Aminoacetylation Reaction Catalyzed by Leucyl-tRNA Synthetase Operates via a Self-Assisted Mechanism Using a Conserved Residue and the Aminoacyl Substrate

Abstract : Leucyl-tRNA synthetase catalyzes attachment of leucine amino acid to its cognate tRNA. During the second, aminoacetylation, step of the reaction, the leucyl moiety is transferred from leucyl-adenylate to the terminal A76 adenosine of tRNA. In this work, we have investigated the aminoacetylation step catalyzed by leucyl-tRNA synthase, using ab initio quantum chemical/molecular mechanical hybrid potentials in conjunction with reaction-path-location algorithms and molecular dynamics free energy simulations. We have modeled reaction mechanisms arising from both crystallographic studies and computational work. We invoke various groups as potential proton acceptors namely, the phosphate and leucyl amino groups of leucyl-adenylate, the A76 base of tRNA, and the Asp80 and Glu532 residues of the protein and consider both metal-assisted and metal-free reactions. Free energy calculations indicate that both the phosphate group of leucyl adenylate and Glu532 are not strong bases. This agrees with the results of the quantum chemical/molecular mechanical reaction path calculations which give high free energy barriers for the studied pathways involving these groups. A self-assisted mechanism with the leucyl amino group and Asp80 as proton acceptors is the most likely. Furthermore, in this mechanism the presence of a metal ion coordinated by the phosphate group and Glu532 strongly activates the reaction.
Document type :
Journal articles
Complete list of metadatas

https://hal-polytechnique.archives-ouvertes.fr/hal-01355953
Contributor : Denis Roura <>
Submitted on : Wednesday, August 24, 2016 - 3:10:39 PM
Last modification on : Friday, April 5, 2019 - 1:01:33 AM

Identifiers

Citation

Alexey Aleksandrov, Andrés Palencia, Stephen Cusack, Martin J Field. Aminoacetylation Reaction Catalyzed by Leucyl-tRNA Synthetase Operates via a Self-Assisted Mechanism Using a Conserved Residue and the Aminoacyl Substrate. Journal of Physical Chemistry B, American Chemical Society, 2016, 120 (19), pp.4388-4398. ⟨10.1021/acs.jpcb.6b02387⟩. ⟨hal-01355953⟩

Share

Metrics

Record views

272