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Abstract

We consider an investor who seeks to maximize her expected utility of wealth relative to a
benchmark, or target over a finite time horizon, and under a portfolio drawdown constraint,
in a market with local stochastic volatility (LSV). We propose a new investor objective
paradigm which allows the investor to target the portfolio benchmark, while obeying the
constraint, both of which can be characterized in terms of the running maximum wealth
process. In the absence of closed-form formulas for the value function and optimal portfolio
strategy in the incomplete market models we consider, we obtain approximations for these
quantities through the use of a coeflficient expansion technique and nonlinear transforma-
tions. We utilize regularity properties of the risk tolerance function to numerically compute
the estimates for our approximations. In order to achieve similar utility, compared to a con-
stant volatility model, we illustrate that the investor must deploy a quite different portfolio
strategy which depends on the current level of volatility.

Keywords and phrases. portfolio optimization, drawdown, stochastic volatility
AMS (2010) classification. 91G10, 91G80
JEL classification. G11

1 Introduction

1.1 Background and motivation

In the vast and long-dated literature on dynamic portfolio optimization, different types of ter-
minal utility paradigms under various portfolio constraints have been considered to understand
the investor behaviour (see, for example, Rogers [25] for a detailed exposition). The solutions
to these problems provide optimal investment strategies which aid institutional investors, and
at times help to reveal deep insights about the market observed phenomenons. The classical
problem of continuous-time portfolio optimization dates back to Samuelson [26] and Merton
[22] 27]. In his seminal paper, Merton [22] considered a market where the prices of risky assets
are given by geometric Brownian motions (with constant volatilities), and the objective is to
maximize the expected utility of terminal wealth by investing capital between the risky assets
and a risk-free bank account. For constant relative risk aversion (CRRA) utility functions, the
author showed that the optimal strategy is a “fixed mix” investment in the risky assets and the
bank account.
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Merton’s landmark result provided structural market insight but the restrictive problem set-
ting — investor objective and market dynamics — prevented application of the results to practical
situations. As a result, subsequent research has focused upon relaxing the assumptions made in
[22], incorporating various market constraints and considering more realistic model settings.

Portfolio managers typically use a stop-loss level on the portfolio value to prevent a complete
wipe-out of wealth in the face of falling prices. A very low value of the portfolio is a real concern
which can be avoided by using the drawdown constraint. Under this constraint, the wealth in
the portfolio must always remain above a certain fraction of the current maximum wealth value
achieved, and if the portfolio value falls to that level, it is liquidated (cashed-out) without further
risk-taking. Moreover, portfolio managers are at times given a benchmark or target. This may
be a market index, or a fixed numerical goal, and if it is attained within the investment horizon,
the portfolio may also be liquidated without further risk-taking. We will see this objective is
also facilitated by introducing the running maximum of wealth process. Another interpretation
of the drawdown constraint is that the portfolio manager commits to return at least a certain
percentage of the target to the pooling investors.

In this article, we propose a new framework to study the dynamic portfolio optimization
under a drawdown portfolio constraint in a stochastic volatility market model. In many em-
pirical studies it has been well established that stochastic volatility is a reasonable asset price
modelling tool to capture the market observed volatility smiles and volatility clustering. Our
principal innovation is to introduce a new terminal investor objective paradigm which allows
for a reduction in the dimensionality of the problem. As our central objective in this work is
to numerically study the impact of stochastic volatility on the value function and optimal port-
folio strategy, the dimensionality reduction serves as a crucial feature to allow for an efficient
implementation of the numerical procedures used to solve the problem and study the effects of
stochastic volatility.

1.2 Literature review

Several authors have considered the optimal portfolio problem under drawdown constraint.
Grossman and Zhou [I4] were the first to comprehensively study this problem over infinite
time horizon in a market setting with a single risky asset modelled as geometric Brownian
motion (lognormal model). They investigated to maximize the long term growth rate of the
expected utility of the wealth and used dynamic programming principle to solve the problem.
Cvitanic and Karatzas [10] streamlined the analysis of Grossman and Zhou [14] and extended
the results to the case when there are multiple risky assets whose dynamics are governed by a
lognormal model. By defining an auxiliary process, they were able to show that the solution of
optimization problem with drawdown constraint can be linked to an unconstrained optimization
problem whose solution follows from the work of Karatzas et al. [I6]. They further showed
that in the case of logarithmic utility function, the results hold even if the diffusion parame-
ters in the risky asset model are random and satisfy some ergodicity conditions. More recently,
Cherny and Ob16j [7] studied the optimal portfolio problem in an abstract semimartingale model
with a generalized drawdown constraint. They utilized the properties of Azéma-Yor processes
to show that the value function of the constrained problem, where the investor objective is to
maximize the long term growth rate of the expected utility, has the same value function as an
unconstrained problem with a suitably modified utility function. Moreover, they showed that
the optimal wealth process can also be obtained as an explicit path-wise transformation of the
optimal wealth process in the unconstrained problem.

The portfolio optimization problem with drawdown constraint has also been studied in a
continuous-time framework with consumption. Roche [24] studied the problem of maximizing
the expected utility of consumption over an infinite time horizon for a power utility function
under a linear drawdown constraint. This analysis was performed in the setting of a lognormal



model with single asset. Elie and Touzi [12] subsequently generalized the result to a general
class of utility functions in the setting of zero risk-free interest rate and obtained an explicit
representation of the solution. Elie [I1] also studied a finite time version of the same problem
and in the absence of an analytical representation, provided a numerical solution to the problem.

In the financial literature, different problem settings with a drawdown constraint have re-
ceived considerable attention due to their significance. Magdon-Ismail and Atiya [20] considered
the problem of optimal portfolio choice when the drawdown is minimized in the single asset log-
normal model. Chekhlov et al. [5] analyzed the portfolio optimization problem in discrete time
where the investor objective is to maximize the expected return from the portfolio subject to
risk constraints given in terms of drawdowns. They considered a multi-asset lognormal model
and reduced the problem to a linear program which can be solved numerically. In the insurance
literature, drawdown constraint has been incorporated to study problems of lifetime investments.
In [6], Chen et al. considered the optimization problem of minimizing the probability of a signif-
icant drawdown occurring over a lifetime investment, i.e. the probability that portfolio wealth
hits the drawdown barrier before a random time which represents the death time of a client.
A relevant benchmarking problem was studied by Boyle and Tian [2] in which the investor is
concerned with selecting the optimal portfolio investment strategy such that over a finite time
horizon, she obtains a return which beats a certain benchmark with a specified confidence level
in a multi asset market model. This work extends the analysis of Basak and Shapiro [I] in
which the investor is specifically concerned about a value-at-risk constraint in a single risky
asset model.

1.3 Our contributions

In this article, we consider an investor who at any time is worried about her wealth falling below
a fixed fraction of the running maximum wealth, whose initial value is set to a wealth target.
Therefore, it is reasonable to consider a bounded terminal utility where the maximum value is
achieved when the portfolio benchmark is attained. For this reason, we propose that the investor
is interested to maximize utility of the ratio of the two quantities at the end of a fixed investment
horizon. At the beginning of an investment period, the investor starts with a certain value of
the initial wealth and fixes an initial value for the maximum wealth such that it satisfies the
drawdown constraint. This value of the maximum wealth serves as the portfolio benchmark or
target. An investor will then liquidate the position in the risky asset if the maximum wealth
target is reached.

Such an investor objective can also be seen in the spirit of habit formation models proposed
by Campbell and Cochrane [3] in which the economic agent derives her utility relative to a habit
process which is given by an average of the historical aggregate consumption. The basic idea is
to capture the relation of economic agent’s sense of satisfaction to relative levels of consumption
rather than the absolute level of consumption. A similar investor objective with relative level of
consumption was also considered in [25] Chapter 2.3]. It relates to the habit persistence model
of Constantinides [§] in which the habit is given by an exponentially weighted average of the
past consumptionﬂ In our setting, the proportion of running maximum wealth can be seen as
analogous to the subsistence level process in habit formation models.

We consider the basic setting of a frictionless financial market with a single underlying
asset and a risk-free money market account. We study this problem in a stochastic volatility
environment to demonstrate how uncertainty in the volatility impacts the optimal portfolio
strategy. This problem has no explicit solution and thus, we look for accurate approximations
to the value function and optimal strategy. We use the technique of coefficient expansion to
formulate separate problems for different terms in the expansion of value function. The solutions

'We would like to thank an anonymous referee for pointing out this connection.



to these problems allow us to derive an expansion for the optimal portfolio strategy. Due to the
presence of portfolio constraints, the terms in the value function expansion are not available in
closed-form. We numerically solve for the leading term in the value function expansion and use
the regularity properties of the so-called risk tolerance function to compute the remaining higher
order terms. The numerical estimates for the optimal portfolio strategy are derived similarly.

We show that the leading terms in the expansion of value function and optimal strategy
are related to the solution of our problem in a lognormal model. The optimal strategy in this
case suggests to liquidate the risky position when portfolio wealth approaches its maximum
value. Also, close to the drawdown constraint, the optimal strategy instructs to steadily build
up a position in the risky asset to drive away the portfolio value from the lower barrier. In
the stochastic volatility model chosen for our numerical example, we observe that the stochastic
volatility correction term for the value function approximation suggests very small loss or gain
due to the uncertainty in volatility. However, depending on the current level of stochastic volatil-
ity, we observe that the optimal strategy approximation with volatility correction is remarkably
different than the case with constant volatility. Close to the maximum wealth value, the cor-
rected optimal strategy approximation suggests to hold onto the risky assets longer than in the
constant volatility case. This clearly illustrates the impact of stochastic volatility on the optimal
investment strategy. However, near the drawdown barrier, the behaviour of corrected optimal
strategy approximation depends on the level of current stochastic volatility in the model when
compared to the optimal strategy in the constant volatility case. The optimal strategy approx-
imation obtained also instructs to liquidate the risky asset position as soon as the benchmark
level is achieved, just like the true optimal strategy.

1.4 Organization

In Section [2] we introduce the continuous-time model setting and formulate the problem. We de-
rive the Hamilton-Jacobi-Bellman equation for the optimal portfolio problem and under certain
assumptions, give the analytical formula for the optimal portfolio strategy in terms of the value
function. We provide the approximation formulas for the value function and optimal portfolio
strategy in Section [3] and summarize our main results. In Section [4] we discuss the numerical
implementation of our results and provide practical insights with the help of popular numerical
examples considered in the literature. Section [5] concludes the article and suggests directions for
future research. The proofs are included in Appendix [A]

2 Problem Formulation

We consider a complete filtered probability space (2, F, {F:}+>0,P) endowed with a two dimen-
sional Brownian motion W = ((Wt(l), t(Q)),O < t < T). The filtration gencrated by W is
denoted as F = {F; : 0 <t < T}. Here T < oo is a finite time horizon. We suppose that there is
a risky asset whose dynamics under P is given by the following local stochastic volatility (LSV)
model:

o = S, Y)dt + (S, V) By,
t

aY; = e(¥y)dt + B(¥))dB?,
where Blgl) = Wt(l) and B§2) = th(l) ++v1- pQWt(Q) are standard Brownian motions under

measure P with correlation p € [—1,1] : d<Bt(1)Bt(2)) = pdt. From Itd’s formula, the log price
process X = log S is described as following:

dX; = b(X;, Yy)dt + o(X,, Y;)dBY,



where :U’(Xta }/t) = /]‘(eXt7 }/t)? U(Xt7 }/t) = 6-(eXt7}/t) and
1
b(Xy, V1) o= (X1, Yi) = 50 (X, 2).

We assume that the model coefficient functions pu, o, c and 8 are Borel-measurable and possess
sufficient regularity to ensure that a unique strong solution exists for (X,Y") which is adapted
to the augmentation of IF.

Furthermore, we suppose the existence of a frictionless financial market with the price of a
single risky asset given by S and the risk-free rate of interest given by a scalar constant » > 0. In
this market, we denote the wealth process of an investor by L who invests 7; units of currency in
risky asset S at time ¢ and the remaining (L; —7;) units of currency in the risk-free bank account.
Then, the self-financing portfolio, L satisfies the following stochastic differential equation (SDE)

_ - d
st = T(Lt - ﬁ't)dt + ’ﬁ'tﬂ
St
= (rL + m(u(Xy,Y;) — 7)) dt + w0 (X4, 7) dBt(l)'
The running maximum wealth in time ¢ dollars is given by

M, := max{L." ;s < t}.

In this work, we propose an investment framework that encourages exiting the market in the
face of a sizeable drawdown, while also targeting a benchmark that is related to the running
maximum, or high watermark of the investment performance. The investor’s risk preferences
are given by a utility function U satisfying:

Assumption 1. The terminal utility function U : (0,1) — R is smooth. It is also strictly
increasing and strictly concave.
Given initial capital Ly and target My, we solve the utility maximization problem

i [0 (57|
with the following drawdown constraint:
Ly > aM as., 0<t<T, whereac (0,1)isa fixed drawdown parameter.
Naturally we assume that the initial capital is above the stop-loss level and below the target:
My > Lo > oM,
so there is at least initial trading in the risky asset.

2.1 The discounted formulation

We look to formulate the problem in the setting where the wealth process is discounted with
respect to the risk-free rate of interest. This allows us to clearly study the impact of stochastic
volatility on the optimal strategy and value function. For this purpose, we define

L; = Lie™ ™, M; := Me ™ = max{Lg;s < t}.
The discounted wealth process satisfies the following SDE

ALy = m ((u(X, Yi) — r)dt + 0(X,, Y)dBY),



where 7; := e "7, is the risky-asset trading strategy.

The investor’s utility maximization problem under drawdown constraint is expressed by
defining the value function as follows:

L
V(t,l,m,x,y) = sup E [U <J\4T) ’Lt =L, My=m, Xy =2, =y|, (1
T

m€lly,t1,m 2,y

~—

where 0 < am < | < m, and the admissible strategies are given by

T
ot im,e,y ::{77 : measurable ,[F — adapted,Et,l’m’Ly/ 71302(XS, Ys)ds < oo,
t
st. Ly > aMs; >0as.,t <s<T}.

For an integrable random variable Z on ({2, F,P), we have employed the short-hand notation
E¢ 1m,eyZ] to denote the conditional expectation E[Z|L; = I, M; = m, X; = z,Y; = y| where
(I,m,x,y) stands for the initial condition of the state processes (L, M, X,Y).

Further, we define the domain in R, x R* as [0,7] x O, where

On:={(,m,z,y): 0 < am <l <m}.

Here, A denotes the closure of set .A. The definition of the value function V is for any 5—tuple
(t,l,m,z,y) € [0,T] x O4. Next, we suppose the following:
Assumption 2. The value function V € C1%122([0,T] x O,).

Then, under Assumption by following the usual dynamic programming principle (see,
for example, Pham [23], Chapter 3 |), V satisfies the following Hamilton-Jacobi-Bellman (HJB)
equation

(0 + AV + sgg A"V =0, (2)

where (A4 A™) is the generator of the process (X,Y, L) with

B ) o 1, 0> 5 02 02
A—b(x,y)%—i—c(y)a—y—i—ia (z, )8 5 T 5 (y )ﬁ‘i‘a(%y)ﬁ(y)l)ma
. o 02 921 1 0>

AT = | (n(ar,y) = ) g 0 o) gy + 00 0B | + 570 ) g

In the above, for any O C R, C1"([0,T] x O) denotes the space of real-valued function f on
[0,T] x O whose partial derivatives a{ , gm{ ,1 <i < n, exist and are continuous on [0,7] x O.
By inspecting the quadratic expression above in 7, it is clear that the unique optimal strategy

exists and is given by 7* := arg max A"V, that is,
meR

v (uzy) = r)Vi+ pBy)o(x,y)Vy + o (2, y)Va

== ,

02 ($, y)‘/ll

where the subscripts indicate partial derivatives with respect to the corresponding variables.
The HJB equation becomes

O+ AV +N(V) =0, (3)

with the nonlinear term given as

NV) = =i (M) Vi + o, )Var + 08)Vig)

2V



where

plz,y) —r

M) = o(z,y)

is the Sharpe ratio function. The boundary conditions are

l
(Terminal condition): V(T,l,m,x,y) =U () , (4)
m
(Neumann condition): Vin(t,m,m,z,y) =0, (5)
(Dirichlet condition): V(t,am,m,z,y) = U(a). (6)

The above Dirichlet condition signifies that when the drawdown constraint is hit, the investor
stops trading in the risky asset (m; = 0). In the discounted formulation when the investor stops
trading, it signifies that the wealth process stops varying and the investor accepts the utility
which is given at the drawdown barrier.

Remark 1. In the constant volatility case, the value function V' = V(¢,1,m) does not depend
on z and y, and the solution of the HJB equation with the boundary conditions f@
can be obtained in the viscosity sense as introduced by Crandall et al. [9] (also, see Pham
[23, Chapter 4] for a concise treatment). However, a similar viscosity solution analysis in the
presence of stochastic volatility is not available in the literature. We do not pursue this direction
as our aim is to provide numerical estimates for the value function and optimal strategy under
stochastic volatility. In addition, the numerical analysis via finite difference schemes of the
viscosity solution in stochastic volatility case will not be possible due to the high dimensionality
of the problem. Thus, we suppose that Assumption [2]is valid, that is, the existence of a classical
solution with sufficient regularity which allows us to apply the coefficient expansion method. A
similar assumption has been made in the recent literature on portfolio optimization problems
under stochastic parameters, for example, in Fouque et. al. [13], Liu and Muhle-Karbe [17] and
Lorig and Sircar [18].

2.2 Dimensionality reduction

The nonlinear PDE in with boundary conditions , and @ is difficult to solve nu-
merically because the domain O, is a wedge in (L, M) space requiring a non-rectangular finite-
difference grid. However, we notice that given the structure of our problem, we could perform a
change of variable which reduces the dimensionality of the problem. Therefore, we introduce

l
¢ =—, anddefine Q(t¢& x,y) :=V(t,l,m,z,y),
m

which results in a new nonlinear PDE for Q € C2%2([0,T] x [, 1] x R?) :

(O +A)Q + B(Q) =0, on [0,T) x (a, 1) x R?, (7)
where
1 2
B@) =~ (M@ 9@ + 00 1)Que + p3()Que)
and the terminal and boundary conditions are
QT &z y)=U(E), Qctlz,y) =0, QU az,y)=U(a) (8)

Apart from providing a reduction in dimensionality, the above change of variable also transforms
the space domain of the problem from a high-dimensional wedge to a semi-rectangular domain



which typically helps to get more accurate numerical estimates for the solution. The optimal
strategy is then given by

Q$§ l

(1"(@) —r)Q¢  PBW)Que with € = —. (9)

(0%(2,9))*Qee ~ 0%(x,y)Qec  Qee |’

At £ = 1, we observe that due to the boundary conditions on function (), we get that 7* = 0.
This has the effect that as soon as the wealth process hits the fixed benchmark level m for the
first time, the optimal strategy will liquidate the position in the risky asset such that the wealth
process stays at the pre-specified maximum level and the optimal utility is obtained at T

7 (t,l,m,z,y) = —m

3 Value Function and Optimal Strategy Approximation

Even under the lognormal model for the asset price, no closed form solution is available for the
nonlinear PDE and one needs to rely on accurate numerical approximations. In this paper,
we propose to find an approximation for the value function as

Q=00 + QW +Q@¥ 4 .., (10)
as well as an approximation for the optimal investment strategy
™ =mg+m +mo+ ..., (11)

by using the coefficient expansion technique. This approach has been developed for the linear
European option pricing problem in a general LSV model setting by Lorig et al. [19], and for
the classical (unconstrained) Merton problem by Lorig and Sircar [18].

3.1 Coefficient polynomial expansions

The main idea of the coefficient expansion technique is to first fix a point (Z,7) € R? and then
for any function x(z,y), which is locally analytic around (z,y), define the following family of
functions indexed by a € [0,1] :

[o.¢]
X, y) =Y a"xn(@,y)
n=0

where

n R
— _ =\n—k/,, _ —\k — .
Xn(2,0) =Y Xn-kk(@ = )" (- 0F  Xn-k (0~ k)1l 9 ﬁka(x’y)‘z:i,y:g
k=0

. is the
a=
Taylor series expansion of x about the point (Z, ). Here, a is seen as a perturbation parameter

which is used to identify the successive terms in the approximation.
To apply this technique in PDE ([7]), we first replace each of the coefficient functions

Xe {b7c70-27/82?0’67)\’0-75}

with their respective series expansion for some a € (0,1) and (z,7) € R?. Next, to obtain
approximations as in and , we define a series expansion of value function as Q = Q% =
> a™@Q™ | linear operator 4 = A% = >0y a" Ay and replace the nonlinear operator B(Q)
by B*(Q*) which involves series expansions for the coefficient functions and the value function.
Then from , we consider the PDE problem

Note that for n = 0, x0 := Xx00 = x(Z,7) is a constant. We can observe that x°



(0 + AMQ"* + B*(Q™) =0, on [0,T) x (a, 1) x R?, (12)
with the boundary conditions
QQ(T7 &-’ m? y) = U(é‘) ) Qg(t7 17337 y) = 07 Qa(t7 a? x’ y) = U(a)' (13)
Now, to obtain the successive terms of approximation in expansions (10 and ((11]), we compare
the corresponding degree terms in the polynomial of perturbation parameter a in (12) and the
boundary conditions (|{13[). The approximations are then obtained by setting a = 1 and choosing
a particular value of (z,y) as different choices provide different approximations.

3.2 Zeroth and first order approximation

The first term in approximation (10| is obtained by collecting the zeroth order terms w.r.t. a
in the expansion of (12)). We get

1 2
(815 + AO)Q(O) - W (AOQEO) + PﬁOQ;?) =0,

133
with
.0 0 1 ,0% 1,0 0?
Ay = bo%+0087y+§UOW+5508T/2+pUOBOBx8y’ (14)

and the corresponding order boundary conditions are

Q(O)(T7§7xay) - U(§)7 Qé‘O)(tvlaxay) =0, Q(O)(tvavxay) = U(Oé)

As the linear operator Ag has only constant coefficients and the boundary conditions do not
depend on (z,y), the solution QO (t,&,z,y) is independent of (x,y). Therefore, in this case we
get the following:

Definition 1. The leading order term Q) = Q) (t,¢) satisfies the nonlinear PDE

2
o 1.,@QY)

t 5)\0 Q(O) =0, on [OvT) x (Oé, 1)7 (15)
133
with the boundary conditions
QUT,&) =U®), QV(t.a)=U(a), Q1) =0. (16)
Remark 2. Due to the presence of boundary conditions, an explicit formula for Q¥ is inacces-

sible, even for a power utility function. In Elie [I1], the author performed a classical viscosity
solution analysis by suitably adapting the ideas proposed in Zariphopoulou [27] to obtain a
viscosity solution for an HJB equation which closely resembles the PDE in (15 with boundary
conditions . By formulating our utility maximization problem in the setting of a lognormal
model with constant Sharpe ratio Ag (as shown later in the proof of Lemma [1]), we can repeat
the arguments of Elie [I1] to obtain a viscosity solution for the nonlinear PDE which is similar
to , that is, the PDE in (¢,1, m) space without the dimensionality reduction. Unlike in [I1],
where asymptotic elasticity of U has to be smaller than 1 — « for the existence of the viscosity
solution, we do not require such an assumption as the utility always remains bounded in our
setting. To finally obtain the viscosity solution for PDE in , we use the dimensionality
reduction as defined in Section [2.2] and verify that the conditions required for its existence and
uniqueness remain satisfied.



However, to use our approach for numerical approximations, we need classical regular solu-
tions to PDE ({15 and for this reason we make the following assumption throughout:

Assumption 3. The PDE problem (I5)-(16) has a unique classical solution Q(*) € C; S(10,T) x
[a, 1]), that is QO has at least five derivatives in & which are continuous and bounded up to the
boundary.

In the unconstrained case, with no drawdown restrictions, the PDE is simply the con-
stant Sharpe ratio Merton value function PDE on the half-space £ > 0, where £ would denote the
wealth level. As is well-known, given a smooth and strictly concave utility function satisfying the
usual conditions (U'(07) = oo and U’(c0) = 0), smoothness of the value function follows from
Legendre transform to a linear parabolic PDE. In our restricted drawdown problem we assume
regularity of the solution when restricted to a finite domain. Our value function approximation,
summarized in Section [3.2.2] and our optimal portfolio approximation in Section [3.3] are given
in terms of (up to 5th order) partial derivatives of Q(¥).

In order to find the first order correction term, we introduce the following risk tolerance
function

R(tvé.) = _W (tag)' (17>

This function has been well studied in the unconstrained case by Kallblad and Zariphopoulou
[15] and has been recently used to study the classical Merton problem in a stochastic volatility
environment by Fouque et al. [13]. It satisfies an autonomous PDE of fast-diffusion type:

Proposition 1. The risk tolerance function R(t,€) satisfies the nonlinear PDE
1
Ri + 5)%7227255 =0, on[0,T) x (a,1), (18)

with the boundary conditions

_U©
U’

The proof is given in Appendix

As we show later in Section [3.3], Proposition [I] is also crucial to compute the leading order
terms in the approximation of optimal strategy 7*. Next, we define the differential operators

R(T,€) = R(t,a) =0, R(t1)=0. (19)

ak
Dy, ‘:Rk@’ k=1,2,..., (20)
which allows us to write equation (15]) as
)\2
(at + 32Dz + A%Dl)Q“)) ~0. (21)

To obtain first order correction term to the value function, we collect the first order terms w.r.t.
a in expansion (12]). As Q© does not depend on y, the linear term contributes

0
el 1)
(3t+AO)Q ,

and the nonlinear term contributes

1 0 0
2D QW + 5)\39262(1) + 20 D1QY + ﬁvoﬂplany(l) + 00)\0731%@(1)~

10



Definition 2. The first order correction term QW) satisfies the nonlinear PDE

0
(825 + Ao + Bo> QW +8, =0, on[0,T) x (a,1) x R?, (22)
with linear operator By given as
0 0
By = )‘OD1 + )\ODQ + ,30)\0le8 + on\o'Dla
and the source term
1
S = (5)‘2)1('1"’ y)DlQ(O) (ta E)
The terminal and boundary conditions are given as,
QT ey =0, QP (t1,z,y)=0, QW(ta,z,y) =0. (23)

3.2.1 Explicit expression for the first order correction term

We now employ a transformation that enables us to find an explicit expression for QW in terms
of the partial derivatives of Q(©). For this purpose, we first note that Qéo) is a monotone function
from the following result on the zeroth order term.

Lemma 1. Q(© (t,€) is a non-decreasing and concave function in & variable.
The proof is given in Appendix[A-2] This result allows us to define a change of variable.
Definition 3. On [0,T] x [«, 1], define,

(€)= ~ 108 Q(1,6) + (T ~ 1),

0() == ~10g QP (o) + N 1), (1) == ~1og Q) (1,1) + (T 1),
and let
¢t 2(t.€) == QU (t.€).

It is clear from the boundary condition that we have ¢(t) = oo for all 0 <t < T Then,
we obtain the following PDE problem for ¢(% (¢, 2):

Proposition 2. ¢\ (¢, 2) satisfies the following linear PDE

with the terminal and boundary conditions

@) =U((U) ), Tim g () =0, (Ot un) = U)o ETD)),

Z—r 00
The proof is given in Appendix [A-3]
Lemma 2. Denote q(t,z(t,f),x,y) = F(t,&, 2,y). Then, on [0,T) x (¥(t),00) x R?, we have

0 0
(8t+AO+BO> ((‘%+AO+CO>(]

where

, 02 02 02

Co = )\082+p50)\08ya + gg A 08 9 (24)
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The above result follows from the calculations performed in the proof of Proposition [2| (also
see [18, Lemma 3.3]).

Next, we set F = Q© and ¢ = ¢© in Lemma . Further we know that ¢(© does not
depend on (z,y) and Ap and the last two terms in Cy have derivatives w.r.t. (x,y). Then, we
get the constant coefficient heat equation as in Proposition [2] by applying the operator Cy. On
[0,T) x (¢(t),00), we have

0
(0) _
<8t+AO+CO>q 0.

Finally, we define ¢V from Q) as
gVt 2(t,€),2,y) == QV(t, & z,y). (25)

Proposition 3. The alternative representation ¢V (t,z,x,y) of the first order correction term
satisfies

(8815 + Ao+ CO> ¢V +8 =0, on [0,T) x (1(t),0) x R?, (26)

where

1
Si(t,z2,y) = (53), (2, 9)¢0 (1, 2, 2,y). (27)
The boundary conditions are
(T z,2,y) =0, lim ¢Vt z,2,9) =0, ¢D(tu(1),2,y)=0. (28)

The above result follows from Definition [2| The solution to (26] with boundary conditions
(28) is given in terms of derivatives of ¢ in the following proposition.

Proposition 4. The solution of the PDE in with boundary conditions s given by

1
dV(t, z,2,y) = (T — )X A(t, 2, 1) O (t, 2) + 5(T —1)2X0BqW(t, 2), (29)

zz

where

1 1
A(t,x,y) = Ao |(z — ) + §(T - t)bo} + Ao, [(y — )+ §(T —t)co|
B = A\ 000A0 + Xo,10B0Mo0-

In the original variables, Q)| the solution of with terminal and boundary conditions (23]),
s given by

QW (t,&,2,y) = (T — AA(t, z,y)D1Q© + %(T —1)?X0B (D3 — 2D;) Q. (30)

The proof is given in Appendix [A4]

3.2.2 Summary of the first order value function approximation results

The coefficient polynomial approximation to the value function @, solution to the PDE problem
-, is then defined by setting a = 1: Q ~ Q© + QW where

e Zeroth order term: Q) (t,€) is estimated by numerically solving with the boundary
conditions (|16]).

e First order term: Q(l)(t, &, z,y) is obtained from Proposition 4| and is given by .

12



3.3 Optimal strategy approximation

Once we have the estimates for Q¥ and Q) in expansion (10) of the value function Q%, we
can find the first order approximation of the optimal strategy 7* from the formula in @ In
terms of Q%(t,&, x,y), the optimal strategy is given as

. (n(z) —1)Q¢  pB(y)Qye ael . l
(1 = - hé=—.
Tt L, m, 3, y) m (09, 1)°Q + o7, ) Q% + Qs | with & -

To express the approximation for 7* in terms of R, Q) and their spatial derivatives, we first

replace Q% by Q) + aQ™ in the above formula, use the results in and following Lemma
[Bland then set a = 1.

Lemma 3. From the definition of R, we have the following identities:

(i) (D1 + D2)D1QY = RReeD1QY,
(ii) (—=2D; + D3)Q© = DD, QO
(iii) (D1 + Do) DiD1Q") = R(Ree(3R¢ — 2) + RRege) D1Q .

Proof. We show the following using elementary manipulations. From and , recall that

0 N
R:—Qfo), Dk:Rkaagk, k=1,2,....
Qee

(i) We have,

DlDlQ(O) = Dl(RQéo)) — RR{QEO) + R2Q§(§)) — (Rf o ].)DlQ(O)’ and
DyD1Q) = RReD1QY) — (Re — 1)D1QY.

The above result and the distributive property of Dy operator completes the proof.
(ii) We have,

QU 00 QOR,

) = (Re + )D1Q).
This gives,
—2D,1Q" + D3Q = —2D,Q + (Re + 1)D1Q”) = (Re — 1)D1 Q.

The final conclusion follows from (i).
(iii) Using the previous calculations, we get

Di((Re — 1)D1Q©) = R*ReeQl” + (Re — ND1D1Q©) = RReeD1Q© + (R — 1)*D1Q©),
D((Re — 1)D1Q) = RD; (RRecQy” + (Re — 1)°QL)

= R(RRege + Ree(Re — 1)) D1Q) + RDy ((Re — 1)2QL")

= R(RReee + 3Ree(Re — 1)) D1Q) — (Re — 1)°D1Q“).

The sum of above two results concludes the proof. ]
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Thus, we obtain the first order optimal strategy approximation as

3

o {W(W)—’“)R (T — 020A(, 2,y) 2 Do

(o(x,y))? (o(z,9))
+ %(T —~ t)ZAOBWW (Ree(3R¢ — 2) + RReee ) (31)
+ (T - t)Ao(W + )\1,0>R(RE - 1)} :

3.4 Higher order terms and accuracy of the approximation

To obtain higher order terms in the value function approximation ([{10f), we first write the PDEs
associated with Q™ (t, ¢, x,y) as follows:

<§t + Ao + Bo) Q"™ +5, =0, on [0,T) x (a,1) x R?,

with the terminal and boundary conditions
QU(T,e,2,y) =0, QU(t.1,2,5) =0, QM (t,a,z,y)=0.

The source term S,, depends only on Q) (k <mn—1) and its derivatives. This follows from the
analysis of Section 4 in [I8]. Furthermore, following the calculations in [I8], if we define ¢(™)
from Q") as

¢ (t, 2, 2,y) = QM (L, 2,y),

by using Definition [3| we get constant coefficient equation for ¢(™):

(gt A+ Co) g™ +8, =0, on [0,T) x ((t), 00) x R, (32)

with the terminal and boundary conditions
¢"(T,z,2,y) =0, lim ¢M(t,2,2,9) =0, ¢"(t,¥(t),2,y) =0. (33)

In Proposition [4] we obtained an explicit expression for the transformed first-order function ¢(*)
in terms of a differential operator acting on ¢9). However, for the higher order terms g™ (n>2),
this may not be possible as the source term S, (¢, z, x, y) calculated from S, (¢, &, z,y) is composed
of products and quotients of derivatives of ¢(*) (t,z,z,y) (k <n—1). As shown in Lemma 4.1
[18], we need ¢ to have a specific form which allows to obtain higher order terms ¢(™ as a
differential operator £,, acting on ¢(©), where £,, has coefficients that are polynomials in (z,9)
and independent of z. Since, in our setting, we do not have a closed form formula for ¢(©), it is not
possible to derive such expressions for higher order terms ¢(™ (n > 2). Instead, the contribution
of the higher order terms can be evaluated by first imposing further smoothness condition on the
zeroth order term Q(® and then numerically solving the PDEs of the type with boundary
conditions .

Therefore, in the absence of formulas for higher order terms Q(”),n > 2, it is difficult to
compare the accuracy of the first order approximation with respect to higher order approxima-
tions. But intuitively it is clear that it performs better than the zeroth order approximation
which is also made clear through a numerical comparison in Section [4]
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4 Examples and Numerical Implementation

In this section, we consider the stochastic volatility model as in Chacko and Viceira [4] with
their calibrated set of parameters and provide a detailed discussion of the application of our
results obtained in Section [3] Even in the case of constant parameters, as we do not have
explicit expressions to test the numerical accuracy, we demonstrate the superior performance
of the first order optimal strategy approximation with respect to the zeroth order term in the
approximation. We discuss the effect of stochastic volatility on the value function and optimal
strategy for the case of power utility function and a mixture of two power utility functions, as
introduced in [I3]. The latter allows for relative aversion that declines with wealth, while for
the former it is constant across wealth levels. Under the considered stochastic volatility model
[4, Section 1], the coefficients (u, o, ¢, 3) of Section [2| are independent of = and are given as

wy) =p, oly)=—, cly)=rl-y), Bly) =73i/y.

These coefficient functions (u, o, ¢, §) are locally analytic and thus allow us to apply the coeffi-
cient expansion technique. The market calibrated values of the constants involved are:

w—r K 0 § P
0.0811 0.3374 27.9345 0.6503 0.5241

Also, we set & = 0.4 and T = 1.0. We first need to compute the estimates for zeroth order term
Q) whose partial differential equation is degenerate. Hence, we choose explicit finite difference
scheme to obtain its numerical estimates. We approximate the domain [0,7] X [a, 1] with a
uniform mesh of time step At and space step A¢. By setting NAt =T and JAE = (1 — «), the
discretization grid is given as

M={{",&):n=0,1,...,N,j=0,1,...,J}, t"=T—nAt, & =a+jAE,

where At is of the order (A¢)? (monotonicity condition) to ensure convergence of the scheme.
Let Q7 denote the numerical approximation of QO (t",&;). Then the discretized equation for

Q) in the interior is written as
- - 1 Q)2
Q=) - pgar o I 3
87 (Qf —207 +Qfy)

We start with the guess Q? =U(¢j), forall j=0,1,...,J, and the boundary conditions are

Q7 = Q5 and, Q5T =U(&).

In Figure and we plot the numerical solution for the leading order expansion term
Q) obtained from . We can see that the zeroth order term is concave and non-decreasing as
expected from Lemma 1| To find the first order correction term , we use the risk-tolerance
function R from Proposition [I] and Lemma [3] in the formula instead of using the derivatives
of QW to avoid high order numerical differentiation. We note that to obtain Q) we need to
set the value for reference level 3. We choose to set § = y, as it provides us the most accurate
correction term computed at y. We get

1 1
QW = (§A2>0 (T = 20RQY + (§A2)D (T = 12opbo (—2RQY + RIGEQ™)

= %(M —1)2(T — t)? [m(e —y)RQL + pd(p — T)y(—QRQéO) n RsagQ(o))] '
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x107 Q/Q

value function
relative utility correction

1 1 1 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1

ratio of wealth to max. wealth ratio of wealth to max. wealth
(a) (b)

Figure 1: Numerical solutions to (a) zeroth order value function Q) (b) relative utility correction
N
QW /QWO). Utility function used U () = %77 =3.0

X 10" R,

value function
relative utility correction

_3.0l . . . . . ) _3 . . . . . )
0.4 0.5 0.6 0.7 0.8 0.9 1 8.4 0.5 0.6 0.7 0.8 0.9 1
ratio of wealth to max. wealth ratio of wealth to max. wealth
(a) (b)

Figure 2: Numerical solutions to (a) zeroth order value function Q) (b) relative utility correction
1—n 1—n
QW /QO). Utility function used U(£) = S—— + 61—722 ,v1 = 3.0,72 = 1.5.

1-m
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We use the regularity properties of R and Q(O) to compute the above expression. We obtain

estimates of R by numerically solving with boundary conditions (19 via explicit finite
difference scheme. We define the discretization grid as in and let R;l denote the numerical
approximation of R(t",&;). The discretized equation in the interior is written as

o (R} — 2R} + R} )

~ ~ 1 ~
n+l _ pn 2 n
Ry = Ry + SNGAU(RY)

(Ag)? ’
and the boundary conditions as RSH =0, and RSH = 0. As we solve the scheme backward in
time, we start with the guess R? = —UU,/,((?.)), forall j =0,1,...,J. To ensure convergence, we
J
choose (A&, At) such that the monotonicity condition holds

At 1

R|% < =.

erlRI% <3

It can be seen that the above relationship between At and A& will also allow the numerical
scheme for Q¥ to converge. In our market calibrated stochastic volatility model, we first set
y = 0 and plot the relative utility correction in Figure and Figure We observe that
the change in the value function due to the introduction of stochastic volatility is negligible.

Next, we calculate the approximation to optimal strategy whose different terms are given
from (31)) as

= ()R, (35)
o =Py el (2 n0)
o (1 - 12 w0 - ) (RPQY)

+ 96 (R*Ree(3Re — 2) + R¥Rege ) | + (1 — 1)X(T — )psyR (Re — 1)
We suppose that the initial value of maximum wealth is unity, that is, we set m = 1.0 and plot

Policy approximation Policy approximation

amount to invest
amount to invest

i i i i i i
0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 05 0.6 0.7 0.8 0.9 1
ratio of wealth to max. wealth ratio of wealth to max. wealth

(a) (b)

Figure 3: Numerical solutions to the optimal strategy approzimation in the case y = 0 for utility function
Y1 51—72

() U() =5=7=30 (b) U(§) = §= + 5= 1 = 30,72 = 1.5,

the numerical solution to leading order term my and to the first order approximation my 4 71 in
Figure and It is interesting to note that to achieve similar value functions without
and with the stochastic volatility correction, that is, Q© and Q© + QW we clearly need to
employ two very different investment policies, namely my and mg + 7.

In Figure and we note that as the current wealth approaches to the maximum
wealth value, the optimal strategy is to gradually liquidate the position in the risky asset. In
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the presence of stochastic volatility, the optimal strategy approximation mg+ m; suggests to hold
the risky position longer than without the stochastic volatility correction as in my. The corrected
strategy also suggests to sharply liquidate the position in the risky asset to safeguard from the
downside risk of stochastic volatility. On the other hand, when the current wealth moves away
from the drawdown barrier, the optimal strategy approximation my + m; suggests to build up a
position in the risky asset at about the same trading rate to that in the case of constant volatility
approximation .

From the above results, we deduce that even in the presence of stochastic volatility, the
investor does not lose much value in her portfolio. However, to achieve similar value functions,
the investor has to deploy a remarkably different strategy corrected for stochastic volatility
mg + 71 when compared to the constant volatility strategy mp. The larger position in the risky
asset when moving away from the drawdown barrier suggests leveraging the possible upside due
to stochastic volatility while holding on to the risky asset longer than in the constant volatility
case when close to the optimal level suggests caution towards a possible downside risk.

In the above results, we have set the level of stochastic volatility factor y to be the same as
the long term value € in the model. As it is clear that the level of stochastic volatility plays
a crucial role in the correction terms, we studied the effects when y moves in either direction
away from its long term value . We observed that even in the other cases, the relative utility
correction remains small. However, the optimal strategy in these cases exhibit remarkably
different behaviours due to the particular form of the correction term in . When the current
level of volatility is higher than the long-term average y = 1.05 x 6, in Figure the optimal
strategy approximation suggests to invest more in the risky asset compared to the strategy
without stochastic volatility correction. Also, as the portfolio wealth moves away the drawdown
barrier, the corrected optimal strategy suggests to build up the position in risky asset at a much
higher rate than suggested by 7. Whereas, in the case when the current level of volatility is lower
than the long-term average y = 0.95 x 6, in Figure the optimal strategy approximation
suggests to invest less in the risky asset compared to the strategy without stochastic volatility
correction. Still close to the maximum wealth value, the corrected strategy suggests to hold
more risky asset than the constant volatility strategy suggests.

Policy approximation Policy approximation

0.71

---T
0.6 THHY
0.5 —= RS
B -7 \\ g
2z 04} e : . £
e} -7 \ =}
€ +7 \ €
3 03f - \ 3
£ ’ \ £
5 ; S
0.2+ . |}
7 \
I \
0.1 A\
\
0 i i i i i —0.1 i i i i i i
0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1
ratio of wealth to max. wealth ratio of wealth to max. wealth

(a) (b)

Figure 4: Numerical solutions to the optimal strategy approximation for (a)y = 1.05x6 (b) y = 0.95x 8.

The wutility function used is U(§) = 511:;/ ,v=3.0

Once we have derived the zeroth and first order approximations for the optimal strategy,
we also demonstrate how these results can be used to guide an investment strategy in practice.
Recall that we work in the model setting as discussed at the beginning of this section. We
suppose that the portfolio rebalancing happens at Nyt intermediate times over the investment
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horizon T. We utilize the zeroth and first order approximation of the optimal trading strategy
to guide an investment strategy in the following way:

1. Choose initial value of starting wealth [ and maximum wealth m such that for drawdown
parameter 0 < o < 1, it satisfies 0 < am <[ < m.

2. Create discretized sample paths (Y, I:(O), fj(l)) for volatility factor Y, the wealth process
L corresponding to the zeroth order optimal strategy approximation m and the wealth
process L) corresponding to the first order optimal strategy approximation mo + 71,
respectively, using Euler scheme as

N N 1 2 N
Yiae =Y na+ w0 =Y, a) At + 5‘/>(max Y ad) 7Y, Yo=9,

Q= L+ w0l = DAY (= A+ (7 VA, 1 =
f’glA)t :IA’SL)A[F(770+771)((i_1)At)<( _T)At+ (7, 1At %V Z ) I:él) =1

where NintAt =T and (Zgl), Z,L(~2))Z':1727.“,N is a sequence of normal random numbers with
correlation p. The values for m (zAt) and (zAt) are calculated by plugging the value of
f/iAt and the ratio £(iAt) := I:EJA)t/m, j = 0,1, in the formulas (35)).

<107

o kB N W A O o ~N ®

0.4 0.5 0.6 0.7 0.8 0.9 1

<1074

0.4 0.5 0.6 0.7 0.8 0.9 1
wealth wealth

(c) (d)

Figure 5: Normalized histograms and plots of the tail for the values of I:gg)) and ﬁ(Tl) with (a)-(b)
Nint = 64 (¢)-(d) Nipe = 128. The mean estimate (standard deviation) for utility values corresponding
to LY LY in the case of Nipy = 64 are 0.52170 (0.064495), 0.52237 (0.067234) and in the case of
Nint = 128 are 0.52317 (0.064216), 0.52393 (0.066834).

Based on 10° sample paths, for I = 0.5, m = 1.0 and for different values of Niy, we plot the
normalized histograms for terminal wealth values IAJEFO ) and f/(Tl) which are approximations of

19



wealth process {L;,0 < ¢t < T} using the optimal strategy approximations my and my + 7,
respectively. We observe from the formula of optimal strategy approximation and the
boundary condition for R that both strategy approximations my and mg + 71, liquidate the
risky asset position as soon as the respective wealth processes Lgo) and Lgl) attain the initial
maximum wealth value m. Therefore, both (Lgo))ogtST and (L,ﬁl))ogtg are less than or equal to
m and thus, the higher terminal wealth leads to a higher utility value for the investor. From the
histograms in Figure |5(A)H5(D)|, we deduce the superior performance of the first order optimal
strategy approximation, my + 71, over the zeroth order approximation 7 as it leads to a higher
terminal wealth value with greater probability.

5 Conclusion

We studied the impact of stochastic Sharpe ratio in a dynamic portfolio optimization problem
under a drawdown constraint. We proposed a new investor objective framework which allows for
portfolio benchmarking and a dimensionality-reducing transformation of the problem. This new
setting allowed us to employ coefficient expansion technique to solve for different terms in the
approximation of the value function and optimal strategy. With the help of a nonlinear trans-
formation we derived the value function expansion terms which can be numerically calculated
and used those expansion terms to approximate the optimal portfolio strategy. In a popular
stochastic volatility model with market calibrated parameters, we illustrated the remarkable
differences between the optimal strategies with and without stochastic volatility correction.
The current problem requires further investigation in the direction of a multi-asset market
model. We studied the portfolio optimization problem under drawdown constraint in a stochastic
volatility model which provides a sensible guide towards informed investment decisions. However,
in order to completely capture the market conditions, we plan to tackle the same problem in a
multi-asset model setting and study the effect of stochastic volatility on investment strategies.
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A  Proofs

A.1 Proof of Proposition

Proof. We observe that PDE can also be written as ng) = %)\%DQQ(O). Differentiating this
with respect to (w.r.t.) &, we get

1
90" =3 (Jra + mreQY ).

Furthermore, from the definition of R, we get RQE? = —Qéo) which after differentiating w.r.t.
& gives

2~(0) _ (0)
R2QY = ~RQY (1 + Rg).

This provides us

)\2
0,6Q) = _70@20) (—1 n 'Rg). (36)
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Differentiating (17) w.r.t. ¢ gives

0 0
e, @
(0) (0))2
QE& (Q§£ )

t =

0
Q- (37)
Differentiating (36| w.r.t. &, we get

0 Ao Ao
Qe =~ (14 Re) = LR Rec.

Plugging back the above result and into gives the PDE for R. The terminal condition
at t = T is straightforward from the terminal condition for Q(®). At the boundary, & = a, Q(©) =

U(a) and due to the continuity of Q(®) across the boundary, it gives that QEO) = 0. Then, due
to the continuity of derivatives w.r.t. space variables across the boundary, from (15 we get at

§=a,

(0)y2
Q) _ po0_y
0 ;
&

As Qéo)}éza £ 0, it gives that R‘gza =0.

It can be shown (as done in the proof of Lemma [1|in Section that the optimal strategy
corresponding to the value function in constant parameter lognormal model with Sharpe ratio
Ao, after the dimensionality reduction, is given by my := constant x R. It is clear that as the
portfolio wealth approaches to its maximum value, that is at £ = 1, the optimal strategy suggests

to unwind the risky position, that is mo|¢—; = 0. This gives us the right boundary condition for
R as R‘ el = 0. O

A.2 Proof of Lemma

Proof. Let us consider a market with a risky asset whose dynamics is given by the following
lognormal model:

ds
2t — podt + ood BV,
St

With this risky asset in the market, we once again formulate our portfolio optimization problem
(see Section [2.1)) by defining the following value function

V(t,l,m) = sup E[U(E)‘Lt—l,Mt—m}, t>0,m>10>am>0,

ﬂ—ena,t,l,m

where the admissible strategies are given by
T
Mot gm = {71' : measurable, FO — adapted,JEtylvm/ ﬂ'gds <oost. Ly >aMg>0as.,t<s< T}.
t

F = {Fi : 0 <t < T} is the augmentation of the filtration generated by BW . We define the

constant Sharpe ratio as Ao := % and the space domain as 0, := {(l,m) : m > 1> am >

0} C R2. Then, by proceeding as in Section we assume that V € CV21([0,T] x 0,), to
obtain the following nonlinear PDE
V)?

1
oY — §A3 S 0, on [0,T) x O,
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with terminal and boundary conditions as
V(T,l,m)=U(l/m), Vn(t,m,m)=0, V(t,am,m)=U(«a).

Similar to Section we perform a change of variable £ := [/m. Then, it is clear that the
leading order term in expansion is QU (t, &) = V(t,1,m).

To first show that Q(©)(¢,-) is a non-decreasing function, we recall that in the lognormal
model, for a portfolio strategy m, the discounted wealth process is given as

t
Li’ﬂ-:l-f-/ 7T80'0()\0d8+dB£1)),
0

where [ is the starting wealth value. Let (L“™)* denote the maximum of wealth process L"™ over
the time period [0, T]. Now, we consider [,!’ for a fixed value of m such that (¢,1,m), (¢,I’,m) €
[0,T) X O,. Then, for | <U', we choose 7 € Il such that we have

Ll,w > a(m v/ (Ll,ﬂ')*)

= a(m\/ (l + (/Ot ms00(Aods + ngl)))*>>.

Here, we also note that Il ¢, is @ non-empty set from the result of Cvitanic and Karatzas [10),
Appendix A]. Add (I’ — 1) to both sides of the inequality above to write

L > <(am + (I =D)V (al’ + a(/t meo0(Mods + dBM))* + (1 — a) (I — n))
0

> a(m % (l' + (/Ot 7s00(Aods + ngl)))*>>
= a(mV (L"),

which gives that Iy¢1m C Ilo iy m. Thus, we get V(¢,[,m) < V(t,I',m). For £ := % and
&= %, this gives us

QO(t,€) < QO ¢).

Next, it follows from the arguments presented in [I11, Lemma 3.2| that V(t, [, m) is non-increasing
in variable m. Thus, for fixed [ and m < m’ such that (¢,1,m), (¢,1,m') € [0,T) x O, we have
V(t,l,m') < V(t,1,m). Once again by defining &' := # and £ := %, we get

V(t,1,m') <V(t,l,m) = Q&) <QW(t¢).

Therefore, we have shown that Q()(¢,-) is non-decreasing.

In order to show the concavity of value function Q) (t,-), we take motivation from the
arguments presented in [I1, Lemma 3.2|. First, we fix n € [0,1] and choose a < &1,&, < 1. Our
aim is to show that V(¢,1,m) is concave in its second argument, that is,

nV(t, 11, m) + (1 —n)V(t,la,m) < V(t,nly + (1 —n)la,m), (38)

where for a fixed value of m, we set [ = m&; and lo = m&. Now, suppose that is true.
Then by reversing the change of variables, we get in (38])

QO (t, &) + (1 — QO (t,&) < QU (t,n& + (1 —n)&)

which gives us the concavity of Q¥ (t,-). It remains to show that (38)) is indeed true.
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We define process L) as the wealth process with starting wealth [; and portfolio strategy
m1 € Hg 1, m- Similarly, we define the process L) with starting wealth ls and portfolio strategy
m2 € g t15,m- Then, we have by definition

LW + (1 =)L > na(m v (L)) + (1 = na(m v (L))
> a(m v (nL(l) +(1- B)L(z))*>.

This gives us that nm + (1 —n)m2 € Uy 40,4+ (1—y)is,m- From the concavity property of utility
function U, it follows

LY Ly

Ey U<<mv<]:<>>>> i U(“”V(L””)]
LY (1—n)Lf

= U((m V@ v g )|

Next, we intend to show that
nLy a-nt _ o +a-npLf
(mV (LW)7) — (mV (L@)7) =~ (mv (LD + (1 —n)L@)5)

Consider the following possible scenarios where we compare the respective terms with m and
find the maximum

(39)

(L) (L) LW +(

1—n)L®)s
Case 1 m m m

m

m

Case 2 m (L2,
Case 3 (LW m
Case 4 (LW)x (L@

It is clear that the inequality in holds for Case 1-3 and we only need to consider
Case 4. We know from the optimality condition that for strategies 1 and 7o which attain the
maximum, the position in the risky asset becomes zero thereafter as the maximum possible
utility is achieved. It follows that for such strategies, we have

Ly =@y, LY = (L)

Then, we get
Ly +(L-mLP L)+ @)
(mV (LW + (1 =n)L®)7)  (mV LY + (1 -n)L)5) —
due to

AEO)+ (1 =) TPy 2 m, and, gTO);+ (1= n)(ED)g > (L + (1 - )LO)y).
Thus, we have shown that is indeed true. This gives us

10 7O
U<<m v &(l));)) U<<m v &ﬂ»;))]

U( nLy) + (1 - Ly
)

nlE; + (1 —n)E,

< E

(mV (nL™ + (1 — ) L)%,
<V(t,nly + (1 —n)lz,m).

As, m,mo are arbitrary, we have have shown (38]). This concludes the proof for concavity of
Q(O) (ta ) O

23



A.3 Proof of Proposition

Proof. In the definition, ¢ (¢, z(t,€)) = Q)(t, £), we differentiate w.r.t. t on both sides to write

5,00 = 9,40 1 (0%

ot
— 9,q© (CQ% i @) ©)
Q. 2
It is also straightforward to check from definition of differential operators (Dk) k=1.2.. that
D1Q” = ¢, DY = ¢V — Req©. (40)

From the calculations performed in Proposition [I, we have
A2 0
0:Q" = 2RQY (~1+Re)
A3 A
= 20 (—1 +R§).
Finally, we collect all the expressions for 2,0 D;QO and D,Q® in terms of ¢ to write

(3 +23D1 + 20p,) Q)
= 01q® - (—)\3 (~1+Re) + Ag)t}éo) F N30 + 2 (42 ~ Rea™)

2 2 2
_ (9 150
- <8t + 2)‘08;;2)‘1

which gives us the desired PDE.
For the terminal boundary condition for ¢(9), it follows from the definition of z(t,&) and
terminal condition that

dNT, 2) = U((U’)_1 (e_z)), Y(T) < z < o0.

The left boundary condition in can also be easily transformed. Next, for the right boundary
condition in , we first note that

qgo) X Oz = Qéo).
Now, as Qéo) =0, for £ =1, it holds only if in the above relation we have

lim ¢ (¢,2) = 0.

Z—00

This completes the proof. ]

A.4 Proof of Proposition

We first consider the PDE problem with a terminal condition

Hq+S=0, T, zzy) =0, (41)
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where H is a constant coefficient linear operator

0
H—a"‘AO‘i‘CQ

We suppose that the source term § is of the following special form

Stz wy) =Y (T=1)"(@—2)"(y — §)v(t.z,2.y) (42)
k,l,n

where the sum has a finite number of terms, and v is a solution of the homogeneous equation
Hv = 0.
Furthermore, define the commutator of operators H and (z—z)I (I is the identity operator),

Lx =[H,(x—2)]] as
Lxv:=H((x —x)v) — (r — T)Hv,

which from the definition of Ag and Cg gives

0 0 0
Similarly, define Ly = [H, (y — y)I], which gives
0 0 0
_ 2 7 i _
Ly = col + 5; oy + poo o or + pBoro a5 (44)

Using Lx and Ly, we also define
Mx(s)=(x—2) [+ (s—t)Lx, My(s):=wy—9) L+ (s—1t)Ly.

Using these definitions, we first give the following result related to the homogeneous solution v,
from [I8], Lemma 3.4]. Here, we provide the proof for the sake of completeness.

Lemma 4. For integers k,l, we have,
HM% (s) My (s)v = 0.
Proof. We proceed by induction. We first calculate
HMx(s)v=H(x — Z)v+ H(s —t)Lxv

=Lxv+ (r—2)Hv—Lxv+ (s —t)HLxv
— LxHv =0,

where we have used the definition of the commutator Lx, the fact that £y and H commute as
they are constant coefficient operators and that Hv = 0. Thus, we can then iterate over integer

k to show ’HMX(M%A)U) = 0 (as HMx(s)v = 0). Similarly, we can show that HM%{v =0
for integer . Finally, we have H(M5% (s) Ml (s)v) = 0. O

Lemma 5. The solution q of equation (41|) with zero terminal condition is

T
q(t,z,z,y) = Z/ (T — 8)" M5 (s) My (s)v(t, 2, z,y) ds. (45)
kdn?t
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Proof. This can be shown by using the form of source term (42 and Lemma |4 Let us suppose
that the source term consists of a monomial and is given as S(t, z,z,y) = (T — t)"(x — z)*(y —
9'(t, z,z,y). In this case, from our claim, the solution should be given as

T
q(t,z,z,y) = /t (T — 8)" M5 (s) My (s)v(t, z, x,y)ds.

We verify by computing

T
Hqg=—(T - t)”/\/l’;((t)/\/lg/(t)v(t, z,x,y) + /t (T —s)"H (M’;((s)/\/lly(s)v(t, z,x, y))ds

= (T —t)"(z — 2)"(y — §)'v(t, 2,2,y)
- -s.

It is also easy to see that for the form of solution proposed in , the terminal condition at T
is satisfied. The result follows from linearity of the PDE problem. O

Finally, we give the proof of Proposition [4]

Proof. We first observe that, since ¢ solves Hq'® = 0, then q§°) also solves the homogeneous

(0)

equation, as the operator ‘H has constant coefficients. We set v = ¢;’. From (27)), the source
term is

S(t,z,x,y) = ((%)\2)170(1‘ —I)+ (%)\2)071(3; — gj))v,

and so from Lemma [5| we obtain the solution
1 _
0tz ,9) =[ (5N, o(T - )@ —2) +
1 _
+ (5N, (T = )y = 9) + 5(T = 1%Ly) | a2, 2). (46)
From the expansion for A\(y), we get

1 1
(5/\2)1,0 = AoA1,0, (5)‘2)0,1 = AoAo,1-

Puttlng back the expression of Lx and Ly from ) and (| into , we get the expression
in . The terminal condition at t =T is clearly satlsﬁed

It remains to check the boundary conditions for ¢(*). We show that the boundary conditions
for QW, corresponding to the original variables (t,§), are satisfied. Using and , we
obtain . Now, due to the zero boundary condition at & = « for the risk-tolerance function
R, we get from that Q(l)(t, a,x,y) = 0, which means that the left boundary condition in
is satisfied. Consequently, the left boundary condition in is satisfied for ¢(»).

Next, we calculate

QP(1.,2,9) = (T~ o A(t,7,9) (RQP + ROD) + 5 (T~ 11200 B(~2[ReQ” + RQY)

+3R20:Q) + RPQ™). (47)
From Assumption [3[ on the boundedness of 8?‘@(0) (t,1) for k <5, we have

Jiny REOIVQO =0, k=123
—
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Then, we can use the boundary condition of Qéo) and R at £ =1 to conclude from that

Qt&ay| _ =0

which means that the right boundary condition in is satisfied. This implies that the right
boundary condition in is satisfied for ¢(¥). O
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