Quantization of Measures and Gradient Flows: a Perturbative Approach in the 2-Dimensional Case

Abstract : In this paper we study a perturbative approach to the problem of quantization of measures in the plane. Motivated by the fact that, as the number of points tends to infinity, hexagonal lattices are asymptotically optimal from an energetic point of view (see [Morgan, Bolton: Amer. Math. Monthly 109 (2002), 165-172]), we consider configurations that are small perturbations of the hexagonal lattice and we show that: (1) in the limit as the number of points tends to infinity, the hexagonal lattice is a strictly minimizer of the energy; (2) the gradient flow of the limiting functional allows us to evolve any perturbed configuration to the optimal one exponentially fast. In particular, our analysis provides a solid mathematical justification of the asymptotic optimality of the hexagonal lattice among its nearby configurations.
Type de document :
Article dans une revue
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2018, 35, pp.1531-1555. 〈10.1016/j.anihpc.2017.12.003〉
Liste complète des métadonnées

https://hal-polytechnique.archives-ouvertes.fr/hal-01341841
Contributeur : François Golse <>
Soumis le : mardi 5 juillet 2016 - 01:19:45
Dernière modification le : lundi 17 septembre 2018 - 10:50:26

Fichiers

Quantiz2Dhexa.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Emanuele Caglioti, François Golse, Mikaela Iacobelli. Quantization of Measures and Gradient Flows: a Perturbative Approach in the 2-Dimensional Case. Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2018, 35, pp.1531-1555. 〈10.1016/j.anihpc.2017.12.003〉. 〈hal-01341841〉

Partager

Métriques

Consultations de la notice

337

Téléchargements de fichiers

325