P. Billingsley, Convergence of probability measures, second ed., Wiley series in Probability and Statistics: Probability and Statistics, 1999.

F. Bolley, J. A. Cañizo, and &. J. , Carrillo Stochastic mean-eld limit: Non-lipschitz forces and swarming, Mathematical Models and Methods in Applied Sciences, vol.21, 2010.

F. Bolley, J. A. Cañizo, and &. J. , Carrillo Mean-eld limit for the stochastic vicsek model, Applied Mathematics Letters, vol.25, p.339343, 2011.

E. Carlen, P. Degond, and &. , Wennberg Kinetic limits for pair-interaction driven master equations and biological swarm models, Mathematical Models and Methods in Applied Sciences, vol.23, p.13391376, 2013.

J. A. Carrillo, Y. Huang, and &. , Explicit flock solutions for Quasi-Morse potentials, European Journal of Applied Mathematics, vol.107, issue.05, pp.553-578, 2014.
DOI : 10.1007/s00332-012-9132-7

J. A. Carrillo and &. , Yan An asymptotic preserving scheme for the diusive limit of kinetic systems for chemotaxis, Multiscale Modeling and Simulation, vol.11, p.336361, 2013.

M. E. Cates and &. , Tailleur Statistical mechanics of interacting run-and-tumble bacteria, Physical Review Letters, vol.100, 2008.

A. De-masi, P. A. Ferrari, and &. J. , Lebowitz Reaction-diusion equations for interacting particle systems, Journal of Statistical Physics, vol.44, 1986.

A. De-masi and &. P. , Ferrari Separation versus diusion in a two species system, Brazilian Journal of Probability and Statistics, vol.29, issue.2, p.387412, 2015.

P. Degond, A. Frouvelle, and &. , Liu Macroscopic limits and phase transition in a system of selfpropelled particles, Journal of Nonlinear Science, vol.23, issue.3, p.427456, 2013.

P. Degond, J. Liu, and S. Motsch, Panferov Hydrodynamic models of self-organized dynamics: derivation and existence theory, Methods and Applications of Analysis, vol.20, p.89114, 2013.

P. Degond and &. , Motsch Continuum limit of self-driven particles with orientation interaction, Mathematical Models and Methods in Applied Sciences, vol.18, 2008.

P. Degond and &. , Yang Diusion in a continuum model of self-propelled particles with alignment interaction, Mathematical Models and Methods in Applied Sciences, vol.20, p.14591490, 2010.

J. Farfan, A. B. Simas, and &. F. , Valentim Dynamical large deviations for a boundary driven stochastic lattice gas model with many conserved quantities, Journal of Statistical Physics, vol.139, p.658685, 2010.

Y. Fily and &. , Marchetti Athermal phase separation of self-propelled particles with no alignment, Physical Review Letters, vol.108, 2012.

A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and densitydependent parameters, Mathematical Models and Methods in Applied Sciences, vol.22, issue.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00438174

A. Garcia, E. Rodemich, and &. , Rumsey A real variable lemma and the continuity of paths of some gaussian processes , Indiana Math, J, vol.20, pp.565-578, 1978.

G. Giacomin, J. L. Lebowitz, and &. R. Marra, Macroscopic evolution of particle systems with short- and long-range interactions, Nonlinearity, vol.13, issue.6, 2000.
DOI : 10.1088/0951-7715/13/6/314

G. Grégoire and &. , Onset of Collective and Cohesive Motion, Physical Review Letters, vol.92, issue.2, p.25702, 2004.
DOI : 10.1103/PhysRevLett.92.025702

W. Johnson and &. W. , Story notes on the "15" puzzle, American Journal of Mathematics, vol.2, issue.4, p.397404, 1879.

C. Kipnis and &. , Landim Scaling limits of interacting particle systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.320, 1999.

C. Kipnis and &. , Varadhan Central limit theorem for additive functionals of reversible markov processes and applications to simple exclusions, Communications in Mathematical Physics, vol.104, issue.1, p.119, 1986.

T. Komorowski, C. Landim, and &. , Olla Fluctuations in markov processes. time symetry and martingale approximation

C. Landim, S. Olla, and &. , Varadhan Symmetric simple exclusion process: Regularity of the self-diusion coecient, Communications in Mathematical Physics, vol.224, issue.1, p.307321, 2001.

A. Masi, P. Ferrari, S. Goldstein, and &. , Wick An invariance principle for reversible markov processes. applications to random motions in random environments, Journal of Statistical Physics, vol.55, pp.3-4, 1989.

A. Okubo and &. , Levin Diusion and ecological problems : modern perspectives, Interdisciplinary applied mathematics, 2001.

S. Olla and &. , Sasada Macroscopic energy diusion for a chain of anharmonic oscillators , Probability Theory and Related Fields, p.721775, 2013.

J. K. Parrish and &. , Complexity, Pattern, and Evolutionary Trade-Offs in Animal Aggregation, Science, vol.284, issue.5411, p.99, 1999.
DOI : 10.1126/science.284.5411.99

J. Quastel, F. Rezakhanlou, and &. S. , Varadhan Large deviations for the symmetric simple exclusion process in dimensions d , Probability Theory and Related Fields, p.184, 1999.

M. Sasada, Hydrodynamic limit for exclusion processes with velocities, Markov Processes and Related Rields, 2010.

A. P. Solon, M. E. Cates, and &. , Active brownian particles and run-and-tumble particles: A comparative study, The European Physical Journal Special Topics, vol.15, issue.7, p.1231, 2015.
DOI : 10.1140/epjst/e2015-02457-0

A. P. Solon, J. Caussin, D. Bartolo, H. Chaté, and &. , Tailleur Pattern formation in ocking models: A hydrodynamic description, Physical Review E, 2015.

A. P. Solon, H. Chaté, and &. , Tailleur From phase to microphase separation in ocking models : the essential role of nonequilibrium uctuations, Physics Review E, p.92, 2015.

A. P. Solon and &. , Tailleur Flocking with discrete symmetry: the 2d active ising model, Physics Review E, vol.92, 2015.

H. Spohn, Tracer diusion in lattice gases, Journal of Statistical Physics, vol.59, issue.5-6, p.12271239, 1990.

A. G. Thompson, J. Tailleur, M. E. Cates, and &. R. , Blythe Lattice models of nonequilibrium bacterial dynamics, Journal of Statistical Mechanics: Theory and Experiment, vol.2, p.29, 2011.

J. Toner and &. , Tu Long-range order in a two-dimensional dynamical xy model : how birds y together, Physical Review Letters, vol.75, 1995.

T. Vicsek, A. Czirók, E. Ben-jacob, and I. Cohen, Shochet Novel type of phase transition in a system of self-driven particles, Physical Review Letters, vol.75, p.12261229, 1995.

T. Vicsek and &. , Zafeiris Collective motion, Physics Reports, vol.517, issue.3, p.71140, 2012.