A simple and efficient feedback control strategy for wastewater denitrification
Cédric Join, Jean Bernier, Stéphane Mottelet, Michel Fliess, Sabrina Rechdaoui-Guérin, Sam Azimi, Vincent Rocher

To cite this version:
Cédric Join, Jean Bernier, Stéphane Mottelet, Michel Fliess, Sabrina Rechdaoui-Guérin, et al.. A simple and efficient feedback control strategy for wastewater denitrification. 20th IFAC World Congress, IFAC 2017, Jul 2017, Toulouse, France. pp.7657-7662, 10.1016/j.ifacol.2017.08.1167 . hal-01488199v2

HAL Id: hal-01488199
https://hal-polytechnique.archives-ouvertes.fr/hal-01488199v2
Submitted on 13 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A simple and efficient feedback control strategy for wastewater denitrification

Cédric Join∗,†,‡ Jean Bernier** Stéphane Mottelet***
Michel Fliess****,† Sabrina Rechdaoui-Guérin** Sam Azimi**
Vincent Rocher**

* CRAN (CNRS, UMR 7039), Université de Lorraine, BP 239, 54506 Vandœuvre-lès-Nancy, France (e-mail: cedric.join@univ-lorraine.fr)
** SIAAP (Syndicat Interdépartemental pour l’Assainissement de l’Agglomération Parisienne), Direction Développement Prospective, 82 avenue Kléber, 92700 Colombes, France (e-mail: {jean.bernier, sabrina.guerin, sam.azimi, vincent.rocher}@siaap.fr)
*** TIMR (EA 4297), Sorbonne Universités & Université de Technologie de Compiègne, rue du docteur Schweitzer, 60203 Compiègne, France (e-mail: stephane.mottelet@utc.fr)
**** LIX (CNRS, UMR 7161), École polytechnique, 91128 Palaiseau, France (e-mail: Michel.Fliess@polytechnique.edu)
† AL.I.E.N. (Algèbre pour Identification & Estimation Numériques), 24-30 rue Lionnois, BP 60120, 54003 Nancy, France (e-mail: {cedric.join, michel.fliess}@alien-sas.com)
‡ Projet Non-A, INRIA Lille – Nord-Europe, France

Abstract: Due to severe mathematical modeling and calibration difficulties open-loop feedforward control is mainly employed today for wastewater denitrification, which is a key ecological issue. In order to improve the resulting poor performances a new model-free control setting and its corresponding “intelligent” controller are introduced. The pitfall of regulating two output variables via a single input variable is overcome by introducing also an open-loop knowledge-based control deduced from the plant behavior. Several convincing computer simulations are presented and discussed.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Wastewater, biofiltration, denitrification, feedback control design, knowledge-based control, artificial intelligence, model-free control, intelligent P controllers, algebraic estimation techniques, robust performance.

1. INTRODUCTION

Maintaining low nitrite concentrations in the effluent is a major ecological issue for wastewater treatment plants (WWTP) due to nitrite’s high toxicity (see, e.g., Capodaglio et al. (2016); Fux et al. (2015); Grady Jr. et al. (2011); Henze et al. (2008); Raimonet et al. (2015); Water Environment Federation (2013)). To this end, the aim of a wastewater post-denitrifying biofilter is to convert nitrate and nitrite (NOₓ, x = 2, 3) of the effluent into nitrogen gas (N₂). The process uses a submerged packed bed biofilm reactor hosting a class of bacteria under anoxic (low/no oxygen) conditions which use the NOₓ as a source of oxygen when they are fed with a carbon source such as methanol (Samie et al. (2011); Bernier et al. (2014)). On the one hand, underfeed of methanol will limit the reduction of NOₓ in the process, and as the denitrification is a two step reaction NO₃ → NO₂ → N₂, this can leave some nitrite in the effluent even if this compound was absent in the influent (Rocher et al. (2015)). On the other hand, overfeed of methanol results in elevated effluent biochemical oxygen demand (BOD) and useless operating expenses. In most WWTP using post-denitrifying biofilters, the actual control strategy is mainly of feedforward-open-loop type: on-line measurements of incoming NOₓ are combined with wastewater flow to compute an ideal methanol feed rate. But because of process complexity and many types of disturbances, e.g., periodical backwash of biofilters, this is not sufficient to accurately control the nitrite concentration in the effluent. Model-based approaches seem nevertheless to be hard to apply in this context (see, e.g., Grady Jr. et al. (2011); Water Environment Federation (2013)). In fact the dynamics of a denitrifying biofilter has to be described by partial differential equations taking into account concentration gradients, nonlinearities of the biological processes, biofilm clogging and so on (see, e.g., the excellent report by Dochain et al. (2001), and the references therein). Such an exhaustive model needing the identification of numer-

1 See, e.g., Bastin et al. (1990); Bourrel et al. (2000); Cristea et al. (2008); Marsili-Libelli et al. (2002); Olsson et al. (1999); Torres Zúñiga et al. (2012); Wahaha et al. (2009) for most interesting exceptions, i.e., for the use of feedback loops.
the addition of two-step denitrification to simulate the production and consumption of nitrite during the process. The first two denitrification reactions of ASM1 (Hiatt et al. (2008)) were used to this end, and can be summarized as

\[
\text{methanol + nitrates} \rightarrow \text{biomass + nitrates,}
\]
\[
\text{methanol + nitrates} \rightarrow \text{biomass + nitrogen.}
\]

The whole dynamics of the biofilter results from the mass balance of the different reacting species, nitrate \(S_1\), nitrite \(S_2\), carbon \(S_C\) and biomass \(X\). The limited axial dispersion allows to consider that all concentrations are constant in a vertical cross section. The following model with distributed parameters, i.e., a system of partial differential equations, model with a single space dimension, may be written

\[
\varepsilon \partial_t S_1 = -v \partial_z S_1 - k_1 \mu_1(S_1, S_C) X
\]
\[
\varepsilon \partial_t S_2 = -v \partial_z S_2 + k_1 \mu_1(S_1, S_C) X - k_2 \mu_2(S_2, S_C) X
\]
\[
\varepsilon \partial_t S_C = -v \partial_z S_C - k_3 \mu_1(S_1, S_C) X - k_4 \mu_2(S_2, S_C) X
\]
\[
\partial_z X = (\mu_1(S_1, S_C) + \mu_2(S_2, S_C))(1 - X/X_{\text{max}}) X
\]

for \(z \in [0, H]\). All species concentrations are given in g/m³. The yield coefficients \((k_i)_{i=1,...,4}\) are given in g/g, the superficial velocity \(v\) in m/h (flow rate in m³/h divided by the cross-section area) and \(\varepsilon\) is the porosity. The specific growth rates \(\mu_1\) and \(\mu_2\) are given by a double Monod-type model (Bastin et al. (1990))

\[
\mu_i(S_1, S_C) = \frac{S_1 S_C}{(K_i + S_1)(K_i + S_C)} \quad i = 1, 2
\]

where \(\mu_{i,\text{max}}\) is the maximum specific growth rate for species \(S_i\) and \(K_i, K_C\) the affinity constants. The boundary conditions are given by

\[
S_1(0, t) = S_{1,\text{in}}(t), \quad S_2(0, t) = S_{2,\text{in}}(t), \quad S_C(0, t) = S_{C,\text{in}}(t)
\]

where \(S_{c,\text{in}}(t)\) is the methanol concentration at the inlet of the reactor, i.e. the control variable.

Equations (1)-(4) were initially proposed for a drinkable water denitrifying biofilter (see Bourrel et al. (2000)) and were easily adapted to our specific configuration as only hydraulic parameters and maximum biomass concentration \(X_{\text{max}}\) had to be changed. They have been used during the early stage of our project in order to validate our interest for model-free control, but the simulations of Section 4 have been made with the SimBio software. This more realistic setting is built in Matlab with the Simulink toolbox, using submodels already available in the literature. The biofilter hydraulics is approximated with a series of several continuously stirred tank reactors (CSTRs) of equal volume to obtain reactor hydraulics close to the plug-flow model of equations (1)-(3) while maintaining simulation times in a reasonable range. As concentration gradients are observed in thick biofilms, their distributed nature is taken into account in SimBio by dividing the biofilm into several CSTRs through which soluble substrates are able to diffuse (Spengel et al. (1992)). Soluble substrates are brought to and into the biofilm through diffusion, whereas particular components are transferred to the biofilm surface through filtration (Horner et al. (1986); Ives (1970)). Backwash efficiency is modelled as a removal of a fixed proportion of biofilm thickness in each reactor using different removal efficiencies for biomass and for other non-biomass particles. A certain fraction of media mixing across the reactors also occurs during backwash.

\[\text{See, e.g., Join et al. (2010) for the analysis of model-free control in a somehow analogous situation with respect to partial differential equations.}\]
This version of SimBio was calibrated on hourly nitrate and nitrite measurements made on the post-denitrification step of the Seine-Centre plant (Bernier et al. (2014)).

2.2 Actual control strategy on the real plant

The control variable value $S_{\text{c, in}}(t)$ is tuned according to a desired removal of incoming nitrogen, which comes under the form of nitrates (the incoming concentration of nitrite is negligible), i.e., for a target concentration of $S_{1, \text{target}}$ at the outlet of the reactor, the control law is of the form

$$S_{\text{c, in}}(t) = \beta(S_{\text{c, in}}(t) - S_{1, \text{target}})$$

where β is an operating coefficient based on pure stoichiometric and yield considerations (Rocher et al. (2015)). This strategy does not take into account the intermediate species (nitrite) and leads to an unstable behavior of its concentration in the effluent. In fact the ratio between the methanol and the total nitrogen (nitrate and nitrite) concentrations in the biofilter plays a major role in the appearance of residual nitrates, but it cannot be controlled with a simple control law as in Equation (5). However, as the nitrate concentration can be measured at the outlet of the biofilter, it can be used as a natural controlled variable in a feedback control strategy.

3. MODEL-FREE CONTROL

3.1 The ultra-local model

Replace the unknown global system description by the ultra-local model:\footnote{For more details, see Fließ et al. (2013).} \[\dot{y} = F + \alpha u \] (6)

where

- the control and output variables are u and y,
- the derivation order of y is 1 like in most concrete situations,
- $\alpha \in \mathbb{R}$ is chosen by the practitioner such that αu and \dot{y} are of the same magnitude.

The following explanations on F might be useful:

- F is estimated via the measures of u and y,
- F subsumes not only the unknown system structure but also any perturbation.

Remark 3.1. In Equation (6) \dot{y} is seldom replaced by \ddot{y} (see, e.g., Fließ et al. (2013), and the references therein). Higher order derivatives were never utilized until today.

3.2 Intelligent controllers

The loop is closed by an intelligent proportional controller, or iP, \[u = -\frac{F - \dot{y}^* + K_P e}{\alpha} \] (7)

where

- y^* is a reference trajectory,
- $e = y - y^*$ is the tracking error,
- K_P is the usual tuning gain.

Combining Equations (6) and (7) yields:

$$\dot{e} + K_P e = 0$$

where F does not appear anymore. The tuning of K_P, in order to insure local stability, becomes therefore quite straightforward. This is a major benefit when compared to the tuning of “classic” PI controllers (see, e.g., Aström et al. (2006, 2008), and the references therein), which

- necessitate a “fine” tuning in order to deal with the poorly known parts of the plant,
- exhibit a poor robustness with respect to “strong” perturbations and/or system alterations.

3.3 Estimation of F

The calculations below stem from algebraic estimation techniques that are borrowed from Fließ et al. (2003, 2008), and Sira-Ramírez et al. (2014).

First approach The term F in Equation (6) may be assumed to be “well” approximated by a piecewise constant function F_{est} (see, e.g., Godement (1998)). Rewrite then Equation (6) in the operational domain (see, e.g., Erdélyi (1962)):

$$sY = \frac{\Phi}{s} + \alpha U + y(0)$$

where Φ is a constant. We get rid of the initial condition $y(0)$ by multiplying both sides on the left by $\frac{1}{s^2}$:

$$Y + \frac{dY}{ds} = -\frac{\Phi}{s^2} + \frac{dU}{ds}$$

Noise attenuation is achieved by multiplying both sides on the left by s^{-2}. It yields in the time domain the realtime estimate, thanks to the equivalence between $\frac{d}{ds}$ and the multiplication by $-t$,

$$F_{\text{est}}(t) = -6 \int_{t-\tau}^{t} [(\tau - 2\sigma)y(\sigma) + \alpha\sigma(\tau - \sigma)u(\sigma)] d\sigma$$

(8)

Second approach Close the loop with the iP (7):

$$F_{\text{est}}(t) = \frac{1}{\tau} \left[\int_{t-\tau}^{t} (\dot{y}^* - \alpha u - K_P e) d\sigma \right]$$

(9)

Remark 3.2. Note the following facts:

- integrals (8) and (9) are low pass filters,
- $\tau > 0$ might be quite small,
- the integrals may of course be replaced in practice by classic digital filters.

4. NUMERICAL EXPERIMENTS

4.1 Control law description

Our control law is displayed by Figure 2:

- Equation (5) defines the single control variable in open loop,
- the loop is closed via the iP (7).

The aim of methanol injection $S_{\text{c, in}}$, i.e., our single input variable, \footnote{See Section 2.1 for precise definitions of the quantities associated to the letter S.} is to regulate the total nitrogen concentration,
Section 4.2 Simulation

The mathematical modeling discussed in Section 2.1 is used for the computer simulations. The sampling time period is 0.001 day.

Quite good results corresponding to several targets are displayed in Figures 4, 5, 6, 7, 8. Important daily perturbations, corresponding to biofilter backwash, have been introduced in order to show more realistic performances. According to the Figures, a small injection of methanol is reducing notably the nitrites and nitrates concentrations in the water which is rejected. Notice however a worsening of the performances if $S_{2,target} \geq 1.2$. Let us emphasize that

- it is not due to a weakness of our control strategy,
- the very nature of the wastewater denitrification, which is detailed at the end of Section 4.1, explains it.

5. CONCLUSION

This new setting for wastewater denitrification, which seems to be rather promising (see Rocher et al. (2017) for further details), will soon be tested in Paris. Although it has been shown in other applications that model-free control behaves quite well with respect to noise corruptions, it will provide us with more realistic data on noisy measurements, and other perturbations, for water treatment. The results will be reported elsewhere.

ACKNOWLEDGEMENTS

The authors are thankful to the research program MOCOPEE for its technical and financial support.

REFERENCES

$S_{1, in}$ $S_{2, in}$ $S_{1, target}$ $S_{1, target}$ S_1 S_2 $S_{2, target}$

Fig. 2. Control scheme

\(i.e., \) two quantities \(S_1 \) and \(S_2 \), namely the nitrate and nitrite wastewater concentrations. The fact, depicted in Figure 3, that \(S_1 \) is much larger than \(S_2 \), is taken into account by regulating \(S_1 \) via an open-loop knowledge-based control. For \(S_2 \) model-free control is utilized. For Equations (6)-(7), \(\alpha = 1 \) and \(K_p = 100 \) were selected. In order to avoid debating the regulation of \(S_1 \) the resulting value of the iP should be non-negative. If not, the water concentration of nitrate would increase. This is not acceptable.

\[S_{1, target} \]

\[S_{2, target} \]

\[S_1 \]

\[S_2 \]

\[S_{2, in} \]

\[S_{1, in} \]

\[S_{1, target} \]

\[S_{2, target} \]

\[S_1 \]

\[S_2 \]

\[S_{2, in} \]

\[S_{1, in} \]

\[S_{1, target} \]

\[S_{2, target} \]

\[S_1 \]

\[S_2 \]

\[S_{2, in} \]

\[S_{1, in} \]

\[S_{1, target} \]

\[S_{2, target} \]

\[S_1 \]

\[S_2 \]

\[S_{2, in} \]

\[S_{1, in} \]

\[S_{1, target} \]

\[S_{2, target} \]

\[S_1 \]

\[S_2 \]

\[S_{2, in} \]

\[S_{1, in} \]

\[S_{1, target} \]

\[S_{2, target} \]

\[S_1 \]

\[S_2 \]

\[S_{2, in} \]

\[S_{1, in} \]

\[S_{1, target} \]

\[S_{2, target} \]
Fig. 3. Influent

Fig. 4. Setpoint: $S_{2,\text{target}} = 0.4$

Fig. 5. Setpoint: $S_{2,\text{target}} = 0.8$

Fig. 6. Setpoint: $S_{2,\text{target}} = 1.2$

