See for instance the articles discussed at the workshop “Markets for CO2: comparing the Californian
and European Experiences”, Nov 13-14 2014, Paris. The program and the working articles presented at the
workshop are available at http://www.cdcclimat.com/Workshop-Markets-for-CO2-Permits.html
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in θ. The corresponding consumer gross surplus is S(q; θ) with Sq = P (q; θ).10 The good
is supplied by an industrial sector with a large number of price-taking firms. The sector’s
cost of producing q while polluting e is C(q, e; η), where η ∈ [ηmin, ηmax] is a supply shock.
Function C(·) is positive and increasing in q and η, decreasing in e and

Cqe < 0, Cqq > 0, Cee > 0 and CqqCee > C2
qe. (1)

This formulation assumes that output and pollution are cost complements (see Spulber,
1988; Lewis, 1996).

Damage from pollution depends on total emissions according to D(e), a positive, increas-
ing and convex function. For any given realization of θ and η, social welfare is computed as
the difference between gross consumer surplus, production costs and pollution damage

W (q, e, θ, η) = S(q; θ)− C(q, e; η)−D(e) (2)

so expected welfare is denoted by

W̃ = Eθ,η[S(q(·); θ)− C(q(·), e(·); η)−D(e(·))] (3)

Throughout, we assume that shocks θ and η move within a range that there is positive
production and pollution abatement in equilibrium for all states of demand and supply and
regulatory designs (including no intervention).

2.1 OBA regulation and market equilibrium

In the absence of government intervention, the market equilibrium P (q; θ) = Cq(q, e; η) and
Ce(q, e; η) = 0 leads to too much pollution. To correct for this, the regulator implements
a permit market where the total amount of permits may not be fixed but endogenous to
output. The regulator auctions off ē permits and in addition allocates permits to firms
based on their output.11 For each unit of output, a firm gets α permits for free, so the total
amount of pollution/permits in any given period is equal to

e = ē+ αq (4)

In what follows, we will refer to α as the OBA rate. Most of the article is about to understand
the conditions under which it is socially optimal to set α > 0, whether there is a single sector
like here or multiple sectors like in the next section.

At the beginning of each period firms learn θ and η, after which they decide how much to
produce and pollute anticipating the additional permits they will get for their output. Since
the permit market is perfectly competitive, the auction clears at the price firms expect to
trade permits in the secondary market. We denote this price by r. Thus, each firm takes r

10Partial derivatives are sometimes denoted by a subscript, e.g., Sq ≡ ∂S/∂q.
11In principle, the ē permits could also be allocated for free to firms based, for example, on historic

emissions. But as soon as we allow for some positive cost of public funds (Goulder et al., 1997), auctioning
becomes optimal. Our implicit assumption in the article is that the cost of public funds is positive but
arbitrarily small, so we do not need to explicitly model it.
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and the output price p = P (q; θ) as given and solve (think of C(·) as the cost function of a
representative firm)

max
q,e

pq − C(q, e; η)− r(e− αq)

leading to the first-order equilibrium conditions

p = Cq(q, e; η)− αr (5)

and
r = −Ce(q, e; η) (6)

Equilibrium prices p and r are in turn obtained using (4).
Since OBA is a subsidy to production, the first-order conditions are standard ones. A

firm will produce to the point where the marginal cost of production is equal to the output
price plus the OBA subsidy. Similarly, the firm will abate emissions to the point where the
marginal cost of doing so is equal to the permit price.

Details on how the equilibrium levels of production q and pollution e respond to shocks
θ and η and the regulatory variables ē and α are in Appendix A.1. One aspect worth
commenting here is the non-monotonic influence of the OBA rate α. From looking at the
first-order conditions (5) and (6), one could decompose the effect of an increase in r on q in
two opposing effects: a positive effect due to the increase in the OBA subsidy and a negative
effect due to more pollution abatement.12 When α is small, the second effect dominates,
so an increase in r would lead to a drop in q. Conversely, when α is large, the first effect
may dominate, and an increase in r may well lead to an increase in q as well. For these
same reasons, the effect of a marginal increase in α or in ē on output and pollution cannot
be signed a priori when α is large. Fortunately, there is no need to delve much into these
monotonicity issues. For most part we only need to focus on the welfare effects of a small α,
for which the monotonicity is clear, and when we take the model to a linear world, as done
in the next two sections, the monotonicity is preserved even for large α.

2.2 Optimal OBA scheme

We now turn to the optimal permit design and to see whether setting α > 0 is ever optimal.
Before doing so, it helps to ask what would be the optimal number of permits ē if we set
α = 0.

Lemma 1 When the OBA rate is set equal to zero (i.e., α = 0), the optimal number of
permits to be auctioned off, ē, is such that the expected permit price is equal to the marginal
environmental damage.

Proof. If α = 0, the quantity of emissions is ē in all demand states, hence, by the
envelope theorem, we have that

W̃ē(ē, α = 0) = E [−Ce −D′(ē)] = E[r]−D′(ē)
12As done in the Appendix A.1, totally differentiating (5) and (6) with respect to r yields dq/dr =

[Cqe + αCee]/δ1 and de/dr = −[Cqq − Pq + αCqe]/δ1, where δ1 = CqqCee − PqCee − C2
qe > 0.
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so, at the optimum E[r] = D′(ē).
By letting the permit price fluctuate around the marginal harm D′(ē), the authority

minimizes the errors from a policy that never hits the first-best ex-post, except when the
shocks θ and η are such that r(θ, η) = D′(ē). The question now is whether setting a positive
OBA rate, α > 0, helps minimize those errors any further. Maintaining the auction allocation
fixed at ē, the welfare effect of adding a few OBA permits to the market is

W̃α(ē, α) = E[− αrqα + (r −D′(e))eα] (7)

The first term captures the welfare loss from the output distortion introduced by the OBA
subsidy (notice from Appendix A.1 that both qα and eα are positive when α is not too
large, which is the relevant case for the next proposition). As captured by the second term,
however, this loss can be potentially compensated by a gain from higher emissions whenever
the permit price r is above D′(ē). But since E[r] = D′(ē), it is not evident that the gains
from allocating additional permits in periods when r > D′(ē) are not exactly offset by the
losses from increasing emissions in periods when r < D′(ē). In fact, in a world of certainty,
when ē is such that r = D′(ē), setting α > 0 only reduces welfare because you are left with
just the first term.

In a world of changing supply and demand this logic may not apply, as the next propo-
sition shows.

Proposition 1 Consider a permit market with α = 0 and ē0 such that D′(ē0) = E[r]. If
in that market we observe a positive correlation between permit prices and output, then it is
optimal to introduce a positive OBA rate, α > 0. Furthermore, the optimal OBA scheme
(ē, α) in that case satisfies the system of equations

E[r −D′(e)] = αE[D′(e)qē] (8)

cov

(
∂W

∂ē
, q

)
= αE

[
D′(e)

−Ce
δ2

]
(9)

where δ2 = −Pq + Cqq + 2αCqe + α2Cee > 0.

Proof. Notice first that δ2 > 0 thanks to assumption (1). Now, from Lemma 1 notice
that when α = 0, it is optimal to set ē0 such that E[r] = D′(ē0). Next, from equation (4)
obtain eα = q + αqα, which replaced into (7) together with α = 0 yields

W̃α(ē0, α = 0) = E[(r −D′(ē0))q] (10)

Since D′(ē0) is constant and equal to the expected permit price, W̃α(ē0, α = 0) is positive if

E[(r −D′(ē0))q] = E[r −D′(ē0)]E[q] + cov(r, q) = cov(r, q) > 0 (11)

The system (8) and (9), on the other hand, is obtained by simply rearranging the optimality
conditions

W̃ē(ē, α) = E[− αrqē + (r −D′(e))eē] = 0 (12)

and W̃α(ē, α) = 0, where W̃α(ē, α) is given by (7). To arrive at (8), obtain first eē = 1 + αqē
from (4) and then plug it into (12).
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To arrive at (9), obtain first eα = q + αqα from (4) and plug it into (7) to obtain

W̃α(ē, α) = E[(r −D′(e))q − αD′(e)qα] = 0 (13)

Now, replacing qα = qqē − Ce/δ2, which is derived in Appendix A.1 (see equation (42)), in
(13) yields

W̃α(ē, α) = E[{r −D′(e)− αD′(e)qē}q + αD′(e)Ce/δ2] = 0

But the term in curly brackets is ∂W/∂ē , which can be seen directly from (8), so using
E[{∂W/∂ē}q] =cov(∂W/∂ē, q) we finally arrive at (9).

Production is inefficiently high with OBA given the number of emissions, however, with
uncertainty this inefficiency might be worth the flexibility in the cap created by OBA.
Whether it is the case can be easily checked by looking at the covariance between the permit
price and the quantity produced. A positive OBA rate relaxes the overall emissions cap in
all demand and supply states, which has a positive (resp. negative) welfare effect in “high”
(resp. low) states of demand/supply, that is, in states in which the permit price is higher
(resp. lower) than the marginal environmental damage. Therefore, the net welfare effect
depends one whether the gains in high demand/supply states more than offset the losses in
low demand/supply states. When the OBA rate is small, the gain (or loss) in each state
is equal to the difference between the permit price and the marginal environmental damage
times the number of extra permits. But this latter is exactly equal to output when α = 0,
so if output tend to be larger in periods when permit prices are high and above marginal
damages, then, the net welfare effect from injecting a few extra permits in all states must
be positive.

The exact choice of the regulatory variables α and ē, captured by equations (8) and
(9), are the result of the trade-off the regulator must solve between output distortion and
additional emissions. Because a marginal increase in α or ē results in more emissions and
output, the exact same trade-off is present in both (7) and (12). In (7), and given some ē, the
regulator will increase α to the point in which the additional (expected) loss from the output
distortion (−αrqα) is exactly equal to the extra gain from having relatively more emissions
in periods of higher permit prices. Likewise, in (12), and given α > 0, the regulator will
increase ē to the point in which the additional (expected) loss from the output distortion
(−αrqē) is exactly equal to the extra gain from having more emissions in periods of higher
permit prices. Notice from (8) that ē is set below the level that equalizes marginal damages
D′(e) to expected prices E[r]. This is done to correct for the additional permits that are
brought to the market in each period by setting α > 0.

Proposition 1 says that observing permit prices and output to fluctuate overtime is not
enough to implement an OBA scheme. The latter requires output to be positively correlated
with permit prices, which ultimately depends on the impact of shocks θ and η on prices and
cost functions. So, the relevant question is how likely is to observe a positive correlation.
We argue that it is most likely (perhaps the best example is the carbon market in Europe
where the positive correlation has been reinforced by the sharp drop in permit prices during
the recent international crisis). For instance, if demand is the main source of uncertainty,
when demand is high both permit prices and output will be high. Similarly, if shocks affect
primarily production costs (e.g., the oil price), when production costs are high both output
and permit prices will be low. We cannot rule out in theory, however, cases that may exhibit
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a negative correlation. For example, if abatement cost are the main source of uncertainty,
high abatement costs could lead to both high permit prices and low output. These examples
are summarized in the following lemma.

Lemma 2 A small positive OBA rate increases welfare (i.e., W̃α(α = 0) > 0) when, for
example, (i) Pθ > 0 and Cη = 0, or (ii) Pθ = 0, Cqη > 0 and Ceη > 0. Conversely, a
small positive OBA rate may decrease welfare if the permit price does not vary with θ and
the marginal abatement cost −Ce increases sufficiently more than the marginal production
cost Cq with respect to η (i.e., Pθ = 0, Cqη > 0 and −Ceη > −CqeCqη/(Cqq − Pq)).

Proof. See Appendix A.2.
Because the implementation of an OBA scheme not only requires the regulator issuing

additional permits each period but also setting different OBA rates to different groups of
firms (a topic covered in Sections 3.1 and 3.2), one may argue that the gains from imple-
menting an OBA scheme may not be sufficient to justify its implementation costs. Our
numerical exercises of Section 4 show otherwise, that the gains from implementing OBA can
be substantial. And having different groups of firms does not make the implementation of
OBA much more difficult; it may require the regulator to allocate a fraction of the auctioned
permits in a lump-sum manner to sort firms out into the scheme (this is covered in Section
3.3). Yet, some may argue that OBA permits may not be necessary if the regulator opts for
an alternative (flexible) allocation scheme. The next section points otherwise.

2.3 Hybrid design

An OBA scheme is one of several ways to let the overall emissions cap to adjust to demand
and supply shocks. Alternatives include the introduction of a market stability reserve (which
is closely related to banking and borrowing provisions) or the use of a hybrid permit scheme
with a price floor and ceiling as first proposed by Roberts and Spence (1976) and recently
adopted in California (Borenstein et al., 2015). Since an optimal hybrid scheme is strictly
superior to the best market stability reserve (or best banking and borrowing provisions for
that matter),13 in this section we study whether the introduction of an OBA scheme still
plays a role in a well designed hybrid permit market.

Consider then a hybrid design with a price ceiling and price floor, which we denote,
respectively, by r̄ and r. These thresholds are equivalent to setting a penalty for not com-
pliance equal to r̄ and a subsidy for over-compliance equal to r. The regulatory timing is
as before: price thresholds r̄ and r are set ex-ante together with the number of auctioned
permits ē and the OBA rate α.

To simplify the presentation we will only consider demand shocks θ, which are assumed
to be drawn from the cumulative distribution function F (θ). If the demand for permits is
sufficiently high (resp. low), the price of permits will be equal to r̄ (resp. r). Since the
demand for permits is increasing with respect to the demand state θ (see Appendix A.1),
there will be two demand states θ and θ̄ > θ such that: (i) when θ ∈ [θmin, θ], r = r and

13Unlike Roberts and Spence (1976), banking and borrowing work through firms’ intertemporal optimiza-
tion paying little attention to environmental damages. Introducing exchange rates to alter how firms borrow
or save permits does not work either.
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e− αq ≤ ē; (ii) when θ ∈ (θ, θ̄), r < r < r̄ and e− αq = ē; and (iii) when θ ∈ [θ̄, θmax], r = r̄
and e− αq ≥ ē.

Notice that in this hybrid scheme there will be not one but three instances in which
the policy will be ex-post efficient. One is for a low demand shock θ ∈ (θmin, θ) such
that r = D′(e(θ) − αq(θ) < ē); the second for an intermediate demand shock θ ∈ (θ, θ̄)
such that r = D′(ē); and the third for a high demand shock θ ∈ (θ̄, θmax) such that r̄ =
D′(e(θ)− αq(θ) > ē).

When α = 0, the optimal hybrid design (ē, r, r̄) solves the following system of equations

W̃ē =

∫ θ̄

θ

[r(θ)−D′(ē)]dF (θ) = 0 (14)

W̃r =

∫ θ

θmin

[r −D′(e(θ))]erdF (θ) = 0 (15)

W̃r̄ =

∫ θmax

θ̄

[r̄ −D′(e(θ))]er̄dF (θ) = 0 (16)

Equation (14) follows the same logic of the previous section. In the demand range where
emissions are fixed at ē and the permit price varies with θ, it is optimal to have the expected
permit price be equal to the marginal damage. In the other two regions, however, where
prices are fixed but emissions adjust to shocks, equations (15) and (16) show that what is
optimal is to have the fixed price be equal to expected marginal damages (weighted by either
er or er̄, unless they are invariant to θ).

Introducing both a price floor and ceiling allows the equilibrium permit price to follow
more closely the marginal environmental damage for different realizations of θ (cf. Roberts
and Spence, 1976). Whether it is worth adding some OBA permits over this more flexible
design is not obvious because extreme permit price realizations have now been truncated,
which also has an effect on output outcomes. To check the optimality of OBA we proceed
as before by considering the welfare effect of introducing an arbitrarily small OBA rate over
this optimal hybrid scheme. Changes in expected welfare at α = 0 are only due to changes in
emissions because there is no production inefficiency when α = 0; hence, Wα = E[(r−D′)eα].

Since eα = q in the demand range where emissions are fixed at ē, this welfare change can
be decomposed as

W̃α(α = 0) =

∫ θ

θmin

(r −D′(θ))eαdF (17)

+

∫ θ̄

θ

(r −D′(ē))qdF +

∫ θmax

θ̄

(r̄ −D′(θ))eαdF

The OBA rate has a different influence in intermediary demand states than in the more
extreme ones. In intermediary states, there is both a direct effect on emissions due to the
increased number of free permits and an indirect effect via the rise of production due to a
higher subsidy. In extreme demand states, the permit price is fixed, and free allocations
alleviate the bill of the firm but not its emission choice. However, there is still the subsidy
channel that induces higher emissions due to higher production. The influence of the OBA
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rate is positive for intermediary demand states (second term above). The magnitude of this
positive effect depends on how often θ ∈ [θ, θ̄] and the covariance between output and permit
prices. The first and third term are more difficult to sign because of the influence of α on
emissions when the floor or ceiling bind, and how this influence compares to the influence of
the permit price on emissions.

Proposition 2 Suppose we observe a positive correlation between permit prices and output
in the optimal hybrid design with α = 0. If the influence of the OBA rate and of the price
floor and ceiling on emissions do not vary with demand (i.e., eαθ = er̄θ = erθ = 0), then a
strictly positive OBA rate increases welfare (This is so when demand is linear, uncertainty
is additive and cost is quadratic).

Proof. When er̄ and eα are independent of the demand shock θ, the optimal price floor
solves

r = E[D′(e(θ))|θ < θ]

so the first term in (17) is zero. Since the same applies to the third term, the welfare effect
of adding a few OBA permits will be positive if the second term is positive, which requires
of a positive correlation between permit prices and output.

Propositions 1 and 2 show that an OBA scheme is likely to be beneficial in the context
of a single sector, even if there is a flexible scheme already in place. We now explains how
this result extends to multiple sectors, which is the more realistic case.

3 Multiple sectors

The single-sector analysis provides us with the solution to the OBA problem when the
regulator sets the same rate α to all firms, whatever similar or different they might be.
In reality firms covered by a permits market are never identical for different reasons. They
may use different production technologies, belong to different productive sectors or simply be
located in different regions. In this section we look at the optimal OBA design when there are
multiple sectors subject to different shocks (or when the regulator can assign firms to different
groups). To make the problem even more interesting we adopt the extreme assumption that
the only abatement technology available is output reduction (we do not want to leave the
impression that abatement is essential to generate a correlation between permit prices and
output). We start with a general set-up and then introduce some simplifying assumptions
to derive additional results.

3.1 General set-up

Consider a permit market covering a large number n of sectors, each of which takes the
price of permits as given. In each sector there is a continuum of identical firms. Production
in sector i = 1, ..., n is denoted by qi and since the only abatement technology is output
reduction, we normalize emissions to output, i.e., ei = qi. As in the previous section, inverse
demand in sector i is denoted by Pi(qi, θi), consumer surplus by Si(qi; θi) =

∫ qi
0
Pi(x; θi)dx,

11



and production costs by Ci(qi; ηi), so welfare for a given realization of θ = {θ1, ..., θn} and
η = {η1, ..., ηn} is equal to

W (θ, η) =
n∑
i=1

[Si(qi; θi)− Ci(qi; ηi)]−D(e)

where e =
∑n

i=1 qi.
An OBA scheme {ē, α1, ..., αn} includes a fraction of ē auctioned permits and OBA rates

αi ∈ [0, 1) for each sector i = 1, ..., n, so the total number of permits in the market will be
e = ē +

∑n
i=1 αiqi. The output market in each sector will clear at the price pi that equals

marginal production costs minus the OBA subsidy

pi = Pi(qi; θi) = C ′i(qi; ηi) + r − αir

where r is permit price (common to all sectors) and C ′i(·) is sector i’s marginal cost. Thus,
the market equilibrium is described by n+ 1 equations

n∑
i=1

(1− αi)qi = ē (18)

Pi(qi, θi)− C ′i(qi; ηi) =
1− αi
1− α1

[P1(q1, θ1)− C ′1(q1; η1)] (19)

for all i = 1, ..., n.

Lemma 3 Any scheme {ē, α1, ..., αn} with αi ∈ [0, 1) is equivalent (i.e., it leads to the same
equilibrium outcome and payoffs) to a scheme in which the lowest OBA rate is normalized
to zero {

ē

1− αj
,
α1 − αj
1− αj

, ...,
αj−1 − αj

1− αj
, 0,

αj+1 − αj
1− αj

, ...,
αn − αj
1− αj

}
(20)

where αj = mini αi.

Proof. It is easy to see that both schemes satisfy equations (18) and (19), which implies
that output levels are identical under both schemes for all demand states. In addition, the
net emission price (1 − αi)r in sector i is identical to the price under scheme (20); more
precisely, the permit price under the new scheme is (1 − αj) times the permit price under
the original scheme. Given the equivalence in output and price levels, profits and consumer
surplus must be identical across schemes.

Although it appears from the lemma that the regulator has some room to change OBA
rates across sectors without welfare consequences, the reality is that she has none because
(20) is just one of the many price normalizations she can pick,14 any of which with the same
distribution implications. Hence, one can theoretically consider schemes with negative OBA
rates, since, any such scheme could be transformed into an equivalent scheme with positive
OBA rates for all sectors.

14Notice that no normalization can violate the constraint αi < 1. Setting αi = 1, for example, is equivalent
to removing sector i from the permit regulation.
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When it comes to choosing the optimal OBA scheme, the same tension detected in the
single-sector appears in this multiple-sector setting: letting the overall cap on emissions to
adjust to shocks comes at an inefficiency cost. The inefficiency here is a misallocation of the
cap across sectors. Sectors with relatively higher OBA rates produce and pollute too much.
In fact, the welfare impact of increasing the OBA rate in one sector, say k, is given by

∂W̃

∂αk
= E

[
(r −D′(e))qk −D′(e)

n∑
i=1

αi
∂qi
∂αk

]
(21)

where e =
∑n

i=1 qi = ē+
∑n

i=1 αiqi.
The first term in (21) captures the direct effect of increasing emissions in sector k by

increasing αk. This term is expected to be positive if qk is larger when r −D′(e) > 0. The
second term represents the effect of the change in production, not only in sector k but in all
sectors. Increasing production in a sector i has a net effect of αiD

′(e), which is the sum of
the loss αir due to the subsidy of production and the gain αi(r−D′) of increasing emissions.
This term can be positive, since production in a sector i 6= k might well decrease with respect
to αk.

Expression (21) tells us right away that setting αi = 0 for all sectors cannot be optimal
if there is just one sector that exhibits a correlation different from zero between output and
permit prices. Notice that a negative correlation would in principle call for a negative OBA
rate in that sector, but according to Lemma 3, this would be equivalent to set a null OBA
rate in that sector and positive rates in all others. In any case, the presence of multiple
sectors makes the optimality of an OBA scheme certain (unless all sectors are equal, which
takes us back to Proposition 1).

Proposition 3 An optimal OBA scheme {ē, α1, ..., αn} satisfies the following system of
equations

E[r −D′(e)] = E

[
D′(e)

−∂r
∂ē

n∑
i=1

αi
1− αi
C ′′i − P ′i

]
(22)

cov

(
∂W

∂ē
, qk

)
= E

{
D′(e)

r

C ′′k − P ′k
−∂r
∂ē

n∑
i=1

[
1− αi
C ′′i − P ′i

(αk − αi)
]}

(23)

for all k = 1, ..., n.

Proof. See Appendix B.1.
Equation (22) is similar to equation (8) in Proposition 1. It says that the optimal number

of auctioned permits, ē, should be adjusted to the allocation of OBA permits, so as to keep
a difference between permit prices and marginal harm equal to the marginal inefficiency cost
generated by these OBA permits. If for some reason it is optimal to set all OBA rates equal
to zero, then (22) reduces to the standard optimality condition that expected permit prices
should be equal to marginal harm, i.e., E[r] = D′(e = ē).

Equation (23) also follows a similar logic than equation (9) in Proposition 1. Increasing
the OBA rate in sector k could be decomposed in two effects: it is like auctioning qk more
permits and shifting the demand for permits in sector k. But we know that when the total
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number of auctioned permits ē is optimally set, the expected marginal (social) value of an
extra auctioned permit in the market across all demand states is null (this applies regardless
of whether we have one or multiple sectors). This implies that only the covariance matters
for the first effect (i.e., the effect of auctioning additional permits) to have a positive welfare
impact.

The right-hand-side of (23) can be interpreted as the marginal effect of αk on the mis-
allocation of the total cap when αi’s differ across sectors. The effect of αk on the distorted
allocation is a weighted difference between the OBA rate in sector αk and the remaining
sectors. Contrary to the single sector case, this effect could be negative, increasing the OBA
rate in a particular sector might actually reduce distortions associated to other OBA rates.

Without uncertainty, one can see from equation (23) that it would be optimal to set all αi
equal which is equivalent to not introducing an OBA scheme. The benefit from introducing
an OBA scheme necessarily requires some covariance, in at least one sector, between the
benefit/cost of auctioning one extra permit in a state and the number of permits actually
injected in that state.

The main difference between Propositions 1 and 3 rests on the multidimensionality of
the scheme, so that one cannot, and does not need to, perform a “positive correlation test”
as in Proposition 1 to determine whether a sector requires a positive OBA rate. It might be
optimal to set a strictly positive OBA rate in a particular sector whatever the sign of the
covariance of its output with the marginal benefits from an auctioned permit is.

The main message from Proposition 3 is that setting αk = 0 (or αk = αi) for all sectors is
very unlikely. It would only happen if cov(∂W/∂ē, qk) = 0 for all k. It is easy to rule this out;
it suffices to have sectors receiving different shocks. To fully appreciate this, and get some
more palatable results, a linear specification is considered next. The linear specification will
also serve as the basis for the numerical exercises in the following section.

3.2 A linear set-up

For tractability, and without much loss of generality, in what follows we work with linear
functions and shocks that only affect demand, which in addition are assumed to be indepen-
dently distributed and to enter additively.15 In particular, we let

D′(e) = h, pi(qi, θi) = ai + θi − biqi and Ci(qi) = γiq
2
i /2 (24)

for all i = 1...n, where ai, bi, γi are all strictly positive, and E[θi] = 0, E[θ2
i ] = σ2

i > 0 and
cov(θi, θj) = 0. We also assume that shocks are such that there is always an interior solution,
that is, that there is always a positive level of output in all sectors for all possible shocks
and regulatory designs.

Under this linear specification, it is possible to fully describe and compute the optimal
OBA scheme of Proposition 3.

Proposition 4 Under the linear specification described above, the optimal OBA scheme
considers OBA rates increasing with sector volatility (σi) and market size (1/βi, where βi =

15We could have alternatively considered shocks on the supply side (e.g., Ci = ηiqi +γiq
2
i /2). In this linear

world, it is irrelevant whether shocks are on the demand or production side.
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bi + γi), that is, αk > αl if σ2
k/βk > σ2

l /βl for any l 6= k = 1, ..., n. If sector 1 is defined as
σ1/β1 = mini σ

2
i /βi, then an optimal OBA scheme is characterized by (i) α1 = 0, (ii)

αk =
∆k

∆k + Ψ
(25)

where

∆k =
1

h2

[
σ2
k

βk
− σ2

1

β1

]
(26)

and Ψ is the unique positive solution to x in equation
∑n

i=1 [βi(∆i + x)]−1 = 1, and (iii) a
number of auctioned permits ē such that

Er =

∑
i(1− αi)/βi∑
i(1− αi)2/βi

h (27)

Proof. See Appendix B.2.
This proposition shows quite clearly that what matters for OBA is not the absolute

volatility but the relative volatility between sectors, after controlling for sector size. In
fact, expression (26) indicates that the optimal design remains unchanged if the volatility
in all sectors, measured by σ2/β, change by the same amount. This relative volatility is
what generates a covariance between permit prices and output. Suppose there are only two
sectors, 1 and 2, with σ2

2/β2 > σ2
1/β1. If the regulator allocates an optimal number of permits

ē together with α1 = α2 = 0, total output will be fixed, q1+q2 = ē, but it would split between
the two sectors depending on the specific shocks affecting them. This output adjustment
leads to changes in permit prices r and, ultimately, to a positive covariance between permit
prices and output in sector 2.

Proposition 4 also helps us to visualize more precisely the impact of changes in market
conditions, for example, of adding a (volatile) sector to the regulation or of increasing the
volatility of one particular sector or of a group of sectors. The first change is straightforward
to evaluate. Since adding a sector would increase Ψ, this will reduce the OBA rates in all
existing sectors.

In this n-sector (linear) model it is relatively easy to compute profit and welfare gains
from implementing an (optimal) OBA scheme vis-a-vis the simple permit scheme of Lemma
1. The numerical exercises in Section 4 shows that these gains can be indeed substantial even
for volatility levels that are not that large. These gains, however, introduce the regulator to
an implementation problem as seen in the carbon market in Europe: sectors want to lobby
for larger OBA rates. We turn to this implementation problem now.

3.3 Self selection

Not only in the carbon market in Europe, but allocating free permits to firms or sectors is
always controversial and subject to an intense amount of lobbying activity. We expect an
OBA scheme to be no different. For instance, if the regulator announces the OBA scheme of
Proposition 4 all sectors would lobby to get the highest available OBA rate. Therefore, even
if the regulator is able to identify the characteristics of each sector well, political reality may
prevent her to discriminate among sectors and implement the optimal OBA scheme. We will
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show that there is a simple way for the regulator to go around this selection problem while
preserving the optimal OBA outcome of Proposition 4: to use a fraction of the auctioned
permits ē to construct a menu of OBA rates and lump-sum allocations that can sort out
sectors. This allocation mechanism should be viewed as a stylized representation of the
negotiation taking place between the regulator and regulated sectors. Alternatively, one
can view this mechanism as the solution to a standard adverse selection problem in which
sector’s characteristics, most notably volatility and costs, are unknown to the regulator, so
the regulator needs to communicate with sectors before designing the regulation.16

Our analysis builds upon the linear specification of the previous section. Since sector
volatility is our central problem here, we will work with sectors that are identical except for
their volatility: ai = a, bi = b and γi = γ for all i = 1, ..., n and σ1 < ... < σi < ...σn. The
regulator offers a menu of permit-allocation options {(αj, êj)/j = 1, ..., n}, where αj is the
OBA rate in option j and êj is the number of free lump-sum permits in that option. Whenever∑

j êj < ē, the regulator auctions the remaining fraction ē−
∑

j êj. Since negotiations take
place at the sectorial level, all firms within a sector that goes for option j = 1, ..., n will
receive the same allocation (αj, êj). Sectors anticipate the effect of different OBA rates on
their profit while taking the permit price r as given.

We want to determine conditions under which the optimal scheme could be indeed im-
plemented via such a menu, that is, under which conditions the menu satisfies both (i) the
balanced-budget constraint

∑
j êj ≤ ē and (ii) the self-selection constraints

E[πi(θi, r, αi) + rêi] ≥ E[πi(θi, r, αj) + rêj] (28)

for all i = 1, ..., n and j 6= i, where

πi(θi, r, α) =
γ

2β2
[a+ θi − (1− α)r]2 (29)

is sector i’s profit gross of permit transfers for a given level of demand θi, permit price r and
OBA rate α.

Let us focus first on what it takes for the self-selection constraints to hold. This requires
to establish the existence of something equivalent to a single-crossing property. Thus, take
two adjacent sectors, say θi and θi+1, and ask which of the two is willing to pay more for a
marginal increase in the OBA rate from any given level α. Differentiating sectors’ payoffs
with respect to α and taking the difference yields

E
[
∂πi+1(θi+1, r, α)

∂α

]
− E

[
∂πi(θi, r, α)

∂α

]
=

γ

β2
E [r(θi+1 − θi)] (30)

We want to establish the conditions under which this difference is positive, so that sector
i + 1 is willing to pay more than sector i for the marginal increase at any possible level α.
This latter is what will allow us to separate sectors. For instance, if sector n − 1 needs to

16Martimort and Sand-Zantman (2015) also study a problem of adverse selection as applied to climate
change policy. One main difference with that article is that here it is mandatory for polluters to comply
with the regulation. Another is that we allow initial permit allocations to be tradable. We do share with
them the possibility of implementing the (full-information) optimal scheme as long as the budget-balanced
constraint is not binding.
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be compensated in ∆ to take its equilibrium rate αn−1 instead of the highest rate αn, then
sector n− 2 needs to be compensated in strictly less than ∆ to achieve the same and so on
as we considers sectors with lower volatilities.

Since sectors are too small to affect the permit price, we can evaluate the profit changes
in (30) at the permit price that will prevail in equilibrium, that is, at the permit price when
all sectors take their equilibrium options, which is

r =

∑n
k=1 [(1− αk)(a+ θk)]− βē∑n

k=1(1− αk)2
(31)

Plugging (31) into (30), it turns out that this latter expression is positive as long as

(1− αi+1)σ2
i+1 > (1− αi)σ2

i (32)

which requires that the OBA rates in the optimal scheme do not grow much faster than the
sector volatilities.

It is evident that condition (32) departs from the single-crossing property that we usually
encounter in standard models of adverse selection, where the sorting condition depends
exclusively on the functional form of the agent’s utility and not on the value of a regulatory
decision variable. The reason here is different is due to changes in the way a sector volatility
affects permit price variations. In the absence of OBA, more volatile sectors have a greater
influence on permit price variations. However, as these more volatile sectors get assigned
higher OBA rates, their volatility is reduced, and hence, their influence on permit price
variations. Condition (32) requires such reduction not be so large in the optimal scheme, so
that more volatile sectors continue having a greater influence on permit price variations.

Whether the optimal OBA scheme of Proposition 4 can be indeed implemented not only
depends on (32) holding but also on satisfying the budget constraint (i). Thanks to Lemma
3 we do not need to check a potentially large number of menus that could implement the
optimal scheme. We can restrict ourselves to menus in which α1 = 0 and ên = 0 since any
implementable menu could be transformed into a menu with these two features. Therefore,
the menu that can potentially implement the optimal scheme with the minimum number of
lump-sum permits being allocated consists in setting α1 = 0 and αi as in Proposition 4 and

ên = 0

ên−1 − ên = E[πn−1(θn−1, r, αn)− πn−1(θn−1, r, αn−1)]/E[r]

...

êi − êi+1 = E[πi(θi, r, αi+1)− πi(θi, r, αi)]/E[r] (33)

...

so that each of self-selection constraints holds. Whether
∑n

j=1 êj is smaller than ē is not
immediate, but it is very likely as the next proposition shows.

Proposition 5 Under the linear specification above with sectors that are identical but for
their volatility (i.e., σ1 < ... < σn), the optimal OBA scheme in Proposition 4 can be
implemented with a menu of OBA rates and lump-sum allocations {(αj, êj)/i = 1, ..., n} as
described in (33) as long as (i) a > h(1 + 2γ/b) and (ii) σ2

1 < h2
∑n

i=1(1− αi).

17



Proof. See Appendix B.3
Condition (ii) is obtained from working through the n − 1 incentive compatibility con-

straints. According to this condition, it appears that all that is required is to have just one
single sector in the permit system with a volatility low enough for all this to work. This
should not be interpreted, however, as that all we need is to just bring a low volatility sector
to the permit system; the sector must be large enough, like all the others, so that there is
always a positive amount of production in the sector for any possible shock and permit price
realizations. Arriving at condition (i) is more demanding, but it is also likely to hold in
practice. Take the electricity sector for instance. Estimates of the value of lost load, which
is a good approximation for a since it corresponds to what customers are willing to pay to
avoid a disruption in their electricity service, is many times larger than the corresponding
social cost of carbon, i.e., h in our model.

As we will see next, both conditions (i) and (ii) hold easily in our policy exercises, but it
is nevertheless useful to explore more formally what would be the additional distortions the
regulator will need to introduce to sort sectors out when these two conditions do not hold.
Given that the optimal OBA scheme in Proposition 4 is already away from the first-best,
it is not clear what are these least-cost extra distortions. Following a bunching-at-the-top
solution, one possible option would be to maintain the optimal OBA scheme to all sectors
k < k̄ and offer the same deal (αk̄, êk̄) to all sectors k ≥ k̄, where the cutoff k̄ is to be found
by going down the volatility ladder until

∑n
j=1 êj = ē, while taking into account that ē is

not fixed but endogenously determined along with k̄ and the rest of the menu.

4 Policy implications

In this section we use our model to analyze the consequences of introducing an OBA scheme
in permit-trading regulation and discuss its policy implications using a numerical illustration.
We take the carbon market in Europe, better known as the EU-ETS, as a background for
this discussion (the California market would have offered another illustration with similar
policy issues). In the EU-ETS a piece-wise approximation of OBA has been introduced for
years 2013-2020 for sectors at risk of leakage while all remaining sectors will receive no free
(OBA) allowances (Branger et al., 2015).

The first issue we consider is whether the flexibility in emissions induced by granting
OBA permits to some sectors should necessarily lead to some flexibility in the overall cap,
as formulated in our analysis. Under the current EU-ETS regulation the total cap, which
was set in 2008 at a time of high economic activity, is fixed. The current level of activity
has dropped significantly, so the OBA sectors have reduced their emissions but the cap has
remained as originally set. This partly explains the drop observed in the carbon price and
the current debate on how to eliminate the ”excess” of allowances in the market.17 We will
show that a flexible total cap would have mitigated this unbalance greatly; furthermore, it
would have reduced perverse effects in non-OBA sectors (i.e., sectors for which α = 0) due
to the drop in the carbon price.

A second issue we address concerns the difficult question of defining the sectors at risk, i.e.,

17http://ec.europa.eu/clima/policies/ets/index_en.htm
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the sectors that should be entitled to OBA permits. Initially to be eligible for OBA permits,
the EU-ETS required a sector to simultaneously exhibit a carbon intensity and exposition
to international trade above pre-established thresholds. In the end it required the sector to
comply with either requirement. As a result, more than 80% of industrial emissions (i.e.,
emissions covered by the EU-ETS except electricity production) became eligible for OBA
permits. This has taken the EU to revise its eligibility criteria, which has touched on the
many of the issues discussed in the article, including firms’ active lobby to remain eligible.

4.1 A numerical illustration

The illustration that follows is based on the linear specification of section 3.2 with two
sectors with the following numerical values for the parameters: a1 = a2 = 1, b1 = b2 = 1,
γ1 = γ2 = 1, h = 1/4, θ1 = 0 and θ2 ∈ {−λ, λ} with equal probability, so σ2 = λ. The
parameter λ will be referred as the level of uncertainty. The model is explored for λ moving
from 0 to 1/2. We are particularly interested in large values of λ.18

Corollary 1 With the linear specification (24) for two identical sectors but for their volatility
(σ1 = 0 and σ2 > 0) the optimal OBA scheme {ē, α1, α2} reduces to

α1 ∈ [0, 1)

α2 − α1

1− α1

= 1−
[
(∆2 + 1)1/2 −∆

]
> 0 (34)

ē =
1

2
(a− h)(2− α1 − α2) (35)

where ∆ = σ2
2/2h

2 > 0.

Proof. See Appendix B.4.
Corollary 1 provides the relation between α1 and α2 that must hold under an optimal

OBA scheme, so without any loss of generality we focus on α1 = 0. Figure 1 depicts this
optimal policy as a function of λ. It can be observed that the optimal OBA rate is increasing
rapidly as the uncertainty level increases. The level of permits to be auctioned off is also
depicted, as well as the level of lump-sum permits that should be allocated to sector 1 to
make the optimal OBA rate robust to self selection. These values of permits are given in
percentage of the cap without OBA, but considering uncertainty. For example, for λ = 0.5
approximately 60% of the permits should be auctioned off, and to prevent sector 1 to lobby
for sector 2’s OBA rate, the regulator should give sector 1 a total of 20% of the permits in a
lump-sum transfer, reducing the total number of permits to be auctioned off to 40%. This
slacks applies to any level of λ, as Figure 1 shows.

18Take the cement market to have some order of magnitude for the level of uncertainty in a given sector.
In Branger et al. (2015) it is observed that approximately 50% of the EU cement market has gone through
a severe recession. In countries such as Ireland, Spain and Greece the level of cement consumption in 2012
was around 30% the corresponding level of 2007, the time at which the EU-ETS had been designed. In our
simulation we consider a range for the uncertainty factor of plus or minus 50%, that is a drop of 80% in
consumption relative to the peak.
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Figure 1: Optimal policy as a function of uncertainty (λ)

Consider now the welfare associated with the optimal policy. For convenience it will be
computed in percentage terms relative to the first-best level of welfare. Figure 2a depicts
the total expected welfare, while Figures 2b and 2c depict the welfare in sector 1 and sector
2, respectively. It is interesting to also derive these welfare levels under two other scenarios:
a fixed cap without OBA and a fixed cap with OBA. In the latter case we assume that the
regulator insists on maintaining a global fixed cap for the total emissions in spite of the fact
that she gives OBA permits to sector 2. Formally we compare the following four scenarios.

1. First best (FB): a carbon tax equal to marginal damage, r = h. Total emissions are
equal to e = (1−h) + θ2. We denote by ēFB = 1−h the expected amount of emissions
under the first-best.

2. Fixed cap & no OBA (FCN): a fixed cap is set ex-ante at ēFB and α = 0. The permit
price varies with θ2 as follows

rFCN(θ2) = 1− ēFB +
θ2

2
= h+

θ2

2

3. Flexible cap & OBA (OBA): following Corollary 1, a total number of permits ē∗ are
auctioned off and sector 2 is assigned an OBA rate equal to α∗2. The permit price is

rOBA(θ2) =
1 + (1− α∗2)(1 + θ2)− 2ē∗

1 + (1− α∗2)2

4. Fixed cap & OBA (FCO):19 a total number of permits ēFB are allocated, so all the
OBA permits that are assigned to sector 2 under the rate α∗2 are substracted from the
permits to be auctioned off so as to maintain the overall allocation fixed at ēFB. The
permit price in this case is equal to

rFCO(θ2) =
2 + θ2 − 2ēFB

2− α∗2
.

19It is possible to slightly improve this scenario by choosing the amount of permits that maximizes expected
welfare given the OBA rate α∗

2. The presence of a suboptimal OBA rate calls for a small relaxation of the
cap and does not significantly enhance expected welfare with our simulations.
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Figure 2: Expected Welfare as a function of uncertainty (λ)

As it can be easily checked that the volatility of the carbon price will vary accross
scenarios, being lowest under an optimal OBA scheme: var(rOBA) < var(rFCN) < var(rFCO).
This has important welfare implications as seen in Figures 2a, 2b and 2c. Compare first
the situation under a Flexible cap & OBA (OBA) against the situation under a Fixed cap
& no OBA (FCN). OBA not only improves welfare in sector 2 but also in sector 1. The
reason for this latter is the reduction in the volatility of the carbon price relative to FCN
(recall that the first-best calls for a constant carbon price equal to h). Now, from looking
at the situation under a Fixed cap & OBA (FCO), it is evident that insisting on a global
fixed cap increases the volatility of the carbon price even more than under a Fixed cap & no
OBA (FCN), which explains why welfare in sector 1 drops even further. As far as sector 2 is
concerned, whether the global cap is fixed or flexible is of a second order effect, the impact
of the carbon price is mitigated by the OBA rate. It is well known that introducing OBA in
one sector may generate a perverse effect in non-OBA sectors; still this analysis points out
that the distortion is conditional on the constraint imposed on the global cap.

The main motivation for insisting on a global fixed cap is certainly political. It is probably
easier to agree on (decreasing) levels of global caps than to let the actual observed caps
vary depending on the level of economic activity. However, our simple model points out an
unexpected consequence if the regulator insists on having a fixed cap. As already mentioned,
the observed carbon price will be much more dependent on output levels. Figure 3 depicts
the expected emissions with a flexible cap. It is somewhat higher (the ex-post level may be
higher or lower) than the corresponding level with a fixed cap; this is the price to pay to
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Figure 3: Emissions relative to Fixed cap as a function of uncertainty (λ)
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Figure 4: Permit prices relative to the marginal environmental damage (h) as a function of
uncertainty (λ)

increase expected welfare through OBA. More interestingly, Figure 4 gives the associated
levels of the permit price. Insisting on a fixed cap makes the permit price to either explode
or collapse for large levels of uncertainty. This is consistent with what has been observed in
the EU-ETS after the severe recession post 2007-2009.

4.2 The impact of leakage on the optimal OBA scheme

This article demonstrates that the optimal OBA rate increases (rapidly) with uncertainty.
This should certainly remain true if leakage is introduced into the analysis. While it is
outside the scope of this article to extend the general model in such direction, we offer
some preliminaries. We extend the linear specification above so as to include two type of
firms in sector 2, a domestic 2d firm and a foreign 2f firm with respective cost functions
C2d(q2d) = γ2dq

2
2d/2 and C2f (q2f ) = γ2fq

2
2f/2, with q2 = q2d + q2f . If a carbon price is

introduced only in the domestic market this will induce an upward shift in the marginal cost
at home, and imports will be relatively cheaper. The ratio (l) of the increase in imports
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to the decrease in domestic production is known as the leakage rate. The leakage ratio is
independent of sector 2’s demand uncertainty and is simply l = b2/(b2 + γ2f ). We keep
b2 = γ2d = 1 and use the leakage rate as a variable parameter (which is equivalent to
modifying γ2f ).

The welfare function now writes

W = S1(q1)− C1(q1) + S2(q2; θ2)− C2d(q2d)− C2f (q2f )− h(q1 + q2). (36)

Notice that foreign costs are also included in the welfare function. In order to abstract
from any strategic effects, our formulation assumes that the domestic government is buying
production at cost from the foreign country. In absence of uncertainty the optimal OBA
rate is α∗2 = l.20 Corollary 1 can be directly extended to get the following result

Corollary 2 Under the linear specification above, which considers no uncertainty in sector
1 and is extended to cover foreign competition, the optimal OBA rate for sector 2 is

α∗2(σ2, l) = 1− 2− l
2(1− l)

[(
∆2
l + 2

(1− l)2

2− l

)1/2

−∆l

]
> l (37)

where

∆l =
σ2

2

h2

(1− l)2

2− l
+

1

2
− (1− l)2

2− l
(38)

Proof. See Appendix B.5.
Figure 5 depicts the optimal OBA rate for two values of leakage: a low value (l = 0.2) and

a high value (l = 0.5). It can be seen that the OBA rate increases as the level of uncertainty
increases, though naturally at a lower rate for the case of high leakage. This suggests
that the level of uncertainty should certainly be introduced as a key factor to determine
whether a sector at risk of leakage should benefit or not from output based allocations. For
instance, while leakage is low in the cement sector because inland production is somewhat
protected from foreign competition, according to this article, its high volatility would be a
valid argument to make it eligible for free allocations.21

5 Conclusions

We have studied pollution permit markets in which a fraction of the permits are allocated
to firms based on their output. We find that output-based allocations (OBAs), which are
receiving increasing attention in the design of carbon markets around the world (e.g., Europe,
California, New Zealand) can be optimal under demand and supply volatility despite the
output distortions they may create. Take for instance the case of demand volatility and a

20Consider unregulated foreign production as a function of domestic production q2f (q2d), then, it is as if
there is a positive externality associated to domestic production in sector 2 equal to −l∂q2f/∂q2d = l×h, in
addition to the negative externality associated to total emissions.

21Notice that the OBA rates under the different leakage rates actually cross for high values of uncertainty
(λ = 0.5). This is so because the leakage rate influences the relative size (in emissions) of the domestic
production in sector 2 relative to the size of sector 1. This somewhat softens the uncertainty effect.
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Figure 5: The optimal OBA rate with and without leakage as a function of uncertainty (λ)

fixed permits cap. For any given realization of demand, the cap is likely to be sub-optimal,
being either too low or too high. An OBA scheme introduces some flexibility since the number
of permits allocated depends on the level of demand. An OBA scheme enhances welfare by
conditioning the emissions cap to economic activity, though imperfectly. This holds whether
there is single productive sector covered by the permit market or, even more so, multiple
sectors subject to different shocks. Even if a price floor and ceiling are introduced, an OBA
scheme still enhances welfare.

Our model provides interesting insights to discuss a number of pending issues for the
design of emission trading systems in general and carbon markets in particular. A numerical
illustration is used to show the policy relevance of our results. While the introduction of
OBA is ordinarily associated with the possibility of leakage in some sectors, we show that
uncertainty in those sectors would also call for introducing OBAs. However the benefits
associated with OBAs are critically dependent on the simultaneous introduction of some
flexibility in the total cap of the corresponding permit market. In absence of this flexibility
the volatility of the permit price would be considerably enlarged generating severe distortions
in the sectors without OBA. It is also shown that the optimal OBA rate should be much
higher than the one derived in models with leakage but without uncertainty. It would be
interesting to investigate further these results in a full blown dynamic model in which the
regulator commits over a given period of time and shocks occur on a frequent basis. Leakage,
heterogeneous abatement technologies, and alternative policy features such as banking and
market stability reserves should also be considered.
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Appendix

A Single-sector case

A.1 Equilibrium

To characterize the equilibrium for any demand-supply state θ-η we first need to establish
how the demand for auctioned permits ē changes with r. Take any r > 0, the equilibrium is
fully characterized by the first-order conditions (5) and (6). Let f(α, r, θ, η) and g(α, r, θ, η)
be the unique production and pollution levels, respectively, that solve the two first-order
conditions.

Result A1. The demand for auctioned permits g − αf is decreasing in r.
Proof. Take the derivative of the first-order conditions (5) and (6) with respect to r:[

Pq − Cqq −Cqe
−Cqe −Cee

] [
fr
gr

]
=

[
−α
1

]
(39)

so that the effects of a change in the permit price on production and emissions are:[
fr
gr

]
=

1

δ1

[
Cqe + αCee

(Pq − Cqq)− αCqe

]
(40)

where δ1 = (Cqq − Pq)Cee − C2
qe is strictly positive by assumption (1). The derivative of the

net demand for (auctioned) permits is then:

gr − αfr =
−1

δ1

[
−Pq + Cqq + 2αCqe + α2Cee

]
≤ −1

δ1

[
−Pq + Cqq − 2α

√
CqqCee + α2Cee

]
≤ −1

δ1

[
−Pq + (C1/2

qq − αC1/2
ee )2

]
< 0

where the second inequality is thanks to (1).�
The equilibrium permit price depends on α, ē and shocks θ and η according to the

function r(α, ē, θ, η), which is the unique solution of g(α, r, θ, η)− αf(α, r, θ, η) = ē.
The equilibrium levels of output and emissions, q(α, ē, θ, η) and e(α, ē, θ, η) respectively,

are the (unique) solution of the system of equations:

P (q, θ)− Cq(q, e, η)− αCe(q, e, η) = 0

αq + ē = e

For the comparative static of this equilibrium, first introduce

δ2 = −Pq + Cqq + 2αCqe + α2Cee > 0.

See proof of Result A1 for the sign of δ2. Let us now consider in turn the influence of ē, α
and the shocks θ and η on both q and e.
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1. The influence of ē is given by:[
qē
eē

]
=

1

δ2

[
−Cqe − αCee)

q(Cqq + αCqe − Pq)

]
(41)

For small values of α both signs are positive. For large values of α there is a counter-
acting effect via the subsidy and free allocations. With a larger number of auctioned
permits the permit price is lower (see Result A1 above) and so is the OBA subsidy.
This latter effect can more than offset the increase in production that results from the
lower production cost associated to cheaper permits.

2. The influence of α is given by:[
qα
eα

]
=

1

δ2

[
−Ce − q(Cqe + αCee)

−αCe + q(Cqq + αCqe − Pq)

]
= −Ce

δ2

[
1
α

]
+ q

[
qē
eē

]
(42)

In both lines the first term comes from the subsidy component of the scheme, and the
second term is the effect via the increase in the number of permits, which is equal to
the effect of the quantity of auctioned permits times output.

3. The influence of θ is given by: [
qθ
eθ

]
=
Pθ
δ2

[
1
α

]
(43)

Both quantities are increasing in θ. However, the monotonicity of the permit price is
not that clear as the next expression shows:

rθ = −Cqeqθ − Ceeeθ =
Pθ
δ2

[−Cqe − αCee] (44)

The first term in the brackets is positive but the second one is negative and comes
from the OBA subsidy. If demand increases and α is large, an increase in the number
of OBA permits can more than compensate the pressure on marginal abatement cost
coming from a higher output.

4. Finally, the influence of η is given by:[
qη
eη

]
=
−Cqη − αCeη

δ2

[
1
α

]
(45)

Both quantities change in the same direction with respect to η, because of their re-
lationship with the fixed quantity of auctioned permits: emissions can increase only
if production increases and more permits are emitted. The sign of the monotonicity
depends on the sign of the influence of η on the marginal production cost and the
subsidy. For α = 0 only the former matters. On the other hand, the influence of η on
the permit price is the sum of a term related to the direct effect of η on abatement
costs and a term related to the adjustment of production and emissions. At α = 0 we
have

rη|α=0 = −Ceη − Cqeqη − Ceeeη = −Ceη + Cqe
Cqη
δ2

(46)
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A.2 Proof of Lemma 2

We first prove that the covariance of two increasing functions of a random variable is positive.
Result A2. If φ and ψ are two real valued strictly increasing functions of θ then

cov(φ(θ), ψ(θ)) > 0.
Proof. Consider a second random variable ε independent from θ with the same distri-

bution; then

2cov(φ(θ), ψ(θ)) = cov(φ(θ), ψ(θ)) + cov(φ(ε), ψ(ε)) = cov(φ(θ)− φ(ε), ψ(θ)− ψ(ε))

and cov(φ(θ) − φ(ε), ψ(θ) − ψ(ε)) = E[(φ(θ) − φ(ε)) × (ψ(θ) − ψ(ε))] and ∀(θ, ε) ∈
[θmin, θmax]2 the product (φ(θ)− φ(ε))× (ψ(θ)− ψ(ε)) is positive and strictly so if θ 6= ε.�

We now use the comparative static on θ and η performed in Appendix A.1 to establish
the following:

• Case 1: Pθ > 0 and Cη = 0. From equations (43) and (44), r and q are both increasing
in θ and invariant to changes in η. This latter implies that cov(r, q) > 0, so from
Proposition 1 we have that a small increase in α above 0 augments welfare.

• Case 2: Pθ = 0, Cqη > 0 and Ceη > 0. From (45) and (46), r and q are both decreasing
in η, so they covary, which, from Proposition 1, indicates that a small increase in α
above 0 augments welfare.

• Case 3: Pθ = 0, Cqη > 0 and −Ceη > −CqeCqη/(−Pq + Cqq). From (45) and (46), q is
decreasing in η but and r is increasing in it, so cov(r, q) < 0. Consequently, a small
increases in α decreases welfare.

B Multi-sector case

B.1 Proof of Proposition 3

Preliminaries
To ease the presentation we will omit the shocks θ and η, unless otherwise necessary

to avoid confusion. We will first determine how equilibrium output and permit prices vary
with respect to ē and OBA rates. For that, let us introduce the sectorial residual demand
Qi(t), which is the unique solution of Pi(xi) − C ′i(xi) = t. For each sector i = 1, ..., n, the
function Qi(.) is positive, decreasing and differentiable with Q′i = 1/(P ′i−C ′′i ). At the market
equilibrium, sector i’s output is qi = Qi((1− αi)r).

The equilibrium permit price is a function r(ē, α1, .., αn) that solves the equation∑
i
(1− αi)Qi((1− αi)r) = ē. (47)

Taking the derivative of (47) with respect to ē gives

rē =
[∑

i
(1− αi)2Q′i

]−1

(48)
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and with respect to αk for k = 1, ..., n∑
i
(1− αi)2Q′irαk

= Qk + (1− αk)rQ′k
so

rαk
= rē[qk + (1− αk)rQ′k].

On the other hand, changes in equilibrium output wrt to ē and OBA rates are given by

qiē = (1− αi)Q′irē
and

qik ≡
∂qi
∂αk

= (1− αi)Q′irαk
= (1− αi)Q′irē[qk + (1− αk)rQ′k]

= qiēqk + (1− αi)Q′i(1− αk)Q′krrē (49)

for all i 6= k, and

qkk = −rQ′k + (1− αk)Q′krαk
= −rQ′k + qkēqk + [(1− αk)Q′k]2rrē (50)

Choice of the cap
The effect of ē on welfare for any given state of demand and supply is

∂W

∂ē
=
∑

i
(1− αi)rqiē −D′

∑
i
qiē = (r −D′)

∑
i
qiē − r

∑
i
αiqiē

= (r −D′)−D′
∑

i
αiqiē = (r −D′)−D′

∑
i
αi(1− αi)Q′irē (51)

that sing Q′i = 1/(P ′i − C ′′i ) yields equation (22).

Choice of the OBA rates αi
Since

∑
qi = ē+

∑
αiqi, we have

∑
qik = qk +

∑
αiqik, so that

∂W

∂αk
= (r −D′)

∑
i
qik − r

∑
i
αiqik = (r −D′)qk −D′

∑
i
αiqik

We now use the Preliminary results above to isolate the effect of releasing qk free permits
from the ”subsidy effect”. Using equations (49) and (50) yields

∂W

∂αk
=
[
(r −D′)−D′

∑
i
αiqiē

]
qk

−D′
{

(1− αk)Q′k
∑

i
[αi(1− αi)Q′i]rrē − αkrQ′k

}
(52)

Since the first bracketed term is equal to the derivative of welfare with respect to ē times
output qk, making use of (48) we obtain

∂W

∂αk
=
∂W

∂ē
qk − rrēQ′kD′

∑
i

[
αi(1− αi)(1− αk)Q′i − αk(1− αi)2Q′i

]
=
∂W

∂ē
qk − rrēQ′kD′

∑
i

[(1− αi)(αi − αk)Q′i] (53)
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Taking expectations and using the fact that ē is optimal chosen we obtain

E
[
∂W

∂ē
qk

]
= E

[
∂W

∂ē

]
E [qk] + cov

(
∂W

∂ē
, qk

)
= cov

(
∂W

∂ē
, qk

)
But Q′i = −1/(C ′′i − p′i), which shows that expression (23) holds.

B.2 Linear specification and proof of Proposition 4

Permit market equilibrium
Let βi = bi + γi be the slope of the sectorial demand, Qi(t) = (ai + θi − t)/βi. We write

ãi = ai + θi, the intersect of the demand in state θi. At equilibrium qi = (ã− (1− αi)r)/βi
and the permit price clears the permit market

∑
i qi = ē+

∑
i αiqi, that is,

ē =
∑

i

[
(1− αi)

ãi
βi

]
− r

∑
i

[
(1− αi)2

βi

]
so the permit price is

r =

∑
i [(1− αi)ãi/βi]− ē∑

i [(1− αi)2/βi]
(54)

Choice of the cap
From (51) and (54) we obtain that the effect of ē on welfare is given by

∂W

∂ē
= (r − h)− h

∑
i

αiqiē = r − h− h
∑

i[αi(1− αi)/βi]∑
i(1− αi)2/βi

so at the optimal ē(α1, ..., αn) we have

Er =

∑
i(1− αi)/βi∑
i(1− αi)2/βi

h (55)

and, from (54), the optimal cap is

ē(α1, .., αn) =
∑
i

(1− αi)(ai − h)/βi (56)

Choice of the OBA rates αk
The optimal αk satisfies equation (23). Using D′ = h, Q′i = −1/βi and rē = 1/

∑
((1 −

αi)
2/βi) yields the first order condition:

cov

(
∂W

∂ē
, qk

)
=

hE[r]

βk
∑

i[(1− α2
i )/βi]

∑
i

[
1− αi
βi

(αk − αi)
]

=
h2

βk

∑
i(1− αi)/βi

[
∑

i(1− αi)2/βi]2

∑
i

[
1− αi
βi

(αk − αi)
]

using eq. (55) (57)
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We also know that

cov

(
∂W

∂ē
, qk

)
= cov(r, qk) = cov(r, (θk − (1− αk)r)/βk)

=
(1− αk)/βk

(
∑

i(1− αi)2/βi)2

∑
i

[
(1− αi)2

βi

(
σ2
k

βk
− σ2

i

βi

)]
(58)

so, combining the two expressions above, the optimal rate αk satisfies

∑
i

[
(1− αi)2

βi

(
σ2
k

βk
− σ2

i

βi

)]
= h2

[∑
i

1− αi
βi

]∑
i

[
1− αi
βi

αk − αi
1− αk

]
(59)

Using the latter to substract expressions associated to k and l, and writing (αk − αi)/(1 −
αk) = (1− αi)/(1− αk)− 1, yields

σ2
k

βk
− σ2

l

βl
= h2

[∑
i

1− αi
βi

][
1

1− αk
− 1

1− αl

]
(60)

Therefore, if σ2
k/βk > σ2

l /βl then αk > αl.
Since α1 is the lowest rate, we can set α1 = 0 and using equation (60) we obtain for all

other k = 2, ..., n

αk =
∆k

∆k + Ψ

where ∆k is given by (26) and Ψ =
∑

i(1− αi)/βi. Finally, summing over k gives that Ψ is
a solution of the equation

n∑
i=1

1

βi(∆i + x)
= 1.

There is a unique solution to this equation between 0 and +∞, it is lower than
∑

i(1/βi),
because the left-hand-side is strictly decreasing, and, since ∆1 = 0, it is equal to +∞ for
x = 0, and for x =

∑
i 1/βi, it is lower than 1.

Then for Ψ the unique positive solution of this equation, define αi = ∆i/(∆i + Ψ) for all
i > 1 which is between 0 and 1, and ē is given by equation (56). They all satisfy the first
order conditions and thus, maximize expected welfare.

B.3 Proof of Proposition 5

Let us assume that (i) a > h(1 + 2γ/b) and (ii) σ2
1 < h2

∑n
i=1(1 − αi) hold, and show that

the optimal OBA scheme in Proposition 4 can be implemented with a menu of OBA rates
and lump-sum allocations {(αj, êj)/i = 1, ..., n} as described in (33).

At the optimum scheme described in Proposition 4, for βi = β ∀i, we have ψ =
∑

i(1−
αi)/β and αi = ∆i/(δi + ψ) and σ2

i − σ2
1 = αiβψh

2

We proceed in three steps: we first show that the derivative of firm i + 1’s profit with
respect to α is higher than the derivative of firm i’s. Then we show that this result ensures
that the lump-sum (free) allocations (33) are sufficient for the self-selection constraints to
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hold. And finally we show that the regulator has enough permits to offer the lump-sum
allocations (33).

We first show that the influence of the OBA rate on profit is larger for the more volatile
sectors

E
[
∂πi+1(θi+1, r, α)

∂α

]
≥ E

[
∂πi(θi, r, α)

∂α

]
(61)

Using (29) and (31), the above inequality can be written as

(1− αi+1)σ2
i+1 ≥ (1− αi)σ2

i (62)

for i = 1..n− 1. Then, using σ2
i − σ2

1 = h2βαiψ/(1− αi), eq. (62) is equivalent to

(1− αi+1)(σ2
i+1 − σ2

1) + (1− αi+1)σ2
1 ≥ (1− α2

i )(σ
2
i − σ2

1) + (1− αi)σ2
1

(αi+1 − αi)βψh2 ≥ (αi+1 − αi)σ2
1

h2
∑
i

(1− αi) ≥ σ2
1

which corresponds to assumption (ii) in Proposition 5.
Thanks to this property, all differences êi+1− êi in (33) are positive, and the self-selection

constraints (28) are all satisfied. Consider i, j = 1, ..., n, sector i prefers its option to option
j if i < j:

E[πi(θi, r, αj)− πi(θi, r, αi)] =

j−1∑
k=i

E[πi(θi, r, αk+1)− πi(θi, r, αk)]

≤
j−1∑
k=i

E[πk(θi, r, αk+1)− πk(θi, r, αk)] thanks to (61)

≤
j−1∑
k=i

E[r](êk − êk+1) = E[r](êi − êj) by definition of the menu (33).

A similar reasoning shows that it also holds for i > j.
We now establish that thanks to assumption (i) the budget-balance constraint is satisfied.

The regulator has enough permits to implement the optimal scheme with the allocations
described in (33)

ē ≥
n∑
i=1

êi =
n−1∑
i=1

i× 1

E[r]
E[πi(θi, r, αi+1)− πi(θi, r, αi)] (63)

The difference in profit is equal to

E[πi(θi, r, αi+1)− πi(θi, r, αi)] =
γ

2β2
(αi+1 − αi)E [r [2(a+ θi)− (2− αi+1 − αi)r]]

=
γ

2β2
(αi+1 − αi) {E[r]× [2a− (2− αi+1 − αi)E[r]] + cov(2θi − (2− αi+1 − αi)r, r)}
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So the constraint (63) is equivalent to

ē >
γ

β2

n−1∑
i=1

i(αi+1 − αi)
{[

a− (1− αi+1 + αi
2

)E[r]

]
+ cov

(
θi − (1− αi+1 + αi

2
)r,

r

E[r]

)}
Let us now establish an upper bound for the two terms on the right-hand side. Since αn < 1
we have that

γ

β2

n−1∑
i=1

i(αi+1 − αi)a =
γ

β2

n−1∑
i=1

(αn − αi)a < ψ
γ

β
a

and∑
j

(1−αj)2×var(r) =

∑
j(1− αj)2σ2

j∑
j(1− αj)2

=

∑
j(1− αj)2(σ2

j − σ2
1)∑

j(1− αj)2
+σ2

1 =

∑
j(1− αj)αj∑
j(1− αj)2

βψh2+σ2
1

so that the covariance term is lower than h

cov(θi − (1− αi+1 + αi
2

)r,
r

Er
) =

1

Er
∑

j(1− αj)2

{
(1− αi)(σ2

i − σ2
1) +

αi+1 − αi
2

σ2
1 −

(
1− αi+1 + αi

2

)∑
j(1− αj)αj∑
j(1− αj)2

βψh2

}

<
1

βψh

{
αiβψh

2 +
αi+1 − αi

2
σ2

1

}
=

1

βψh

{
αi(βψh

2 − σ2
1

2
) +

αi+1

2
σ2

1

}
<

1

βψh
βψh2 = h

where the last inequality is obtained using h2 > σ2
1 (from (ii)), βψ > 1, and αi < αi+1 < 1.

Then, the right-hand side of (63) is lower than

γ

β2
βψa+

γ

β2

n−1∑
i=1

[i(αi+1 − αi)]h <
γ

β2
βψa+

γ

β2
βψh = (a+ h)

γ

β
ψ

and
a > h(1 + 2γ/b)⇔ (a+ h)

γ

β
< a− h

so that, if a > h(1 + 2γ/b) then (63) is satisfied, because ē > a− h at the optimal scheme.

B.4 Proof of Corollary 1

Let us consider the slightly more general situation, the one in Proposition 4: pi = ai+θi−biqi
and Ci = γiq

2
i /2 denoting βi = bi + γi and ãi = ai + θi. Using the results in this Proposition

and setting α1 = 0, the optimal cap is given by

ē = (a1 − h)/β1 + (1− α2)(a2 − h)/β2
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and the expression in Corollary 1 is obtained by simply replacing a1 = a2 = a and β1 = β2 =
2. Let us write ∆2 = [σ2

2/β2 − σ2
1/β1]/h2 as in Proposition 4. The optimal α2 is equal to

∆2/(∆2 + Ψ) with Ψ = 1/β1 + (1− α2)/β2, so (1− α2)(∆2 + Ψ) = Ψ

(1− α2)(∆2 + 1/β1 + (1− α2)/β2) = 1/β1 + (1− α2)/β2

This implies that (1− α2)/β2 is the positive solution of the equation

x2 + x∆− 1

β1β2

= 0

with ∆ = ∆2 + 1/β1 − 1/β2 (which corresponds to the value of ∆ defined in Corollary 1 for
β1 = β2 = 2), which yields

1− α2

β2

=
1

2

[(
∆2 +

4

β1β2

)1/2

−∆

]
.

The equivalent expression in Corollary 1 is obtained, again, by simply replacing β1 = β2 = 2
and σ1 = 0, and making use of Lemma 3 on the equivalence of schemes.

B.5 Proof of Corollary 2

We will work with a slightly more general quadratic framework than what the proof of
the corollary requires, which assumes values of b1 = γ1 = b2 = γ2d = 1. To obtain the
optimal OBA rate given a leakage rate l, we rewrite the welfare function in two steps so
that, redefining parameters accordingly, we can use the above generalization of Corollary 1.

In equilibrium the foreign marginal cost is equal to the output price so that q2f (q2d, θ2) =
(a2 + θ2 − b2q2d)/(b2 + γ2f ), and the leakage rate is l = −∂q2f/∂q2d = b2/(b2 + γ2f ). Using
this, the sectorial surplus net of foreign costs can be written as a function of q2d only as
follows

S2d(q2d; θ2) = S2(q2d + q2f (q2d, θ2); θ2)− C2f (q2f (q2d, θ2))

which is a quadratic function of q2d. And by an envelope argument, its derivative with
respect to q2d is (a2 + θ2)(1− l)− b2(1− l)q2d.

Consequently, maximizing expected welfare in (36) is equivalent to maximizing (we can
omit the constant term hq2f (0, θ2) from the maximization)

W = E {[S1(q1)− C1(q1) + S2d(q2d; θ2)− C2d(q2d)]− h[q1 + (1− l)q2d]}

A change of variable is now sufficient to get the result. Define x2 = (1 − l)q2d and rewrite
everything as a function of x2. Letting b̃2 = b2/(1− l) and γ̃2 = γ2d/(1− l)2 we have

S̃2(x2, θ2) = S2d

(
x2

1− l
, θ2

)
− S2d(0, θ2) = (a2 + θ2 − b̃2x2/2)x2, and C̃2(x2) =

γ̃2

2
x2

2

so welfare as a function of x2 becomes (omitting the constant S2d(0, θ2d))

W = S1(q1)− C1(q1) + S̃2(x2, θ2)− C̃2(x2)− h(q1 + x2)
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where
q1 + x2 = q1 + (1− l)q2d = ē+ (α2 − l)q2d = ē+ α̃2x2.

comes from the fact that the renormalized OBA rate is α̃2 = (α2 − l)/(1− l).
Then, use the above result (in the general version of Corollary 1) to get that the optimal

renormalized OBA rate satisfies the equation

1− α̃2

β̃2

=
1

2

[(
∆2
l +

4

β1β̃2

)1/2

−∆l

]

in which ∆l correspond to the ∆ above with the renormalized parameters (β̃2 = (2−l)/(1−l)2

for b2 = γ2 = 1)

∆l =
1

h2

σ2
2

β̃2

+
1

β1

− 1

β̃2

=
σ2

h2

(1− l)2

2− l
+

1

2
− (1− l)2

2− l

which corresponds to equation (38). Finally, replace β̃2 by (2 − l)/(1 − l)2 and β1 by 2 to
get (37) as in Corollary 2.
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