A Primer on the Bayesian Approach to High-Density Single-Molecule Trajectories Analysis

Abstract : Tracking single molecules in living cells provides invaluable information on their environment and on the interactions that underlie their motion. New experimental techniques now permit the recording of large amounts of individual trajectories, enabling the implementation of advanced statistical tools for data analysis. In this primer, we present a Bayesian approach toward treating these data, and we discuss how it can be fruitfully employed to infer physical and biochemical parameters from single-molecule trajectories.
Type de document :
Article dans une revue
Biophysical Journal, Biophysical Society, 2016, 110 (6), pp.1209 - 1215. 〈10.1016/j.bpj.2016.01.018〉
Liste complète des métadonnées

https://hal-polytechnique.archives-ouvertes.fr/hal-01421582
Contributeur : Denis Roura <>
Soumis le : jeudi 22 décembre 2016 - 15:35:07
Dernière modification le : jeudi 10 mai 2018 - 02:08:16

Lien texte intégral

Identifiants

Citation

Mohamed El beheiry, Silvan Türkcan, Maximilian u. Richly, Antoine Triller, Antigone Alexandrou, et al.. A Primer on the Bayesian Approach to High-Density Single-Molecule Trajectories Analysis. Biophysical Journal, Biophysical Society, 2016, 110 (6), pp.1209 - 1215. 〈10.1016/j.bpj.2016.01.018〉. 〈hal-01421582〉

Partager

Métriques

Consultations de la notice

108