LINEAR BOLTZMANN EQUATION AND FRACTIONAL DIFFUSION

Abstract : Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient σ. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient α. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy in the half-space according to the Stefan-Boltzmann law. In the asymptotic regime where σ → +∞ and 1 − α=C/σ, we prove that the radiation pressure exerted on the boundary of the half-space is governed by a fractional diffusion equation. This result provides an example of fractional diffusion asymptotic limit of a kinetic model which is based on the harmonic extension definition of √ −∆. This fractional diffusion limit therefore differs from most of other such limits for kinetic models reported in the literature, which are based on specific properties of the equilibrium distributions (" heavy tails ") or of the scattering coefficient as in [U. Frisch-H. Frisch: Mon. Not. R. Astr. Not. 181 (1977), 273–280].
Type de document :
Pré-publication, Document de travail
25 pages, no figure. 2017
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-polytechnique.archives-ouvertes.fr/hal-01579874
Contributeur : François Golse <>
Soumis le : jeudi 31 août 2017 - 17:50:29
Dernière modification le : jeudi 10 mai 2018 - 01:57:08

Fichiers

FractDiff3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01579874, version 1

Citation

Claude Bardos, François Golse, Iván Moyano. LINEAR BOLTZMANN EQUATION AND FRACTIONAL DIFFUSION. 25 pages, no figure. 2017. 〈hal-01579874〉

Partager

Métriques

Consultations de la notice

556

Téléchargements de fichiers

86