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Abstract

The availability of a new product in a store creates, through word-of-mouth ad-

vertising, an informative spillover that may go beyond the store itself. We show that,

because of this spillover, each retailer is able to extract a slotting fee from the manu-

facturer at product introduction. Slotting fees may discourage innovation and in turn

harm consumer surplus and welfare. We further show that the spillover may facilitate

the use of pay-to-stay fees by an incumbent to deter entry. Finally, a manufacturer is

likely to pay lower slotting fees when it can heavily advertize or when it faces larger

buyers.
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1 Introduction

Slotting fees are upfront payments from the producer to the retailer, paid to secure a

slot for a new product in retailers’ shelves.1 Their amounts and frequency have rapidly

grown since the mid-1980s. Outside of case studies conducted by the FTC (2003), there

is practically no data available on slotting fees.2 The FTC interviewed seven retailers,

six manufacturers and two food brokers on five categories of products.3 According to

the surveyed suppliers, 80% to 90% of their new product introductions in the relevant

categories triggered the payment of such fees in 2000. In their opinion, between 50%

and 90% of all new grocery products would trigger the payment of slotting allowances.

The FTC (2003) further mentions that: “[. . . ] slotting allowances for introducing a new

product nationwide could range from a little under [$]1 million to over 2 million, depending

on the product category.”

Despite this thorough investigation, the FTC still refrains from issuing slotting al-

lowance guidelines. In contrast, several paragraphs of the European Guidelines on ver-

tical restraints in 2010 are devoted to upfront access payments which comprise slotting

allowances, and recommend a case-by-case analysis if the retailer or the manufacturer

concerned has a market share larger than 30%.4 The attitude of competition authorities

reflects the conflicting views on the effect of slotting fees expressed by both the economic

literature and practitioners. Indeed, slotting fees may have anticompetitive as well as

efficiency enhancing effects.

Retailers often justify slotting allowances as a risk-sharing mechanism and a means

to screen the most profitable innovations. They also argue that slotting allowances are

natural cost shifters to pass on the higher retailing costs that result from the increasing

flow of new products from suppliers. In contrast, producers often see slotting allowances

as rent extracted by increasingly powerful retailers that may foreclose efficient products.

However, buyer power in itself is not enough to explain why retailers would be able to

1As in the FTC report (2001), we make a clear distinction between slotting fees (for new products) and
pay-to-stay fees (for continuing products) as well as advertising and promotional allowances, or introductory
allowances and other per unit discounts.

2A recent paper by Hristakeva (2016) attempts to assess the amount of slotting allowances in the US.
However, the definition of slotting allowances in this paper is broader than the FTC’s definition, as it
comprises all lump-sum transfers to retailers.

3These categories were fresh bread, hot dogs, ice cream and frozen novelties, pasta, and salad dressing.
4See the European Commission’s “Guidelines on Vertical Restraints” (2010), p.59, paragraphs 203-208.
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capture an extra rent for new product introduction. Finally, as explained by the Euro-

pean Commission (2010), “upfront access payments may soften competition and facilitate

collusion between distributors.”

Our paper provides a new rationale for the use of slotting fees. Our starting point is

that the demand for a new product depends first and foremost on consumers’ knowledge

of its existence.5 Among other sources of information about the new product, consumers

are informed through word-of-mouth communication with consumers who have already

bought the new product. Several studies acknowledge the importance of word-of-mouth

communication in the purchase of a new product.6 According to a worldwide study by

Nielsen, in 2012 the two main channels that push a consumer to purchase a new product

are friends and family (77%) and seeing it in the store (72%).7 Therefore, the presence of

a new product in a given store creates a form of informative spillover that may go beyond

the store itself and reach consumers across markets. In other words, by making the new

product available in a given market, a retailer offers, as a by-product, an informative

advertising service to the producer. We show that the retailer is able to extract a slotting

fee from the manufacturer for this service. Although this slotting fee is only paid once, at

introduction, it may deter the producer’s incentive to launch a new product.

We analyze the relationship between an upstream monopolist and several retailers, each

active on a separate market. We adopt a two-period game in which, in each period, the

manufacturer chooses to innovate or not in a first stage and then bargains in a second stage

with each retailer to sell its product. We consider bargaining among each pair following

the specifications of Stole and Zwiebel (1996).8 On the demand side, we introduce an

“informative spillover”: when the manufacturer launches a new product in period t, selling

through one outlet increases demand in all other outlets in which the product is sold in

this period. If the new product was launched in the first period in all markets, then in the

second period the product is mature and the informative spillover no longer plays a role.

5The marketing literature on the hierarchy of effects in advertising identifies three successive steps:
cognitive, affective and conative. The cognitive step both includes awareness and knowledge about a new
product (see Barry and Howard, 1990).

6According to McKinsey (2010), “word-of-mouth is the primary factor behind 20 to 50 % of all purchas-
ing decisions. Its influence is greatest when consumers are buying a product for the first time”. According
to Jack Morton (2012), 49% of U.S. consumers say friends and family are their top sources of brand
awareness.

7The same study highlights that 59% of consumers like to tell others about new products.
8As shown by Stole and Zwiebel (1996), this solution concept gives rise to the Shapley value.
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In equilibrium, when the manufacturer launches a new product, we show that it does

so in the first period. In this case, comparing the bargaining between the producer and

each retailer in the two periods, we show that the retailer is able to extract a slotting

allowance from the manufacturer in the first period, that is, at introduction. We thus

derive a new source of buyer power: when bargaining over a new product, the manufacturer

must compensate each retailer for the positive informative spillover it creates on all other

markets. As a result, informative spillover may deter innovation, as the manufacturer may

earn a smaller profit, i.e. a smaller slice of a bigger pie, when launching a new product.

We show that innovation deterrence is harmful for both consumer surplus and welfare.

We then compare these results to the results obtained when the new product can only

be launched by an entrant, while the incumbent manufacturer cannot innovate. When

the incumbent cannot offer exclusive dealing contracts to retailers prior to entry, we show

that due to the Arrow replacement effect, innovation by an entrant is more likely than

innovation by an incumbent. When the incumbent can offer pay-to-stay fees to part of the

retailers prior to entry, we show that the informative spillover has an ambiguous effect on

entry deterrence and innovation. On the one hand, it increases the amount of the pay-to-

stay fee that the incumbent must offer to each retailer; on the other hand it reduces the

number of retailers that the incumbent needs to lock in to deter entry. We find a sufficient

condition for spillovers to facilitate entry deterrence.

We then vary some characteristics of the manufacturer and retailers and analyze their

impact on the magnitude of slotting fees. We show that an informative advertising cam-

paign at introduction is likely to lower the amount of slotting fees paid to retailers in

period 1. Therefore, slotting fees are less likely to deter innovation when the manufac-

turer is able to heavily advertise its new product at a low cost, as would do for instance a

well-known brand manufacturer. We also show that, surprisingly, retail concentration may

reduce the magnitude of slotting fees per outlet. This result contrasts with the standard

result that buyer power comes from buyer size. We thus exhibit a positive impact of retail

concentration on the manufacturer’s innovation incentives.

Our work is first related to the industrial organization and marketing literature on

slotting fees. A first strand of the literature relates the existence of slotting fees to re-

tail buyer power and highlights diverse potential anticompetitive effects. Shaffer (1991)

shows that when differentiated retailers buy from perfectly competitive manufacturers,
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they obtain a contract with slotting fees (i.e. negative franchise fees) in exchange for high

wholesale prices that enable them to relax retail competition.9 Shaffer (2005) considers a

framework in which imperfectly competitive retailers can either buy from a dominant firm

or a competitive fringe. Because of slotting fees, the dominant firm may obtain scarce shelf

space and foreclose more efficient rivals, for it is willing to pay a higher price to protect

its rent.

These articles, however, do not take into account the peculiarities of new products in

their analysis. Recent papers have taken into account one of these peculiarities by enrich-

ing the usual two-part tariff contracts. Marx and Shaffer (2007) explicitely differentiate

slotting fees, defined as lump-sum payments which are not conditioned by an effective sale,

from franchise fees, which are paid only if the product is effectively sold. By allowing for

such three-part tariffs, they typically take into account shelf access fees, which are a com-

mon feature of all first listings of products at a retailer. Marx and Shaffer (2007) highlight

that slotting fees may facilitate retail foreclosure: a powerful retailer can use slotting fees

to exclude its weaker rival. However, Miklos-Thal et al. (2011) and Rey and Whinston

(2013) show that this result may be reversed, allowing for contracts which are contingent

on the relationship being exclusive or not or a menu of tariffs. Marx and Shaffer (2010)

highlight that capturing the rent of manufacturers through slotting fees may also push

retailers to restrict their shelf space. Slotting fees then reduce the variety of products

offered to consumers.

A second strand of literature, which instead emphasizes the efficiency effects of slotting

fees, more explicitly relates slotting fees to the additionnal costs associated with new prod-

uct introduction. As shown by Chu (1992) or Larivière and Padmanabhan (1997), slotting

fees can be an efficient way for privately informed manufacturers to convey information

about the likelihood of success of their new product. The retailer simply uses slotting

fees as a screening device. Kelly (1991) argues that slotting fees may be used to share

the risk of launching a new product between manufacturer and retailer. Sullivan (1997)

or Larivière and Padmanabhan (1997) show that slotting fees may be used to compensate

the retailer for extra retail costs inherent to the launching of a new product. Foros et al.

(2009) show that, when the retailer is powerful, slotting fees make up for a high whole-

9See also Foros and Kind (2008) for an extension of Shaffer (1991) taking into account procurement
alliances.
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sale price that raises incentives for the manufacturer to promote its new product through

demand-enhancing investments. Slotting fees therefore enable a better coordination of

investment decisions within the vertical chain.

To the best of our knowledge, Yehezkel (2014) is the only article that both takes

into account the informative peculiarities of new products and exhibits a harmful welfare

effect of slotting fees. In a context in which the manufacturer itself does not know the

quality of its product, the optimal contract that gives incentives to the manufacturer to

develop costly tests of its product quality includes a slotting fee. In the same vein, our

article exhibits slotting fees which, by deterring efficient innovations, harm consumers and

welfare. In contrast with the existing literature, we consider that information about the

quality of the new product is perfect within the vertical chain. Consumers are, however,

imperfectly informed about the existence of this new product. By offering the new product

on its shelves, a retailer contributes to conveying information about the existence of the

product to consumers, which has a positive spillover effect on the demand for the new

product on other markets. We show that a retailer is therefore able to make the producer

pay for this informative advertising service through slotting fees.

Our work also builds on the literature on informative advertising following the seminal

paper by Grossman and Shapiro (1984), as only consumers informed about the new prod-

uct’s existence may have a positive demand for the good. In contrast with this literature,

in which informative advertising is optimally chosen by the manufacturer, informative

advertising in our model is a by-product of the sale of the new product by retailers.

Previous work in the industrial organization literature has studied the positive im-

pact of buyer size on buyer power on the one hand (see e.g. Chipty and Snyder, 1999;

Inderst and Wey, 2003, 2007; Montez, 2007; Smith and Thanassoulis, 2012), and the neg-

ative impact of buyer power on upstream innovation incentives (see e.g. Batigalli et al.,

2007; Chen, 2014; Chambolle et al., 2015). In contrast, in our framework, we show that

buyer size may lower the magnitude of slotting fees paid at new product introduction and

therefore facilitate upstream innovation.

Section 2 derives the model. Section 3 shows that, due to the informative spillover,

slotting allowances are paid for a new product, at introduction, and highlights their con-

sequences on innovation, consumer surplus and welfare. Section 4 explores the case of

new product introduction by an entrant. Section 5 analyzes the effects of an advertising
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campaign and of buyer size on slotting fees and innovation. Section 6 concludes.

2 The Model

An upstream firm U may offer a good to final consumers through i ∈ {1, · · · , N} symmetric

retailers located on N independent markets. U can always offer a well-known good of

quality q− to all consumers. It may also offer a new (unknown) good of better quality

q+ > q−. Due to a capacity constraint on its shelf space, a retailer can only sell one of

these two goods. Production and retailing costs are normalized to 0.

As we wish to exhibit slotting fees paid at the introduction of a new product, we

consider a two-period game in which periods are indexed by t ∈ {1, 2}, and we neglect the

discount factor (δ = 1).

First in subsection 2.1, we present a reduced form model by giving our assumptions on

the market revenues for a well-known as well as a new good. Then, in subsection 2.2 we

wholly describe the microfoundations of these market revenues. This second part requires

the introduction of numerous notations that will not be used again and can therefore be

read separately from the rest of the paper. Finally, in subsection 2.3, we describe our

game and the bargaining setting.

2.1 Reduced-form model

The presence of an informative spillover results in a difference in the revenue generated in

a given market through the sale of a new or a well-known good. We present these market

revenues in turn for each period t = {1, 2}.

Revenue in t = 1. We denote by υn the revenue earned in each outlet i ∈ {1, ..., n}

when U sells a new product of quality q+ through n markets at the period t = 1 in which

the new product is launched. The revenue υn is naturally increasing with respect to q+.

We make the following assumption:

Assumption 1. For all n ∈ {1, ..., N}, υn ≥ υn−1 and υ0 = 0.

The assumption υ0 = 0 simply means that the product generates no revenue when it

is not sold. Assumption 1 reflects the presence of an informative spillover: an increase in

the number of outlets that actually sell the new good at introduction increases the revenue
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that the new good is able to generate on each active market. Indeed, as more markets

sell the new good, there are more informative channels for a given consumer to discover

its existence and, although markets are independent, information can circulate from one

market to the other and increase demand on all markets.10 Therefore,

The total industry revenue for a new product sold in n outlets at introduction is defined

as follows:

Rn ≡ nυn. (1)

Note that vN is the largest revenue that can be generated in a given market, that is the

revenue when all consumers are perfectly informed of the existence of the good. Therefore

RN is the largest industry revenue.

If a well-known good of quality q− is sold on a given market i ∈ {1, ..., n} in t = 1,

consumers on all N markets are already aware of its existence: the informative spillover

has no role to play. We thus make the following assumption:

Assumption 2. The revenue earned in outlet i ∈ {1, · · · , n} when U sells a well-known

good of quality q− through any number n ∈ {1, ..., N} of markets is υ− < υN .

The total industry revenue for a well-known good sold in n outlets is thus nυ−.

Revenue in period t = 2 If the new product was not sold in t = 1, then t = 2 is the

introduction period, and the revenue generated by the new product is as defined in t = 1.

If the new product was launched in t = 1, then we make the following assumption:

Assumption 3. If U launched the new good in t = 1 on n markets, the revenue earned

in outlet i ∈ {1, · · · , n′} when U sells the new good of quality q+ through any number

n′ ∈ {1, ..., N} of markets in t = 2 is max{υn, υn′}.

This assumption implies that, if U has launched the new product on N markets in

t = 1, then the new good becomes a well-known good and the revenue generated on each

market is υN for any n ∈ {1, ..., N} markets. If the new product was sold only on n < N

markets in t = 1, then information is capitalized, but the spillover can still increase the

revenue whenever n′ > n. If the new good was sold on all N markets in t = 1, the total

industry revenue for a new good sold in n′ outlets in t = 2 is n′R
N

N .

For a well-known good, the revenue in t = 2 is the same as in t = 1.

10Friends and family do not need to visit the same store to talk with each other about a new product.
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2.2 Microfoundations

We now describe how Assumptions 1 and 2 can naturally derive from reasonable assump-

tions on utility and consumer information regarding the existence of the new product.

Assume that on each market i, there is a mass of potential consumers, which we

normalize to 1. A representative consumer earns utility u(q, x) from consuming a quantity

x of a good of quality q. We make standard assumptions on the utility function, that is

u(q, x) ≥ 0, ∂u
∂x > 0, ∂2u

∂x2
< 0 and ∂u

∂q > 0.

All consumers are aware of the existence of the well-known good. In contrast, some

consumers may be uninformed about the existence of the new product. When a consumer

is aware of a product’s existence, it maximizes u(q, xi)−pixi, which generates an individual

demand x(q, pi), with pi the price of the good on market i. A consumer who is not aware

of the new product’s existence has no demand for this good.

Demand in t = 1. If the new product is launched at the period t = 1, a consumer has

a probability ξ(n) of being aware of the existence of the new product, with n ∈ {1, ..., N}

the total number of markets in which the product is actually sold.11 This model is in the

spirit of the seminal paper by Grossmann and Shapiro (1984) on informative advertising.

In their paper, the probability ξ is controlled by the manufacturer through advertising

investments. In contrast, in our model, our probability is only a function of n the number

of open markets on which the new product is sold in order to reflect the word-of-mouth

communication process. We make two key assumptions on ξ(n).

Assumption 1′. The probability ξ(n) is non-decreasing with respect to n, with ξ(0) ∈ [0, 1)

and ξ(N) = 1.

When the new good is sold by n retailers, the demand on market i is X(q+, n, pi) =

ξ(n)x(q+, pi). Assumption 1′ induces that X(q+, n, pi) is non-decreasing with respect to

n.

Remark 1. ξ(n) is not affected by the quantity of products sold on the n open markets.

11This is one among several possible micro-foundations for our demand function. Another story could
be that ξ(n) represents a level of trust of consumers regarding the quality of the new product. As more
retailers offer the product, consumers are more inclined to purchase it. Note that in this case, the utility
function could instead be written in the following way: u(ξ(n)q, xi)− Pxi.

8



Although a correlation between the quantity sold and the strength of the informative

spillover would make sense, it creates additional interactions between markets which we

want to rule out in our analysis.12 Remark 1 induces that X(q+, n, pi) is independent of

the prices on other markets pj , j 6= i.

Assuming that the revenue on a given market i when n markets are open has a unique

maximum, we have:

υn ≡ max
pi

X(q+, n, pi)pi. (2)

Appendix A.1 shows that Assumption 1′ then implies Assumption 1.

Similarly, Assumption 2 derives from the following assumption:

Assumption 2′. Regardless of the number of open markets, all consumers are aware of

the existence of a well-known good.

The demand for a well-known good on market i is thus X(q−, N, pi) = x(q−, pi), even

if the product is not sold on all markets. Therefore, we have:

υ− ≡ max
pi

x(q−, pi)pi. (3)

Demand in t = 2.

Assumption 3′. If U sells the new product on n markets in t = 1 and on n′ markets in

t = 2, the probability for a consumer to be aware of the existence of the new product in

t = 2 is max(ξ(n), ξ(n′)).

If a new product was sold only on n markets in t = 1, then the spillover is capitalized

and the demand cannot be lower than X(q+, n, pi). However, the spillover can still increase

the demand in t = 2 when U sells the new good on n′ > n markets. The demand becomes

X(q, n′, pi) in t = 2. The optimal revenue earned in outlet i ∈ {1, · · · , n′} in this case is

thus max{υn, υn′}.

2.3 Timing of the game and bargaining framework

In each period t ∈ {1, 2}, we consider the following two-stage game:

12Note also that it would only be relevant to take into account such a correlation if the retailers sold
different quantities. In our framework, as the same quantity is sold ex post on all markets, the effect of
quantity (if it exists) is entirely captured through the number of retailers.
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• In Stage 1, the manufacturer chooses whether or not to innovate. If it innovates, it

pays F once and for all, and can then produce the old good of quality q− and the

new good of quality q+ > q−, with no additional cost. If it does not innovate, it can

only produce the well-known good of quality q−.

• In Stage 2, the upstream firm bargains sequentially with each retailer i over a fixed

fee Tit to share the market revenue from the selling of the new (in case of innovation)

or the well-known product (otherwise).13

Both qualities q− and q+ are common knowledge.

In Stage 2, we consider sequential bargaining à la Stole and Zwiebel (1996). In the

sequence of negotiations, the success or failure of any given negotiation is common knowl-

edge. Therefore, each retailer knows how many negotiations have succeeded when bar-

gaining with the manufacturer U . Besides, in case of a negotiation failure between one

retailer and U , the failing pair can never negotiate again, and all other pairs renegotiate

their contracts from scratch.14

In this framework, the value of Tit depends on the firms’ respective bargaining weights

and outside options. Without loss of generality we set the bargaining weights to (1
2 ,

1
2).15

If the revenue to share on market i is υ, and the disagreement payoff of i (resp. U) is di

(resp. dU ), when U bargains with i among n retailers, then the optimal fixed fee, Tit is

given by:16

υ − Tit − di = Tit +

n∑
j=1,j 6=i

Tjt − dU . (4)

When U bargains with n retailers, each retailer is symmetric in the bargaining and

behaves as the marginal retailer in its negotiation with U . Therefore, the corresponding

13In order to reflect actual practices, we assume that long term negotiations over tariffs are not possible.
14Note that this bargaining framework is equivalent to simultaneous bargaining in which the parties sign

contracts which are contingent to the equilibrium market structure, that is, here, the number of active
links in equilibrium.

15Note that the outcome of the negotiation coincides with the Shapley value.
16Negotiating over a fixed tariff is here equivalent to negotiating over a standard two-part tariff. Indeed,

assume that firms bargain over a contract (wit, Tit), with wit the unit wholesale price. In each period,
each pair U − i uses wit to maximize their joint profit and Tit to share it. The optimal wholesale price for
each pair is set to the marginal cost, that is, wit = 0. Indeed, in Subsection 2.2, we make the simplifying
assumption that the informative spillover only depends on the number of open markets n and not on the
quantities sold on these markets. As a consequence, there are no externalities through quantities among
markets, which ensures that wit = 0. If, in contrast, the informative spillover were to depend on the
quantity sold on each market, each pair would have an incentive to set a wholesale price lower than the
marginal cost in order to increase the quantity bought by each retailer and therefore increase revenues on
all other markets. This would, however, not qualitatively change our results.
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equilibrium tariff, denoted Tnt , is such that the following equality holds:

υ − Tnt − di = nTnt − dU . (5)

In what follows, we directly refer to the bargaining equation (5) to simplify notations.

3 Slotting allowance for a new product

As the cost of innovation is only paid once, whereas the revenue it generates can be at most

cumulated over the two periods, it is immediate that, if ever, the manufacturer launches

a new product in t = 1. Indeed, it can only be less profitable to launch the new product

in t = 2.17 Without loss of generality we thus restrict our analysis to the case in which

the manufacturer makes its innovation decision in t = 1. In Section 3.1 we determine the

equilibrium of the subgame in which the manufacturer has chosen not to innovate in t = 1

and thus sells a well-known product during the two periods. In section 3.2 we consider

the equilibrium of the subgame in which the manufacturer has chosen to innovate in t = 1

and therefore sells the new good over the two periods. Finally, we compare both equilibria

and derive the main results of the paper in Section 3.3.

3.1 The manufacturer does not innovate

When the manufacturer does not innovate, the two periods are identical. For t ∈ {1, 2},

the manufacturer bargains with N manufacturers to sell the well-known product of quality

q−. In this case, the revenue in each outlet is υ−. All negotiations are thus independent

of one another, which implies that the tariff is the same regardless of the number of open

markets. As the manufacturer’s profit strictly increases with the number of markets served,

U bargains in equilibrium with N retailers. In the negotiation between U and each of the

N retailers, outside options are di = 0 and dU = (N − 1)v
−

2 . Therefore, in equilibrium U

obtains a profit Nυ−/2. When the manufacturer sells a well-known product, its profit is

Nυ−/2, and the profit of each retailer i ∈ {1, ..., N} is υ−/2.

We denote Π the equilibrium profit of the manufacturer in any period t ∈ {1, 2} when

selling the well-known product of quality q−. We obtain the following lemma:

17See Appendix A.2 for a formal proof.
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Lemma 1. When the manufacturer offers a well-known product over the two periods, its

equilibrium profit is Π = Nυ−

2 for t ∈ {1, 2}.

Proof. Straightforward.

3.2 The manufacturer innovates

If now the manufacturer has innovated at cost F , it bargains to sell the new product in

t ∈ {1, 2}. We denote the tariffs and profits respectively by Tnt and Πn
t when n ∈ {1, ..., N}

markets are open in period t. Due to the spillover, the two periods now differ, and we

thus solve the game backward.

Assume that the new product was effectively sold in N markets in t = 118, then, in

t = 2, regardless of the number of open markets n, the new product generates a revenue

υN on each market i ∈ {1, ..., n} since the informative spillover has already played its

role in t = 1. Again, all negotiations are independent of one another which implies that

Tn2 is the same for all n ∈ {1, ...N}. Still, an important difference remains compared

to the case of a well-known product. In case of a breakdown in one pair’s negotiation,

the producer is still able to bargain over the well-known product with the retailer, and

therefore each of them (U and i) obtains the same disagreement payoff di = v−

2 whereas

dU = v−

2 + (N − 1)TN2 . As by assumption q+ > q−, RN > Nυ−. Therefore, because there

is extra surplus to share, any negotiation between the manufacturer and a retailer over

the new product succeeds, and υN is shared according to equation (5). The optimal fixed

fee is thus given by:
RN

N
− TN2 −

υ−

2
= TN2 −

υ−

2
.

As the term υ−

2 cancels out, the equilibrium in t = 2 is such that N retailers sell the new

product and pay the same tariff denoted TN2 = RN

2N . The manufacturer thus earns a profit

ΠN
2 = RN/2, the profit earned when selling a well-known product of quality q+ through

N outlets.

We now solve the negotiation in t = 1. In this period, due to the informative spillover,

negotiations are no longer independent of one another. In this case, the outside option of

U with retailer i amounts to the profit it would earn if it were negotiating with all n− 1

retailers except for i over the new product, plus the profit obtained from bargaining over

18We prove further that if the new product is sold in t = 1, it is always sold by all N retailers.
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the well-known product on market i. The same reasoning applies when U bargains with

n− 1 retailers, etc. Let us thus first consider the case in which U bargains with only one

retailer. In this case, both disagreement payoffs are di = dU = υ−

2 : U can still bargain

with the retailer to sell the well-known product. Equation (5) can be rewritten as follows:

R1 − T 1
1 −

υ−

2
= T 1

1 −
υ−

2
. (6)

It is immediate that this negotiation fails when R1 ≤ υ−, and succeeds otherwise. In

general, we summarize the breakdown condition in the following lemma:

Lemma 2. There always exists a cut-off number of retailers n̂ ∈ {1, · · · , N}, such that

negotiations succeed if and only if the producer bargains with at least n̂ retailers. The

cut-off level n̂ satisfies the following condition:

Rn̂−1

n̂− 1
≤ υ− < Rn̂

n̂
. (7)

Proof. Straightforward from Assumption 1, since υ0 = 0 and RN > Nυ−.

Solving the negotiations for all n ≥ n̂, we determine by recurrence the equilibrium

profit depending on the value of n̂. The corresponding profit is given by Πn
1 ≡ nTn1 . We

can summarize the equilibrium profit of the manufacturer on the two-period subgame in

the following lemma:

Lemma 3. In case the manufacturer innovates in t = 1, the manufacturer bargains with

all N retailers in each period t ∈ {1, 2}, and its profit is ΠN
1 = 1

N+1

∑N
i=n̂R

i + n̂(n̂−1)
N+1

υ−

2

in t = 1 where n̂ ∈ {1, · · · , N} is defined by (7) and ΠN
2 = RN

2 in t = 2.

Proof. We give here a sketch of the proof. If the producer bargains with n̂ retailers, the

negotiation is as follows:
Rn̂

n̂
− T n̂1 −

υ−

2
= n̂T n̂1 − n̂

υ−

2
,

and the producer obtains the equilibrium profit:

Πn̂
1 = n̂T n̂1 (q+, q−) =

Rn̂

n̂+ 1
+
n̂(n̂− 1)

n̂+ 1

υ−

2
.

This is the status-quo profit of the manufacturer when bargaining with n̂ + 1 firms. By
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recurrence, the manufacturer bargains with N retailers in equilibrium and obtains a profit:

ΠN
1 =

1

N + 1

N∑
i=n̂

Ri +
n̂(n̂− 1)

N + 1

υ−

2
. (8)

Details of the recurrence are provided in Appendix A.2.

Because of the spillover which plays a role only in t = 1, the profit obtained by the

manufacturer who sells the new good is different in the two periods. We compare them

formally in the next section.

3.3 Slotting fees at introduction

Comparing the profit obtained by U when selling the well-known good versus the new good

in t = 1 and t = 2 and given by Lemmas 1 and 3 respectively, we obtain the following

proposition:

Proposition 1. When selling a well-known product, the manufacturer obtains the same

profit in both periods t = 1, 2. When launching a new product, the manufacturer obtains

a smaller profit in the first period (at introduction) than in the second
(
ΠN

2 −ΠN
1 > 0

)
because each retailer is able to extract a slotting fee for the informative spillover it creates

on all other markets.

Proof. See Appendix A.3.

In order to explain how the retailer is able to capture a rent at the expense of the

manufacturer who launches the new product in t = 1, note first that, since in equilibrium

N retailers sell the new product in t = 1, the joint industry profit is the same in both

periods, and equal to RN . The sharing of this profit, however, is affected in period 1 by

the informative spillover.

In t = 1, for any number of open markets n, negotiations are symmetric as each retailer

considers itself marginal in its negotiation with the manufacturer. For all n ≥ 2, in case

of a breakdown in the negotiation with one retailer, the profit realized on each remaining

market is strictly lower than in case of success, as there is less spillover, i.e. the demand is

lower when n−1 outlets sell the new product than when n do. Because of our renegotiation

setting, this is common knowledge to all players, therefore each retailer is able to extract

some rent from its marginal extra-contribution (the spillover) to total industry profit.
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For instance, assume N = 2 and the negotiation with retailer 1 has already taken place

and succeeded. When bargaining in t = 1, in the case of a breakdown outside options are

dU = υ1+υ−

2 , as retailer 2 sells the well-known product and retailer 1 sells the new, and

d2 = υ−

2 . In contrast, in t = 2, outside options are dU = υ2+υ−

2 and d2 = υ−

2 . Since the

outside option of the manufacturer is strictly lower in t = 1 and the outside option of the

retailer is unchanged, the share of the joint profit that the manufacturer is able to extract

is lower in t = 1.

Assume now that N = 3. The equilibrium profit of the manufacturer obtained when

N = 2 is nothing more than its outside option in the negotiation with the marginal retailer

when N = 3. Therefore, applying the same reasoning as above, the equilibrium profit of

the manufacturer is strictly lower than R3

2 , i.e. the profit it would earn with a well-known

product. This cumulative lag in the status-quo profit of the manufacturer remains and

keeps degrading the equilibrium manufacturer’s profit for all N > 3.

Note that in a simultaneous bargaining setting à la Chipty and Snyder (1999), as a

breakdown would not change the equilibrium tariffs paid by all remaining retailers to the

manufacturer, the marginal retailer would not be able to extract a rent from the spillover.19

As a consequence of the spillover and renegotiation effects, each retailer pays a lower

fixed fee to the manufacturer in t = 1 than in t = 2. Conversely, the manufacturer has to

pay slotting fees to each retailer to introduce a new product. Note here that, in contrast to

Shaffer (1991), slotting fees do not materialize through negative fixed fees in equilibrium.

Moreover, in contrast with Marx and Shaffer (2007) and Miklos-Thal et al. (2011), we do

not distinguish formally the franchise fee from a slotting fee in a three-part tariff. In our

approach, slotting fees are lump-sum rebates on standard franchise fees that result in a

lower total payment from the retailer to the manufacturer in the introduction period.

Interestingly, Proposition 1 can be well illustrated through a geometrical analysis. This

representation will also be particularly insightful when considering advertising issues or

retail concentration in Section 5. We draw the total industry revenue as a function of

the number of open markets n (in abscissa), that is respectively Rn in t = 1 and nRN

N

in t = 2. For simplicity, we will henceforth refer to the graphical representation of the

industry revenue function as the “revenue curve”, even if the revenue function is discrete.

Then, since Assumption 1 implies that Ri < i
NR

N , the revenue curve in the presence of a

19In eq. (5), if the bargaining is simultaneous, di = υ−

2
and dU =

∑
j 6=i Tj + υ−

2
, and therefore Ti = υn

2
.
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spillover (in t=1) is below the revenue curve without spillover (in t= 2).

[Figure 1 about here.]

Graphically, when n̂ = 1 (the graph on the left in Figure 1) the area below the revenue

curve in t = 1 is denoted AN1 . Analytically, AN1 =
∑N

i=1R
i− RN

2 = (N + 1)ΠN
1 − RN

2 . The

area below the revenue curve in period 2 is denoted AN2 = NRN

2 = (N + 1)ΠN
2 − RN

2 . We

obtain:

AN2 −AN1 ≡
N∑
i=1

[
iRN

N
−Ri

]
=
RN

N

N∑
i=1

i−
N∑
i=1

Ri > 0. (9)

Therefore, modulo the multiplication factor (N+1), the difference between the two areas

exactly represents the difference between the second- and first-period profits of the man-

ufacturer, that is, the amount of slotting fees. It is immediate that AN2 − AN1 > 0. The

graphical demonstration also extends to any n̂ > 1 (for instance, in the graph on the right

in Figure 1, n̂ = 5).

Let us now partly relax Assumption 1 by assuming that a new product only needs to be

present in a large enough share (lower than 100%) of the market to reach all of its potential

consumers. For instance, assume that the informative spillover entirely disappears once

the manufacturer has reached N − 1 markets in t = 1, i.e. υN−1 = υN . Although there

is no extra contribution of the marginal retailer when bargaining for a new product (as

the spillover effect disappears), retailers still obtain slotting fees from the manufacturer.

Indeed, because of the cumulative effect of the spillover, the status-quo profit of the

manufacturer that results from negotiations with N − 1 retailers is still lower in t = 1

than in t = 2. Therefore, in its negotiation, the manufacturer still obtains a profit lower

than RN

2 .20 Our result is thus robust to such a variation in the spillover effect (the same

reasoning applies whenever the spillover stops after n ≥ 2 successful negotiations).

3.4 Innovation deterrence

Consider now the decision of the manufacturer to innovate at the first stage in t = 1. The

manufacturer chooses to innovate if and only if the net benefit it yields (as compared to

20From eq. (5), in t = 1, given symmetry among retailers and that di = υ−

2
and dU = υ−

2
+ ΠN−1

1 , we

have (N + 1)TN1 = RN

N
+ ΠN−1

1 . As long as ΠN−1
1 < RN−1

2
, that is, as long as some spillover exists, the

profit of the manufacturer (N + 1)TN1 < RN

2
.
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selling a well-known product over the two periods) exceeds the cost of innovation, that is:

[ΠN
1 + ΠN

2 ]− [2Π] ≥ F.

We thus obtain the following proposition:

Proposition 2. In equilibrium, if innovation takes place, it occurs in t = 1. Due to

slotting fees, efficient innovations are deterred for any fixed cost of innovation F such

that:

F ∈
[
ΠN

1 + ΠN
2 −Nυ−, RN −Nυ−

]
.

Innovation deterrence always damages consumer surplus and welfare.

Proof. The lower bound is obtained by comparing the manufacturers’ profit over the two

periods, with innovation, ΠN
1 + ΠN

2 − F , and without, Nυ−. The upper bound is derived

from the comparison of the profit the manufacturer would obtain by selling a new product

over the two periods, with innovation but absent the spillover effect, RN −F , and without

innovation, Nυ−.

Proposition 2 shows that the need for the manufacturer to compensate each buyer

for the informative spillover deters the introduction of some efficient innovations on the

market.

As long as q+ > q−, when dealing with N retailers we always have ΠN
2 > ΠN

1 > Nυ−

2 .

Therefore, absent innovation costs, it is always profitable for the producer to introduce the

new product when it can use the well-known product as a threat point in its bargaining

with the retailers: without innovation cost, an efficient innovation is always launched in

equilibrium. The insight is that, by using the well-known product as a threat point, the

manufacturer is by definition able to extract at least the profit it would get by selling the

well-known product.

However, within the interval
[
ΠN

1 + ΠN
2 −Nυ−, RN −Nυ−

]
, the cost of innovation is

too high compared to the profit of the manufacturer, and the innovation is deterred only

because of the spillover.

Note that, outside of the above interval, a standard hold-up effect arises for F ∈[
RN −Nυ−, 2(RN −Nυ−)

]
. Indeed, even absent spillover, since the manufacturer has to

leave half of the rent of innovation to retailers while incurring all of the cost, it naturally
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renounces investing in this interval. Compounding this effect, we have shown that slotting

fees reinforce the innovation deterrence.21

Such a deterrence effect of slotting fees paid for the introduction of new products was

pointed out by the FTC in its 2003 report on slotting allowances: “roughly 10 percent of

ice cream products fail to earn enough revenue in their first year to cover their slotting

fees.” Our paper moreover shows that innovation deterrence resulting from the slotting

fees damages the industry profit, as higher quality leads to larger industry profit: although

the manufacturer prefers to sell the well-known product, the loss inflicted to the retailers

is clearly larger than the gain for the manufacturer. Slotting fees also damage consumer

surplus, because efficient innovation would increase the quality of the product offered to

consumers. In terms of competition policy, our argument calls for a ban on slotting fees:

whenever innovation deterrence occurs absent any regulation, a ban on slottings fees would

benefit all parties, i.e. consumers and the manufacturer, as well as retailers. This also

means that if it were possible, the retailer would commit itself to not using slotting fees

before the manufacturer makes its decision to innovate. Only when innovation occurs

absent the regulation does the regulation decrease the retailer’s profit.

4 A new product is launched by an entrant

Assume now that the new product of quality q+ is launched by a potential entrant, denoted

E, while the incumbent manufacturer, denoted I, cannot innovate and therefore at best

sells the well-known product. Note that here the innovation stage in each period boils

down to an entry decision stage by E. Again, it is always strictly more profitable for E to

enter in period t = 1 than in t = 2, as it then gets a profit over the two periods. We thus

restrict our attention to the case in which E chooses to enter in t = 1. When threatened

by the entry of a rival, the incumbent may now wish to offer exclusive dealing agreements

to (part of) the retailers to deter entry. Such “pay-to-stay fees” are, however, perceived

as exclusionary conduct and may be prohibited in the US by Section 1-2 of the Sherman

Act. In the EU, such practices fall under Article 101’s prohibition of the “single branding”

restrictions.

In what follows, we first analyze the decision to enter when pay-to-stay fees are not

21In Section 5.3, we extend this result to the case of a variable cost of innovation instead of a fixed cost.
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allowed, and compare innovation deterrence in the two cases in which innovation is made

by I and E in Section 4.1. In Section 4.2, we then allow I to offer pay-to-stay fees to a

subset of retailers and analyze how such a possibility affects innovation deterrence.

4.1 No pay-to-stay fee

Assume first that pay-to-stay fees are forbidden. We denote by T̃nt the equilibrium tariff

paid by each retailer to E in period t when n markets are open, Π̃n
t the corresponding

profit of the entrant.

Consider the period t = 2. If E has entered in t = 1, then we prove further that its

product is sold in N markets in t = 1. Therefore in t = 2, E sells a well-known product

which generates a revenue RN

N on each market. Since negotiations are independent of one

another, the equilibrium tariff T̃n2 for all n is determined by the following equation :

RN

N
− T̃n2 −

υ−

2
= T̃n2 ⇔ T̃n2 =

1

2N

(
RN − Nυ−

2

)
.

Therefore, in equilibrium E obtains in t = 2:

Π̃N
2 ≡ NT̃N2 =

1

2

(
RN − Nυ−

2

)
. (10)

In case of entry, the incumbent obtains 0, whereas absent entry, it obtains Π. Note that

Π̃N
2 < ΠN

2 : given that the new good has been launched in t = 1, in t = 2, the profit E

obtains is lower than the profit the incumbent would obtain, because E is weaker than I

in its bargaining with each retailer. Indeed, in case of breakdown in a given negotiation,

I still obtains a positive profit from selling the product of quality q−, whereas E has no

outside option profit.

Consider now the the sale of the new product in t = 1. Assume first that all negotiations

but one have failed with E. The disagreement payoff of E is 0, whereas the disagreement

payoff of the retailer is υ−

2 . The optimal fixed fee denoted T̃ 1
1 is thus given by:

R1 − T̃ 1
1 −

υ−

2
= T̃ 1

1 ⇔ T̃ 1
1 =

1

2N

(
R1 − Nυ−

2

)
. (11)

It is immediate that T̃ 1
1 is smaller than the tariff T 1

1 earned by an incumbent firm selling

a new product, since the entrant has no status-quo in its bargaining with each retailer,
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whereas each retailer has the same status-quo profit as if it were bargaining with an

incumbent firm selling the new product.

This negotiation does not occur if R1 ≤ υ−

2 . Therefore, as in the previous case, there

exists a cut-off value ñ that represents a minimum number of negotiations that must take

place in order to succeed. Here, the cut-off value is defined by:

Rñ−1

ñ− 1
≤ υ−

2
<
Rñ

ñ
. (12)

Comparing eqs. (7) and (12), we have ñ ≤ n̂: the entrant needs access to fewer retailers

than the incumbent to successfully launch the new product, for the sum of status-quo

profits is lower in a negotiation involving the entrant, while the revenue to be shared in

the negotiation is unchanged as compared to a negotiation involving an incumbent selling

the new good. By recurrence, we determine the profit earned by E in t = 1 with n ≥ ñ

retailers :

Π̃n
1 ≡

1

n+ 1

(
n∑
i=ñ

Ri − n(n+ 1)− ñ(ñ− 1)

2

υ−

2

)
. (13)

As N firms bargain with E in equilibrium, E obtains Π̃N
1 . Note again that, because E

has no outside option profit in its bargaining, we have Π̃N
1 < ΠN

1 . Indeed, despite the fact

that ñ < n̂, the entrant has a lower status-quo than the incumbent in its first negotiation

(0 v. Nυ−/2). Therefore, it gets a lower share of the joint profit in this first negotiation.

This affects all subsequent negotiations and tends to reduce the profit of the entrant as

compared to the profit of the incumbent. We now consider E’s incentives to enter in t = 1,

and we summarize our results in the following proposition:

Proposition 3. If pay-to-stay fees are forbidden, due to slotting fees efficient innovations

by the entrant are deterred for any innovation cost such that:

F ∈
[
Π̃N

1 + Π̃N
2 , R

N − Nυ−

2

]
.

Due to the Arrow replacement effect, a new entrant always has higher incentives to launch

a new product than an incumbent manufacturer.

Proof. See Appendix A.4.
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Our proposition confirms that slotting fees may even have a deterrence effect on in-

novation by an entrant. It is easier, however, for the entrant than for an incumbent to

launch a new product. Two forces are in balance to explain this second result.

On the one hand, as explained above, because E has a weak bargaining position with

retailers compared to the incumbent, we have both Π̃N
1 < ΠN

1 and Π̃N
2 < ΠN

2 .

On the other hand, absent the cost F , the entrant has an incentive to launch the new

product as soon as it yields a positive profit. In contrast, I must ensure that it yields a

larger profit than Nυ−, the profit it would earn with the well-known product of quality q−.

This corresponds to the Arrow replacement effect (Arrow, 1962), which reduces the net

gain of launching a new product for the incumbent. This second effect always dominates.

Note that the upper bound RN − Nυ−

2 , which corresponds to the entrant profit absent

any spillover in the first period, i.e. 2Π̃N
2 , is larger than the upper bound in the incumbent

case RN − Nυ−. Again, this is because the replacement effect overwhelms the hold-up

effect.

4.2 Pay-to-stay fees

We now assume that in period t = 1, there exists a preliminary stage in which the incum-

bent may offer an exclusive dealing agreement to each retailer in exchange for a lump-sum

payment (i.e. offer a pay-to-stay fee) denoted φ. Without loss of generality, we assume

that the exclusivity agreement prevails over t = {1, 2}. These agreements may be discrim-

inatory. Each retailer that receives an exclusive dealing offer then chooses to accept or

refuse the agreement. We adopt here the framework of assumptions of Segal and Whinston

(2000). In particular, we assume that retailers can coordinate their acceptance or rejec-

tion decisions over their most preferred equilibrium.22 After this preliminary stage, a new

entrant selling a new product of quality q+ > q− chooses to enter or not at cost F ' 0.

We voluntarily examine the case in which entry would be inevitable absent pay-to-stay

fees to better emphasize their exclusionary properties.

Assume first that f > ñ retailers are free, i.e. they have refused the incumbent contract

in the preliminary stage. Next, assume that E entered. Then, the f free retailers may

bargain with E in periods t = {1, 2}. In this bargaining, each of the free retailers has a

22In contrast, if retailers cannot coordinate their acceptance or refusal over the incumbent’s offer, there
exists for instance an equilibrium in which the incumbent can profitably deter entry by offering an in-
finitesimal pay-to-stay fee ε to each of N retailers (See Rasmusen et al. (1991)).
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status-quo profit equal to υ−

2 . According to the previous section, we know that E thus

succeeds in its bargaining with all f retailers in equilibrium in t = 1. As N − f retailers

were selling the product of I, the spillover has not entirely played its role. In t = 2, there

is no more spillover among the f free retailers: the joint profit on each of the f free outlets

is Rf

f . In t = 2, I obtains a profit (N − f)(υ
−

2 − φ) , each tied retailer earns υ−

2 + φ, and

the profit of E is Π̃f
2 , given by equation (10). We denote π̃ft the profit of a single retailer

which deals with the entrant when f retailers sell the new product in period t. Here, each

free retailer obtains π̃f2 = 1
2f (Rf + Nυ−

2 ).

Consider now period t = 1. Again, E succeeds in its bargaining with all f retailers in

equilibrium. As among the f retailers, the spillover effect arises, the profit of the entrant

in t = 1 is Π̃f
1 , defined by equation (13). In equilibrium, the profit of a free retailer is

π̃f1 =
Rf−Π̃f1

f . The profits of I and the tied retailers are the same as in t = 2.

At the entry stage, E enters if and only if it expects a positive profit, i.e. if and only

if F < Π̃f
1 + Π̃f

2 . In case of entry, the profit of I over the two periods is (N − f)(υ− − φ).

At the preliminary stage, I chooses either to accomodate or to blockade entry.

Accomodation. Assume first that I offers a pay-to-stay fee to N − ñ or fewer retailers.

In this case, regardless of the number of tied retailers, E enters and sells to all f ≥ ñ

free retailers. In each period t = {1, 2}, the profit of each retailer that buys from E is

necessarily larger than its status-quo profit, υ
−

2 . Then, each pay-to-stay fee would have to

be larger than υ− for any exclusivity contract running over the two periods to be accepted

by a retailer. However, I earns at most (N − f)υ−. I therefore cannot profitably lock

in less than N − ñ retailers. In case of accomodation, no pay-to-stay fee is offered to the

retailers, and therefore E enters and sells its new product over all N markets from the

first period. The profit of I is 0.

Entry Blockaded. Assume now that I offers a pay-to-stay fee to strictly more than

N − ñ retailers. In that case, if at least N − ñ + 1 retailers accept, entry is blockaded

and I earns Nυ−

2 − kφ in which k ≥ N − ñ+ 1 is the number of retailers that accepts the

agreement. It is then optimal for I to offer pay-to-stay fees to exactly N − ñ+ 1 retailers.

Each retailer accepts a pay-to-stay fee, if its profit with I when all other retailers accept

is at least equal to the profit obtained when all refuse the deal. This condition can be

written as follows:

υ− + φ ≥ π̃N1 + π̃N2 . (14)
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The incumbent chooses φ in order to bind the above constraint, and therefore:

φ = π̃N1 + π̃N2 − υ−. (15)

As the retailer’s profit in each period is strictly increasing with respect to the quality of the

new product, q+, φ is strictly increasing with respect to q+. The profit of the incumbent

when entry is blockaded is thus Nυ− − (N − ñ + 1)φ, with φ defined in (15). Therefore,

the incumbent obtains a larger profit by blockading than by accomodating entry if:

Nυ− ≥ (N − ñ+ 1)φ. (16)

The above condition is therefore less likely to hold as q+ increases, since φ strictly

increases in q+ and ñ decreases in q+.

Let us now analyze the effect of the spillover on condition (16), keeping qualities

constant. To do so, denote φ′ the pay-to-stay fee that the incumbent would have to pay to

each retailer absent any spillover. In this case, the profit of a retailer would be the same

in the two periods, and equal to π̃N2 . Absent spillover, it is then immediate that ñ = 1,

which means that the manufacturer needs to compensate every retailer for renouncing

buying from E. Moreover, applying the same reasoning as in equation (14), we obtain

φ′ = 2π̃N2 − υ−. Absent spillovers, condition (16) thus becomes:

Nυ− ≥ Nφ′. (17)

We analyze the difference between the left-hand sides of the two conditions (16) and (17)

and find that exclusion by the incumbent is easier with spillover if and only if:

N(φ− φ′)− (ñ− 1)φ < 0.

We obtain the following proposition:

Proposition 4. Spillovers have an ambiguous effect on exclusion through pay-to-stay fees.

On the one hand, they increase the pay-to-stay fee amount that the incumbent must pay

to secure one retailer. On the other hand, they may decrease the number of retailers that

must be secured.
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If ñ ≥ N/3 + 1, then deterring entry is easier with spillovers than without.

Proof. See Appendix A.5.

The strategy of the incumbent corresponds to the “divide-and-conquer” strategy high-

lighted in Segal and Whinston (2000). In our framework, however, the advantage of

the incumbent results from the informative externality, which similarly ensures that the

revenue on each market increases with the number of firms that sell the new product.

Interestingly, in our model, buyer power is crucial for spillovers to induce such a divide-

and-conquer strategy: if retailers had no bargaining power, either all or none of them

would be offered a pay-to-stay fee. Besides, in our framework, it is possible to exclude

the potential entrant, even if it bears no cost to launch the new product. Indeed, no

retailer will accept to deal with the entrant unless it can offer more than the profit that

the retailer would earn with the well-known product; this can only happen if at least ñ

retailers remain free.

5 On the magnitude of slotting fees

This section highlights comparative static results on the magnitude of slotting fees paid

by the manufacturer with respect to the spillover intensity, retail concentration and the

quality of the new product.

The magnitude of slotting fees is expressed as the relative loss of profits in the first

period as compared to the second period. In what follows, the Slotting Fee Magnitude,

denoted SFM, is thus defined as follows:

SFM ≡ 1− ΠN
1

ΠN
2

.

5.1 Spillover intensity and advertising strategies

Let us first consider a variation in spillover intensity. In our framework, this corresponds

to a change in the distribution of market revenues from υn to ῡn. We consider that the

informative spillover decreases if ∀n ∈ [1, N ] ῡn ≥ υn and ∃n ∈ [1, N ] such that ῡn > υn.

When the informative spillover decreases (increases), information across markets through

the sales in retailers’ outlets has a smaller (larger) role to play in boosting demand. Among

all potential consumers on a given market, fewer can be captured through word-of-mouth
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and/or more consumers are prompt to purchase the new product as soon as it appears in

their store. As a result, the gap between the revenue curves in Figure 1 shrinks and we

obtain the following corollary:

Corollary 4. A decrease (resp. increase) in the informative spillover weakly reduces

(resp. reinforces) the magnitude of slotting fees paid by the manufacturer for the new

product introduction. It weakly softens (resp. reinforces) innovation deterrence.

Proof. See Appendix A.6

Consider now that the manufacturer can affect the informative spillover intensity. It

could do so for instance by launching an advertising campaign to inform consumers about

its new product. The classic informative advertising model by Grossman and Shapiro

(1984), which is introduced in section 2.2, is useful here to present our insights. Let us

introduce a, the amount spent in informative advertising by the manufacturer. We now

assume that the probability that a consumer is aware of the existence of the product on

each market becomes ξ(n, a), which is increasing in a. For a given n, a strong level of

advertising increases the market revenue υn = maxpi ξ(n, a)x(pi, q
+) and thus decreases

the informative spillover. Each retailer would then contribute less to the diffusion of

information about the product, and thus be able to extract lower slotting fees. The

manufacturer then faces a trade-off between the ex-ante advertising cost and the ex-post

reduction in slotting fees. We obtain the following corollary:

Corollary 5. Manufacturers may advertise their new products in order to reduce the

magnitude of slotting fees paid to the retailers.

This result is well illustrated by the findings of the Food Marketing Institute in 2003,

which claims that “Manufacturers that perform thorough market research and support new

products with strong advertising campaign often do not pay allowance.”23 As in Desai

(2000), we find that “advertising and slotting allowance are partial substitutes of one

another in the sense that the manufacturer can increase one in order to compensate for a

reduction in the other.”

To give an illustration of these results, we consider the following example. Assume that

the representative consumer’s utility on each market is u(q, xi) = qxi −
x2i
2 if aware of the

23FMI,“Slotting Allowances in the Supermarket Industry”, section 6, p3.
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product’s existence and 0 otherwise. This leads to a linear demand function on each market

xi(q
+, pi) = q+ − pi. Assume now that ξ(n, a) = ( nN )1−a, where a ∈ [0, 1] represents the

level of advertising. In the case a = 1, all potential consumers are aware of the product’s

existence through advertising, and therefore there is no informative spillover. Maximizing

the representative consumer’s utility with respect to xi, we obtain the following expected

demand function: X(q+, n, pi) = ξ(n, a)(q+ − pi). Maximizing the profit on market i, we

obtain Rn =
nξ(n,a)(q+)

2

4 .

Assume that q− = 1, q+ = 1.3 and N = 8. The resulting revenue with the well-known

good on each market is υ− = 1/4, and the total profit earned by the manufacturer over

the two periods with the well-known good is 2. The resulting second-period profit with

the new good is ΠN
2 = 1.69.

In Table 1, for each value of a corresponding to a level of advertising intensity, we give

the value of n̂ (the minimum number of retailers that must be reached for negotiations

to succeed) and the equilibrium profits in the two periods. Absent slotting fees, the

manufacturer’s profit in each period would be equal to the second period profit. The last

column gives the slotting fee magnitude.

[Table 1 about here.]

Following Corollary 4, in Table 1 the percentage of slotting fees paid in the first period

by the manufacturer decreases with respect to a (advertising intensity). In this example,

the total profit earned by the manufacturer over the two periods with the new product is

2.99 when a = 0 and 3.1 when a = 0.5. If the innovation cost is F = 1, the innovation is

deterred in the former case. However, the manufacturer would be ready to pay up to 0.1

for an advertising campaign that lowers a from 0 to 0.5, and then it could innovate. This

suggests that large manufacturers with powerful communication tools are likely to pay a

retailer lower slotting fees when launching a new product than smaller manufacturers.

5.2 Retail concentration

In order to account for a size effect, we assume now that the manufacturer faces symmetric

retailers, with each owning s outlets. To simplify the analysis, we assume that the num-

ber of outlets is M = sN , and therefore N corresponds here to the number of retailers.

Allowing for the presence of larger retailers enables us to account for the effect of down-
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stream concentration on the sharing of industry revenue and innovation. Note that we

have to modify Assumption 2, as the number of markets is now sN , and therefore we have:

υ− < υsN . Note also that an immediate consequence of the independence between the

level of output and the spillover is that even if one retailer owns two outlets or more when

n markets are open, the optimal revenue on each market is independent of the number of

outlets it owns. We therefore avoid a size effect through quantities.

If m̂ denotes the threshold number of oulets below which all negotiations fail, we show

that the threshold number of open retailers below which all negotiations fail is n̂ = b m̂s +1c

if m̂ is not a multiple of s, and n̂ = m̂
s otherwise.

We denote by Πs,n
t the profit of a manufacturer selling to n retailers, each owning

s outlets in period t. By recurrence,24 we obtain the following general formula when a

manufacturer faces N retailers of size s (and M = sN outlets):

Πs,N
1 =

1

N + 1

N∑
i=n̂

Rsi +
n̂(n̂− 1)

N + 1

sυ−

2
. (18)

We now compare this profit with the manufacturer’s profit obtained with small retailers,

that is:

Π1,sN
1 =

1

sN + 1

sN∑
i=m̂

Ri +
m̂(m̂− 1)

sN + 1

υ−

2
. (19)

In order to determine the effect of buyer size on the manufacturer’s profit, it is useful to

first note that a retailer applies the average spillover amongst its own outlets. Indeed, the

decision of a large retailer is binary: it bargains over all its outlets at the same time and

thus cannot decide to sell the new product in only part of its outlets. As a consequence,

the spillover effect applies uniformly over its outlets. Figure 2 is then useful to understand

the effect of the buyer size on the bargaining between the retailers and the manufacturer.

[Figure 2 about here.]

In Figure 2, we first draw the two curves representing the revenue function considered

by N = 8 retailers of size s = 1 in the first and second period. In t = 2, the revenue is

the line of equation mR8

8 . As mentioned in Section 3.3, the area between the two curves

represents the amount of slotting fees paid by the manufacturer in t = 1.

24Details are provided in Appendix A.7.1.
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Assume now that one retailer monopolizes the retail market, i.e. N = 1 and s = 8.

Then in the above graph, the same line of equation mR8

8 now represents the revenue

function both in the first and second periods, and thus the area, and hence slotting fees

disappear. Indeed, as there is no firm outside the group, the spillover plays no role in the

bargaining. Therefore, full retail concentration benefits the manufacturer.

Consider now the case with N = 4 retailers of size s = 2. In Figure 2, we now draw

the revenue function in this case. As this curve is above the revenue curve with N = 8

retailers of size s = 1 for all n, the area between the diagonal and the revenue curve that

represents the amount of spillovers (see eq. (9)) shrinks, so the retailer’s concentration

always benefits the manufacturer.

Consider for instance the negotiations for outlets 5 and 6, that is, starting at point

P. When the manufacturer bargains with 2 independent outlets, it takes into account the

marginal contribution of each outlet, that is (R6−R5). In contrast, when bargaining with

a large retailer of size 2, it takes into account the total contribution over the two outlets,

that is (R6 −R4). Because the revenue curve is convex, the inframarginal contribution is

lower than the marginal contribution and therefore the manufacturer must leave a larger

share of the revenue to the small outlets. We obtain the following proposition:

Proposition 5. A manufacturer pays no slotting fee in the case of full retail concentration.

When the spillover is such that the cumulative revenue function is convex, the magnitude

of slotting fees strictly decreases as the size of retail groups increases.

Proof. See Appendix A.7.2.

In contrast, when the revenue curve is not convex, the large-retailer curve is below the

small-retailer curve for some values of n. This is for instance the case in Figure 3. Then, the

spillover exerted by the group is locally stronger than that of the marginal small retailer.

In that case, it is clear that the effect of retailing concentration on the manufacturer’s profit

is ambiguous. Slotting fees may now increase with retail concentration. Note however that

sufficient retail concentration always lowers slotting fees as compared with no concentration

at all. As mentioned in Proposition 5, the monopolization of the retail sector always implies

zero slotting fees. We provide in Appendix A.7.2 the example corresponding to Figure 3.

[Figure 3 about here.]

28



5.3 Quality gap

We now analyze the impact of the quality gap (q+− q−) on the magnitude of slotting fees

and the incentives to innovate. The magnitude of slotting fees can be written as:

SFM = 1−

[
2

N + 1

(∑N
i=n̂R

i

RN

)
+

n̂(n̂− 1)

N(N + 1)

Nυ−

RN

]
.

An increase in the quality q+ increases demand on any given market. It thus increases υn

and Rn, and hence decreases n̂. If n̂ is larger than 1, n̂ and n̂(n̂ − 1) decrease with q+.

In addition, as the gap q+ − q− increases, the ratio Nυ−

RN
decreases. Therefore, the second

term in the brackets is strictly decreasing with respect to q+. As for the first term in the

brackets, the effect of q+ is ambiguous, as both the numerator and denominator increase.

Therefore, the total effect of the quality gap on the magnitude of slotting fees may depend

on the specification of spillovers.

Using the same simple example as in the previous section, we summarize the effect of

an increase of q+ in Table 2, for a = 0, which corresponds to a case in which the spillover

intensity is the strongest.

[Table 2 about here.]

From Table 2, an increase in the quality q+ increases the magnitude of slotting fees.

Despite this effect, the profit of the manufacturer clearly increases as the quality increases.

As a consequence, if the cost associated with innovation is fixed, the incentives to innovate

always increase with q+. If, however, the cost associated with innovation is increasing

with respect to the level of quality achieved, then the optimal quality choice is obtained

by equalizing the marginal revenue of the manufacturer to its marginal cost, where the

marginal revenue corresponds to the derivative of the manufacturer’s profit with respect

to q+. One can then write this profit as a function of the second period profit of the

manufacturer and the magnitude of slotting fees, that is:

ΠN
1 + ΠN

2 = (2− SFM)ΠN
2 = (2− SFM)

RN

2
.

Denoting ∂q+R
N and ∂q+SFM the corresponding variations of the revenue and the slotting
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fee magnitude with q+, we then derive the manufacturer’s profit with respect to q+:

2− SFM
2

∂q+R
N︸ ︷︷ ︸

(1)

− ∂q+SFM
RN

2︸ ︷︷ ︸
(2)

.

We can then highlight two reasons why the manufacturer may have an incentive not to

choose the optimal quality from the point of view of the industry when innovating. On

top of a standard hold-up effect, the marginal benefit of increasing quality is lower in the

presence of an informative spillover for two additional reasons. First, from the left-hand

term (1), the manufacturer only earns a share 2−SFM
2 of the marginal revenue of quality

investment, instead of 1 absent any informative spillover,25 which reinforces the hold-up

effect and pushes the manufacturer to under-invest. Second, from the right-hand term

(2), assuming that the magnitude of slotting fees SFM is increasing with respect to q+,

it further decreases the marginal benefit of quality investment.

6 Conclusion

In this paper, we provide new theoretical grounds for the payment of slotting fees by the

manufacturer when introducing a new product. Each retailer is able to obtain a rent - a

slotting fee - from the manufacturer in exchange for the informative spillover it creates on

all other markets by selling the new product.

Our main result offers an interesting twist as compared to the existing literature. In-

deed, the literature that explains slotting fees through information issues related to the

new product introduction generally enhances the efficiency effects. In contrast, the pres-

ence of an informative spillover based on information about the existence of the product to

consumers deters efficient innovation and reduces industry profits and consumer surplus.

In terms of competition policy, our argument thus clearly adds to the list of harmful

effects of slotting fees. Moreover, according to the EU report on Unfair Trade Practices,

“one party should not ask the other party for advantages or benefits of any kind without

performing a service related to the advantage or benefit asked”.26 In our model, it is

25If there were no hold-up, the manufacturer would obtain all the revenue in both periods, and therefore
the first term would be 2∂q+R

N .
26See §88 of the “Report from the Commission to the European Parliament and the council on unfair

business-to-business trading practices in the food supply chain”, 2016.
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not the retailer who performs the informative spillover but rather the consumers through

word-of-mouth. As this service is only a by-product of the retailer’s activity, slotting fees

could be considered here as an unfair trading practice.

Our additional results also have consequences in terms of competition policy. We

first show that the informative spillover can facilitate the use of pay-to-stay fees by the

incumbent to deter the entry of an innovative rival. Moreover, we show that less powerful

manufacturers, that is manufacturers who cannot advertise their new products at a low

cost, are likely to pay more slotting fees to retailers. Therefore, the innovation deterrence

effect is more likely to harm small manufacturers.

Finally, if a large literature confirms that retail concentration increases buyer power,

our model shows that slotting fees decrease with retail concentration under reasonable

conditions. Indeed, when the size of retail groups increases, the number of outlets outside

of each group, that is on which the informative spillover is exerted, decreases.

One further direction for research is to take into account competition at the retail level.

In a framework in which consumers have the same valuation for quality and competition

is soft enough, we believe our main results would hold.27 Indeed, competition creates

a substitutability among outlets that goes against the complementarity created by the

informative spillover. However, in the introduction period, all other things being equal,

the informative spillover still enables retailers to capture a rent from the manufacturer

regardless of the retail market structure.28
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A Appendix

A.1 Assumption 1’ and Assumption 1

We define p∗(q, n) as follows:

p∗i (q, n) ≡ arg max
pi

X(q, n, pi)pi.

Following equation (3), we can write:

υn − υn−1 = X(q+, n, p∗i (q
+, n))p∗i (q

+, n)−X(q+, n− 1, p∗i (q
+, n− 1))p∗i (q

+, n− 1)

= X(q+, n, p∗i (q
+, n))p∗i (q

+, n)−X(q+, n, p∗i (q
+, n− 1))p∗i (q

+, n− 1)

+ [X(q+, n, p∗i (q
+, n− 1))−X(q+, n− 1, p∗i (q

+, n− 1))]p∗i (q
+, n− 1)

> 0

The first part is positive simply because p∗(n) maximizes X(q+, n, pi)pi. The second part

is positive because of Assumption 1’: since ξ(n) > ξ(n−1), X(q+, n, pi) is increasing with

respect to n. Therefore Assumption 1’ implies Assumption 1. This inequality υn > υn−1

implies that Rn

n > Rn−1

n−1 , which can be rewritten as Ri < iR
N

N , ∀i < N .

A.2 Bargaining in period 1

If the producer bargains with n̂ retailers in t = 1, with n̂ defined by (7), the negotiation

with the n̂th retailer for a tariff T n̂1 is as follows:

Rn̂

n̂
− T n̂1 −

υ−

2
= n̂T n̂1 − n̂

υ−

2
.

and the producer obtains the equilibrium profit:

Πn̂
1 ≡ n̂T n̂1 =

Rn̂

n̂+ 1
+
n̂(n̂− 1)

n̂+ 1

υ−

2
.

This profit is the status-quo profit of the producer in its bargaining with n̂ + 1 retailers.

By recurrence, we show that the equilibrium profit of the producer when he bargains with

all N retailers is:

ΠN
1 =

1

N + 1

N∑
i=n̂

Ri +
n̂(n̂− 1)

N + 1

υ−

2
. (20)
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Assume that the above formula is true when U bargains with n > n̂ retailers:

Πn
1 =

1

n+ 1

N∑
i=n̂

Ri +
n̂(n̂− 1)

n+ 1

υ−

2
. (21)

When bargaining with n+ 1 retailers, the negotiation is as follows:

Rn+1

n+ 1
− Tn+1

1 − υ−

2
= (n+ 1)Tn+1

1 −Πn
1 −

υ−

2
.

The left-hand term is the difference between the profit the retailer obtains in case of success

in the negotiation Rn+1

n+1 − Tn+1
1 and its outside profit from the sale of the well-known

product υ−

2 . The right-hand term is the difference between the profit of the manufacturer

if all negotiations succeed (n + 1)Tn+1
1 and its outside option profit, i.e. the sum of the

profit that it would obtain from the sale of the new product in n markets Πn
1 and the

profit from the sale of the well-known product on the market n+ 1. We can simplify the

above expression and we obtain:

(n+ 2)Tn+1
1 =

1

n+ 1

n+1∑
i=1

Ri − n̂(n̂− 1)

n+ 1

υ−

2
.

As Πn+1
1 = (n+ 1)Tn+1

1 we obtain that:

Πn+1
1 =

1

n+ 2

n+1∑
i=n̂

Ri +
n̂(n̂− 1)

n+ 2

υ−

2
. (22)

For all n̂ ∈ {1, ...N}:

ΠN
1 >

(N − n̂+ 1)(n̂+N)

N + 1

υ−

2
+
n̂(n̂− 1)

N + 1

υ−

2
=
Nυ−

2
.

The profit of U strictly increases with the number of downstream firms it bargains with.

Indeed, for all n ∈ [1, N ] we have:

Πn+1
1 −Πn

1 =
1

n+ 1

n+1∑
i=n̂

Ri +
n̂(n̂− 1)

n+ 1

υ−

2
−

(
1

n

n∑
i=n̂

Ri +
n̂(n̂− 1)

n

υ−

2

)

=
Rn+1

n+ 1
− 1

n(n+ 1)

n∑
i=n̂

Ri − n̂(n̂− 1)

n(n+ 1)

υ−

2
,
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Πn+1
1 −Πn

1 =
1

n(n+ 1)

(
nRn+1 −

n∑
i=n̂

Ri − n̂(n̂− 1)
υ−

2

)

=
1

n(n+ 1)

[(
(n− n̂+ 1)Rn+1 −

n∑
i=n̂

Ri

)
+ (n̂− 1)

(
Rn+1 − n̂υ

−

2

)]
.

The first difference is always strictly positive as Ri < Rn+1 for all i ∈ {n̂, ..., n}. The second

difference is also strictly positive as Rn+1

n̂ > Rn̂

n̂ , and from (7) we know that Rn̂

n̂ > υ−.

As a consequence, U always bargains with N retailers when it launches the product. If

U chooses to launch the new product, it is always more profitable to sell it in t = 1: it is

straightforward that N υ−

2 + ΠN
1 < ΠN

1 + ΠN
2 .

A.3 Proof of Proposition 1

Assumption 1 implies that Ri

i < RN

N , ∀i. Therefore:

N∑
i=n̂

Ri <
RN

N

N∑
i=n̂

i =
(N(N + 1)− n̂(n̂− 1))RN

2N
.

Moreover, we know that Nυ− < RN , and therefore we obtain:

ΠN
1 =

1

N + 1

N∑
i=n̂

Ri +
n̂(n̂− 1)

N + 1

υ−

2
<

(N(N + 1)− n̂(n̂− 1))RN

2N(N + 1)
+
n̂(n̂− 1)

N + 1

RN

2N
=
RN

2
= ΠN

2 .

A.4 Proof of Proposition 3

Assume that a new entrant offers a good of quality q+ > q− and has access to n retailers.

There exists ñ ∈ {1, · · · , N} such that:

Rñ−1

ñ− 1
<
υ−

2
≤ Rñ

ñ
.

If all negotiations but one have failed, the remaining negotiation is successful if and only if

ñ = 1. In this case, the profit of the entrant (and hence the status-quo profit of the entrant

in its negotiation with two firms) is T̃ 1
1 , given by equation (11). Otherwise the status-quo

profit of the entrant in its negotiation with two firms is 0. Extending this reasoning to

any ñ > 1, consider now that the supplier bargains with ñ retailers. Status-quo profits
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are given by:

di =
υ−

2
∀i ∈ {1, · · · , ñ}, dE = 0.

From equation (5) we derive the result of the negotiation with each of the ñ retailers:

Rñ

ñ
− T̃ ñ1 −

υ−

2
= ñT̃ ñ1 .

The resulting profit of the entrant is:

Π̃ñ
1 = ñT̃ ñ1 =

Rñ

ñ+ 1
− ñ

ñ+ 1

υ−

2
.

Consider now that the supplier bargains with ñ+ 1 retailers. Status-quo profits are given

by:

di =
υ−

2
∀i ∈ {1, · · · , ñ+ 1}, dE = Π̃ñ

1 .

The negotiation with each of the ñ+ 1 retailers gives:

Rñ+1

ñ+ 1
− T̃ ñ+1

1 − υ−

2
= (ñ+ 1)T̃ ñ+1

1 − Π̃ñ
1 .

which yields:

T̃ ñ+1
1 =

1

ñ+ 2

(
Rñ +Rñ+1

ñ+ 1
− ñ+ (ñ+ 1)

ñ+ 1

υ−

2

)
.

The resulting profit of the entrant is:

Π̃ñ+1
1 =

Rñ +Rñ+1

ñ+ 2
− ñ+ (ñ+ 1)

ñ+ 2

υ−

2
.

By recurrence, for any n ∈ {ñ, · · · , N}, the profit of E is given by:

Π̃n
1 =

1

n+ 1

(
n∑
i=ñ

Ri − υ−

2

n∑
i=ñ

i

)
=

1

n+ 1

(
n∑
i=ñ

Ri − n(n+ 1)− ñ(ñ− 1)

2

υ−

2

)
. (23)

Since retailers equally share the remaining profit, we have:

π̃n1 =
1

n

(
Rn − Π̃n

1

)
=

1

n(n+ 1)

(
nRn −

n−1∑
i=ñ

Ri +
n(n+ 1)− ñ(ñ− 1)

2

υ−

2

)
.
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From equations (22) and (23), the difference Π̃N
1 − ΠN

1 is of the sign of the following

expression:

∆ =
n̂−1∑
i=ñ

Ri − N(N + 1)− ñ(ñ− 1) + 2n̂(n̂− 1)

2

υ−

2
.

In the interval [ñ, n̂− 1], we always have Ri < iυ−, which we replace in ∆:

∆ <
n̂−1∑
i=ñ

i
υ−

2
− N(N + 1)− ñ(ñ− 1) + 2n̂(n̂− 1)

2

υ−

2
,

∆ <
2n̂(n̂− 1)− 2ñ(ñ− 1)−N(N + 1) + ñ(ñ− 1)− 2n̂(n̂− 1)

2

υ−

2
,

∆ <
−ñ(ñ− 1)−N(N + 1)

2

υ−

2
.

This is strictly negative, and therefore the profit of the incumbent is always larger than that

of the entrant. From equation (10) and Lemma 1, the difference Π̃N
2 −ΠN

2 = −Nυ−

4 < 0.

The difference between the net gains of launching the new product for the entrant and the

incumbent is simply given by [Π̃N
1 + Π̃N

2 ]− [ΠN
1 + ΠN

2 −Nυ−], which is of the sign of the

following expression:

∆′ =
n̂−1∑
i=ñ

Ri +
2N(N + 1) + ñ(ñ− 1)− 2n̂(n̂− 1)

2

υ−

2
.

In the interval [ñ, n̂− 1], we always have Ri > iυ
−

2 , which we replace in ∆′:

∆′ >

n̂−1∑
i=ñ

i
υ−

2
+

2N(N + 1) + ñ(ñ− 1)− 2n̂(n̂− 1)

2

υ−

2
,

∆′ >
n̂(n̂− 1)− ñ(ñ− 1) + 2N(N + 1) + ñ(ñ− 1)− 2n̂(n̂− 1)

2

υ−

2
,

∆′ >
2N(N + 1)− n̂(n̂− 1)

2

υ−

2
> 0.

This is thus always positive: the net gain of launching a new product is higher for an

entrant than for an incumbent.

A.5 Proof of Proposition 4

Assume that the fixed fee is F = 0 and that condition (17) is satisfied, that is, the

incumbent is able to blockade entry without spillover. We then find a sufficient condition
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to ensure that the incumbent is able to blockade entry in the presence of spillover.

Entry is blockaded without spillover if and only if:

Nυ− ≥ Nφ′ ⇔ Nυ− ≥ N(2π̃N2 − υ−)⇔ υ− ≥ π̃N2 ⇔ υ− ≥ 1

2

RN

N
+
υ−

4
⇔ υ− ≥ 2

3

RN

N
.

We thus consider that RN

N ∈
[
υ−, 3

2υ
−], or alternatively υ− ∈

[
2
3
RN

N , R
N

N

]
. Consider now

the condition to ensure that entry is blockaded with spillover:

Nυ− ≥ (N − ñ+ 1)φ.

This can be written:

(N − ñ+ 1)φ = (N − ñ+ 1)(π̃N1 + π̃N2 − υ−)

= (N − ñ+ 1)

(
RN

N
− 1

N(N + 1)

N∑
i=ñ

Ri +
N(N + 1)− ñ(ñ− 1)

N(N + 1)

υ−

4
+

1

2

RN

N
+
υ−

4
− υ−

)
,

= (N − ñ+ 1)

(
3

2

RN

N
− 1

N(N + 1)

N∑
i=ñ

Ri +

(
N(N + 1)− ñ(ñ− 1)

N(N + 1)
− 3

)
υ−

4

)
,

= (N − ñ+ 1)

(
3

2

RN

N
− 1

N(N + 1)

N∑
i=ñ

Ri − 2N(N + 1) + ñ(ñ− 1)

N(N + 1)

v−

4

)
.

We now determine an upper bound for (N−ñ+1)φ, using υ− ≥ 2
3
RN

N and Ri ≥ iυ−2 ≥
i
3
RN

N .

We thus have:

φ ≤ 3

2

RN

N
− 1

N(N + 1)

N∑
i=ñ

i

3

RN

N
− 2N(N + 1) + ñ(ñ− 1)

N(N + 1)

1

4

(
2

3

RN

N

)
,

φ ≤ RN

N

(
3

2
− N(N + 1)− ñ(ñ− 1)

6N(N + 1)
− 2N(N + 1) + ñ(ñ− 1)

6N(N + 1)

)
=
RN

N
.

A sufficient condition for entry to be blockaded with spillovers when it is without spillover

is then given by:

N
RN

N
≤ Nφ′ ⇔ N

3
+ 1 ≤ ñ.

A.6 Proof of Corollary 4

When the informative spillover decreases, from equation (1), the industry revenue becomes

R
n ≥ Rn for all n ∈ [1, N − 1], and ∃n ≤ N − 1 such that R

n
> Rn. Note that, since
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the second period profit of the manufacturer does not depend on the spillover intensity,

the variation in SFM is fully explained by the impact of the spillover intensity on the first

period profit. Recall that the profit of the manufacturer in t = 1 is:

ΠN
1 =

1

N + 1

N∑
i=n̂

Ri +
n̂(n̂− 1)

N + 1

υ−

2
.

Then, there are three cases:

• First, if R
n

n > Rn

n only for n < n̂ and n̂ is unchanged, the change does not affect the

manufacturer’s profit. Indeed, the term 1
N+1

∑N
i=n̂R

i is not affected, and the second

term is by definition independent of the spillover.

• Second, if R
n

n > Rn

n for n < n̂ and n̂ decreases as a result of the decrease in spillover,

the profit of the manufacturer increases. Indeed, assume that initially n̂ = k, and

only Rk−1 changes and is now equal to R
k−1

, so that the new threshold is n̂ = k−1.

Then, the new profit of the manufacturer is:

1

N + 1

N∑
i=k

Ri +
R
k−1

N + 1
+

(k − 1)(k − 2)υ−

2(N + 1)
.

We compare this to its former profit, that is:

1

N + 1

N∑
i=k

Ri +
k(k − 1)υ−

2(N + 1)
.

The difference between these two profits is given by:

1

N + 1

(
R
k−1 − (k − 1)υ−

)
.

Because we now have R
k−1

k−1 > υ−, this term is positive.

• Finally, if there exists n ≥ n̂ such that R
n

n > Rn

n , it is immediate that the profit of

the manufacturer increases, as 1
N+1

∑N
i=n̂R

i
> 1

N+1

∑N
i=n̂R

i.
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A.7 Retailer size

A.7.1 Equilibrium profits

We denote by Πs,n
1 the profit earned by a manufacturer selling through n retailers, each

owning s outlets. In what follows, we have υ− < υsN . For any negotiation with less than

n̂ retailers, all negotiations fail, which means that each retailer leaves half of its revenue

to the manufacturer:

Πs,n
1 = n× sυ−

2
∀n < n̂.

The profit of each retailer of size s is then sυ−

2 .

Consider now the n̂th negotiation, that is the first negotiation that ensures that all the

n̂th retailers sell the new product. The negotiation program is then:

Rn̂

n̂
− T s,n̂1 − sυ

−

2
= n̂T s,n̂1 − n̂sυ

−

2
,

which yields:

T s,n̂1 =
1

n̂+ 1

(
Rsn̂

n̂
+
n̂− 1

n̂+ 1

sυ−

2

)
,

Πs,n̂ = n̂T s,n̂1 =
Rsn̂

n̂+ 1
+
n̂(n̂− 1)

n̂+ 1

sυ−

2
.

Assume now that there exists n ≥ n̂ such that:

Πs,n
1 =

1

n+ 1

n∑
i=n̂

Rsi +
n̂(n̂− 1)

n+ 1

sυ−

2

Consider now the (n+ 1)th negotiation. The program is given by:

Rs,n+1

n+ 1
− T s,n+1

1 − sυ−

2
= (n+ 1)T s,n+1

1 −Πs,n
1 − sυ−

2
,

This yields:

(n+ 2)T s,n+1
1 =

1

n+ 1

n+1∑
i=n̂

Rsi +
n̂(n̂− 1)

n+ 1

sυ−

2

Πs,n+1
1 =

1

n+ 2

n+1∑
i=n̂

Rsi +
n̂(n̂− 1)

n+ 2

sυ−

2
.
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A.7.2 Proof of Proposition 5

First, it is straightforward that in the case of full monopolization of the retail sector, the

manufacturer obtains ΠsN,1
1 = RsN

2 in t = 1. This profit is exactly the profit obtained by

the manufacturer in t = 2, and therefore the manufacturer pays no spillover.

We now show that retail concentration always benefits the manufacturer when the revenue

curve Ri is weakly convex.

Let us first assume that m̂ = 1. The difference between the profits of the manufacturer

when it faces large versus small retailers, given respectively by (18) and (19), is of the

same sign as the following expression:

∆′′ = (sN + 1)
N∑
i=1

Rsi − (N + 1)
sN∑
i=1

Ri.

We first show that the manufacturer always obtains a strictly higher profit when bar-

gaining with the first group of size s rather than with the corresponding s independent

outlets. For instance, assume that the manufacturer faces 6N outlets. We now compare

the manfacturer’s profit when it bargains with N retailers of size s = 6 or 6N retailers of

size 1. The first negotiation with a group of size 6 brings a profit 1
2R

6 to the manufac-

turer, whereas negotiating with the first 6 independent outlets brings a profit 1
7

∑6
i=1R

i.

Rewriting the difference and using the relationship Ri =
∑i

j=1(Rj−Rj−1)+R1, we obtain:

7R6−2

6∑
i=1

Ri = 5(R6−R5)+3(R5−R4)+(R4−R3)−(R3−R2)−3(R2−R1)−5(R1−0)) ≥ 0.

Therefore, if the function Ri is weakly convex in i ∀i ∈ [1, 5], we have Ri+1−Ri ≥ Ri−Ri−1.

It is immediate then, in the above expression and comparing the last term with the first,

the second term with the next to last and the third with the fourth ...that it is always

true. We can generalize this result for the first negotiation with a group of any size s > 2:

(s+ 1)Rs − 2
s∑
i=1

Ri =
s∑
i=1

[2i− (s+ 1)](Ri −Ri−1) > 0.

We then have that for any group of size s, the first negotiation with one group of size s

generates a strictly higher profit for the manufacturer than negotiating with s separate

retailers, as long as Ri is weakly convex in i.
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We now consider further negotiations with groups of size s, and show this result for all

values of s and N , by first expressing ∆′′ as a function of revenue differences Rm −Rm−1

for all m ∈ [1, sN ]. ∆′′ can be written as follows:

∆′′ = (s− 1)NRsN − (N + 1)
s−1∑
k=1

RsN−k + (s− 1)NRs(N−1) − (N + 1)
s−1∑
k=1

Rs(N−1)−k

+ · · ·+ (s− 1)NRs − (N + 1)

s−1∑
k=1

Rs−k.

From this, we first derive the coefficient for the term (RsN −RsN−1):

∆′′ = (s− 1)N(RsN −RsN−1) + (s− 1)NRsN−1 − (N + 1)

s−1∑
k=1

RsN−k

+(s− 1)NRs(N−1) − (N + 1)

s−1∑
k=1

Rs(N−1)−k + · · ·+ (s− 1)NRs − (N + 1)

s−1∑
k=1

Rs−k

= (s− 1)N(RsN −RsN−1) + [(s− 2)N − 1]RsN−1 − (N + 1)
s−1∑
k=2

RsN−k

+(s− 1)NRs(N−1) − (N + 1)

s−1∑
k=1

Rs(N−1)−k + · · ·+ (s− 1)NRs − (N + 1)

s−1∑
k=1

Rs−k.

Repeating the same reasoning, we obtain the coefficient for the term (RsN−1 −RsN−2):

∆′′ = (s− 1)N(RsN −RsN−1) + [(s− 2)N − 1] (RsN−1 −RsN−2) + [(s− 3)N − 2]RsN−2

−(N + 1)

s−1∑
k=3

RsN−k + (s− 1)NRs(N−1) − (N + 1)

s−1∑
k=1

Rs(N−1)−k

+ · · ·+ (s− 1)NRs − (N + 1)
s−1∑
k=1

Rs−k.

The same reasoning can be applied to ∆′′ up to the s(N − 1)th term, and we then obtain

the following expression:

∆′′ =
s∑

k=1

[(s− k)N − (k − 1)]
(
RsN−k+1 −RsN−k

)
+ (s− 1)(N − 1)Rs(N−1)

−(N + 1)
s−1∑
k=1

Rs(N−1)−k + · · ·+ (s− 1)NRs − (N + 1)
s−1∑
k=1

Rs−k.
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We now determine the coefficient for the term (Rs(N−1) −Rs(N−1)−1):

∆′′ =

s∑
k=1

[(s− k)N − (k − 1)]
(
RsN−k+1 −RsN−k

)
+ (s− 1)(N − 1)(Rs(N−1) −Rs(N−1)−1)

+ (s− 1)(N − 1)Rs(N−1)−1 − (N + 1)
s−1∑
k=1

Rs(N−1)−k + ...+ (s− 1)NRs − (N + 1)
s−1∑
k=1

Rs−k

∆′′ =
s∑

k=1

[(s− k)N − (k − 1)]
(
RsN−k+1 −RsN−k

)
+ (s− 1)(N − 1)(Rs(N−1) −Rs(N−1)−1)

+ [(s− 1)(N − 1)− 2]Rs(N−1)−1 − (N + 1)

s−1∑
k=2

Rs(N−1)−k + · · ·+ (s− 1)NRs − (N + 1)

s−1∑
k=1

Rs−k.

We can then derive the general expression of ∆′′ as a function of all differences (Rsi−k+1−

Rsi−k):

∆′′ =

N∑
i=1

s∑
k=1

[(s− k)i− (N − i+ 1)(k − 1)]︸ ︷︷ ︸
βi,k

(
Rsi−k+1 −Rsi−k

)
.

We show that for any l ∈ [1, s] and j ∈ [1, N ], the sum of coefficients in front of all terms

such that k > l and i ≥ j is larger than the coefficient in front of the term such that k = l

and i = j :
N∑

i=j+1

s∑
k=1

βi,k +

l−1∑
k=1

βj,k ≥ −βj,l. (24)

For a weakly convex revenue function, this condition is sufficient to ensure that ∆′′ ≥ 0,

that is, the manufacturer earns more when facing large retailers than when facing small

retailers. This condition (24) boils down to:

N∑
i=j+1

s∑
k=1

βi,k +

l∑
k=1

βj,k ≥ 0. (25)
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The first term of the left-hand side can be simplified as:

N∑
i=j+1

s∑
k=1

βi,k =
N∑

i=j+1

s∑
k=1

[(s− k)i− (N − i+ 1)(k − 1)] =
N∑

i=j+1

s∑
k=1

[(s− 1)i− (N + 1)(k − 1)]

=

N∑
i=j+1

[
s(s− 1)i− (N + 1)

(
s(s+ 1)

2
− s
)]

=

N∑
i=j+1

s(s− 1)

2
(2i− (N + 1))

=
s(s− 1)

2
j(N − j).

The second term of the left-hand side can be simplified as:

l∑
k=1

βj,k =

l∑
k=1

[(s− k)j − (N − j + 1)(k − 1)] = l

(
(s− 1)j − (l − 1)(N + 1)

2

)
.

For all l ∈ [1, s] and j ∈ [1, N ], condition (25) is satisfied.29

We now consider the general profit functions, taking into account that the first negotiations

may not succeed. We have shown that whenever Φi is weakly convex:

∆′′ = (sN + 1)
N∑
i=1

Φsi − (N + 1)
sN∑
i=1

Φi > 0. (26)

Let us now define the function Φi as follows:

Φi = Ri if i ∈ [m̂, sN ],

= iυ− otherwise.

The function Φi is weakly convex: it is strictly convex over the interval [m̂, sN ] and linear

over the interval [1, m̂ − 1]. Retail concentration also increases the manufacturer’s profit

when m̂ > 0.

29The obvious exception is the case in which l = 1 and j = N : βN,1 corresponds to the coefficient of the
highest term, RsN −RsN−1, and therefore condition (24) makes no sense in this case.
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Figure 1: Graphic representation of the revenue curve with or without spillover for N = 8.
Left: n̂ = 1; Right: n̂ = 5.
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Figure 2: Revenue curves in period 1 for different retail structure (s,N). From top to
bottom (8, 1), (4, 2), (2, 4), (1, 8).
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Figure 3: Revenue curves in period 1 for different retail structures (s,N). From top to
bottom (8, 1), (1, 8), (4, 2).
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a n̂ ΠN
1 SFM (%)

0 5 1.30 23.14
0.2 5 1.33 21.09
0.3 4 1.35 19.74
0.5 3 1.41 16.28
0.6 3 1.45 14.00
0.7 2 1.50 11.20
0.8 1 1.55 7.90
1 1 1.69 0

Table 1: Slotting fee magnitude and advertising.

q+ n̂ ΠN
1 ΠN

2 SFM (%)

1.1 7 1.058 1.21 12.5%
1.3 5 1.29 1.69 23.1%
1.5 4 1.65 2.25 26.6%
1.8 3 2.23 3.24 28.3%
2 2 2.81 4.00 28.8%
2.2 1 3.42 4.84 29.2%
2.4 1 4.08 5.76 29.2%

Table 2: Slotting fee magnitude and quality gap.
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