K. B. Athreya, Change of measures for Markov chains and the L log L theorem for branching processes, Bernoulli, pp.323-338, 2000.

K. B. Athreya, Coalescence in Critical and Subcritical Galton-Watson Branching Processes, Journal of Applied Probability, vol.120, issue.03, pp.627-638, 2012.
DOI : 10.1016/j.spa.2012.06.015

K. B. Athreya, S. R. Athreya, and S. K. Iyer, Supercritical age-dependent branching Markov processes and their scaling limits, Bernoulli, vol.17, issue.1, pp.138-154, 2011.
DOI : 10.3150/10-BEJ264

V. Bansaye, Ancestral lineages and limit theorems for branching Markov chains. Notes, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00851284

V. Bansaye, J. Delmas, L. Marsalle, and V. C. Tran, Limit theorems for Markov processes indexed by continuous time Galton???Watson trees, The Annals of Applied Probability, vol.21, issue.6, pp.2263-2314, 2011.
DOI : 10.1214/10-AAP757

URL : https://hal.archives-ouvertes.fr/hal-00431118

V. Bansaye and V. C. Tran, Branching feller diffusion for cell division with parasite infection, Aléa, vol.8, pp.81-127241, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00469680

R. Bellman and T. Harris, On Age-Dependent Binary Branching Processes, The Annals of Mathematics, vol.55, issue.2, pp.280-295, 1952.
DOI : 10.2307/1969779

J. D. Biggins, Martingale convergence in the branching random walk, Journal of Applied Probability, pp.25-37, 1977.

J. D. Biggins and A. E. Kyprianou, Measure change in multitype branching, Advances in Applied Probability, pp.544-581, 2004.

F. Campillo, N. Champagnat, and C. Fritsch, Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models, Journal of Mathematical Biology, vol.148, issue.Pt 9, pp.1-41, 2016.
DOI : 10.1007/s00285-016-1012-6

URL : https://hal.archives-ouvertes.fr/hal-01205467

B. Chauvin and A. Rouault, KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probability theory and related fields, pp.299-314, 1988.

B. Chauvin, A. Rouault, and A. Wakolbinger, Growing conditioned trees, Stochastic Processes and their Applications, pp.117-130, 1991.
DOI : 10.1016/0304-4149(91)90036-C

B. Cloez, Limit theorems for some branching measure-valued processes, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00598030

P. and D. Moral, Feynman-Kac Formulae, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00410165

M. Doumic, M. Hoffmann, N. Krell, and L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree, Bernoulli, vol.21, issue.3, pp.1760-1799, 2015.
DOI : 10.3150/14-BEJ623

URL : https://hal.archives-ouvertes.fr/hal-01102799

S. N. Ethier and T. Kurtz, Markov processes: characterization and convergence, 2009.
DOI : 10.1002/9780470316658

N. Fournier and S. Méléard, A microscopic probabilistic description of a locally regulated population and macroscopic approximations. The Annals of Applied Probability, pp.1880-1919, 2004.

H. Georgii and E. Baake, Supercritical multitype branching processes: the ancestral types of typical individuals, Advances in Applied Probability, pp.1090-1110, 2003.

J. Guyon, Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging, The Annals of Applied Probability, vol.17, issue.5/6, pp.1538-1569, 2007.
DOI : 10.1214/105051607000000195

R. Hardy and S. C. Harris, A Spine Approach to Branching Diffusions with Applications to L p -Convergence of Martingales, Séminaire de Probabilités XLII, pp.281-330, 2009.
DOI : 10.1007/978-3-642-01763-6_11

S. Harris and M. Roberts, The many-to-few lemma and multiple spines, Annales de l'Institut Henri Poincaré, 2015.
DOI : 10.1214/15-AIHP714

S. C. Harris and D. Williams, Large deviations and martingales for a typed branching diffusion, 1. Astérisque, pp.133-154, 1996.

T. E. Harris, The theory of branching processes, Courier Corporation, 2002.
DOI : 10.1007/978-3-642-51866-9

M. Hoffmann and A. Olivier, Nonparametric estimation of the division rate of an age dependent branching process, Stochastic Processes and their Applications, 2015.
DOI : 10.1016/j.spa.2015.11.009

URL : https://hal.archives-ouvertes.fr/hal-01254203

J. J. Hong, Coalescence in bellman-harris and multi-type branching processes. Graduate Theses and Dissertations, 2011.

O. Kallenberg, Stability of Critical Cluster Fields, Mathematische Nachrichten, vol.18, issue.1, pp.7-43, 1977.
DOI : 10.1002/mana.19770770102

M. Kimmel, Quasistationarity in a Branching Model of Division-Within-Division, Classical and Modern Branching Processes, pp.157-164, 1997.
DOI : 10.1007/978-1-4612-1862-3_11

J. F. Kingman, The first birth problem for an age-dependent branching process. The Annals of Probability, pp.790-801, 1975.

T. Kurtz, R. Lyons, R. Pemantle, and Y. Peres, A Conceptual Proof of the Kesten-Stigum Theorem for Multi-Type Branching Processes, Classical and modern branching processes, pp.181-185, 1997.
DOI : 10.1007/978-1-4612-1862-3_14

A. Lambert and L. Popovic, The coalescent point process of branching trees, The Annals of Applied Probability, vol.23, issue.1, pp.99-144, 2013.
DOI : 10.1214/11-AAP820

URL : https://hal.archives-ouvertes.fr/hal-00815998

S. Leibler and E. Kussell, Individual histories and selection in heterogeneous populations, Proceedings of the National Academy of Sciences, pp.13183-13188, 2010.
DOI : 10.1073/pnas.0912538107

R. Lyons, R. Pemantle, and Y. Peres, Conceptual proofs of L log L criteria for mean behavior of branching processes. The Annals of Probability, pp.1125-1138, 1995.

S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2015.
DOI : 10.1016/j.anihpc.2015.01.007

URL : https://hal.archives-ouvertes.fr/hal-01422273

O. Nerman and P. Jagers, The stable doubly infinite pedigree process of supercritical branching populations, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, pp.445-460, 1984.
DOI : 10.1007/BF00533746

E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman, and A. Van-oudenaarden, Multistability in the lactose utilization network of Escherichia coli, Nature, vol.427, issue.6976, pp.427737-740, 2004.
DOI : 10.1038/nature02298

A. M. Zubkov, Limiting distributions of the distance to the closest common ancestor. Theory of Probability and Its Applications, pp.602-612, 1976.