D. M. Leitner, Energy Flow in Proteins, Annual Review of Physical Chemistry, vol.59, issue.1, pp.233-259, 2008.
DOI : 10.1146/annurev.physchem.59.032607.093606

Y. Mizutani and T. Kitagawa, Direct Observation of Cooling of Heme Upon Photodissociation of Carbonmonoxy Myoglobin, Science, vol.278, issue.5337, pp.443-446, 1997.
DOI : 10.1126/science.278.5337.443

R. J. Miller, Vibrational Energy Relaxation and Structural Dynamics of Heme Proteins, Annual Review of Physical Chemistry, vol.42, issue.1, pp.581-614, 1991.
DOI : 10.1146/annurev.pc.42.100191.003053

E. R. Henry, W. A. Eaton, and R. M. Hochstrasser, Molecular dynamics simulations of cooling in laser-excited heme proteins., Proceedings of the National Academy of Sciences, vol.83, issue.23, pp.8982-8986, 1986.
DOI : 10.1073/pnas.83.23.8982

S. Mukamel, Principles of Nonlinear optical spectroscopy, 1995.

M. Brunori, Myoglobin strikes back, Protein Science, vol.89, issue.2, pp.195-201, 2010.
DOI : 10.1042/bj3120169

URL : http://onlinelibrary.wiley.com/doi/10.1002/pro.300/pdf

M. Lim, T. A. Jackson, and P. A. Anfinrud, Femtosecond Near-IR Absorbance Study of Photoexcited Myoglobin:?? Dynamics of Electronic and Thermal Relaxation, The Journal of Physical Chemistry, vol.100, issue.29, pp.12043-12051, 1996.
DOI : 10.1021/jp9536458

X. Ye, A. Demidov, and P. M. Champion, and the Vibrational Relaxation of the Six-Coordinate Heme Species, Journal of the American Chemical Society, vol.124, issue.20, pp.5914-5924, 2002.
DOI : 10.1021/ja017359n

Y. Kholodenko, M. Volk, E. Gooding, and R. Hochstrasser, Energy dissipation and relaxation processes in deoxy myoglobin after photoexcitation in the Soret region, Chemical Physics, vol.259, issue.1, pp.71-87, 2000.
DOI : 10.1016/S0301-0104(00)00182-8

M. R. Armstrong, J. P. Ogilvie, M. L. Cowan, A. M. Nagy, and R. J. Miller, Observation of the cascaded atomic-to-global length scales driving protein motion, Proceedings of the National Academy of Sciences, vol.69, issue.4, pp.4990-4994, 2003.
DOI : 10.1063/1.436450

M. Groot, Coherent infrared emission from myoglobin crystals: An electric field measurement, Proceedings of the National Academy of Sciences, vol.21, issue.8, pp.1323-1328, 2002.
DOI : 10.1364/OL.21.000564

URL : https://hal.archives-ouvertes.fr/hal-00836886

S. Franzen, B. Bohn, C. Poyart, and J. L. Martin, Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species, Biochemistry, vol.34, issue.4, pp.1224-1237, 1995.
DOI : 10.1021/bi00004a016

J. W. Petrich, J. L. Martin, D. Houde, C. Poyart, and A. Orszag, Time-resolved Raman spectroscopy with subpicosecond resolution: vibrational cooling and delocalization of strain energy in photodissociated (carbonmonoxy)hemoglobin, Biochemistry, vol.26, issue.24, pp.7914-7923, 1987.
DOI : 10.1021/bi00398a056

S. G. Kruglik, J. Lambry, J. Martin, M. H. Vos, and M. Negrerie, Sub-picosecond Raman spectrometer for time-resolved studies of structural dynamics in heme proteins, Journal of Raman Spectroscopy, vol.41, issue.Suppl. 1, pp.265-275, 2011.
DOI : 10.1021/bi0158831

URL : https://hal.archives-ouvertes.fr/hal-00804600

M. C. Simpson, Transient Raman Observations of Heme Electronic and Vibrational Photodynamics in Deoxyhemoglobin, Journal of the American Chemical Society, vol.119, issue.22, pp.5110-5117, 1997.
DOI : 10.1021/ja961198j

P. Li, J. T. Sage, and P. M. Champion, Probing picosecond processes with nanosecond lasers: Electronic and vibrational relaxation dynamics of heme proteins, The Journal of Chemical Physics, vol.263, issue.5, pp.3214-3227, 1992.
DOI : 10.1063/1.438717

X. Y. Li, R. S. Czernuszewicz, J. R. Kincaid, P. Stein, and T. G. Spiro, Consistent porphyrin force field. 2. Nickel octaethylporphyrin skeletal and substituent mode assignments from nitrogen-15, meso-d4, and methylene-d16 Raman and infrared isotope shifts, The Journal of Physical Chemistry, vol.94, issue.1, pp.47-61, 1990.
DOI : 10.1021/j100364a008

P. A. Cornelius, A. W. Steele, D. A. Chernoff, and R. M. Hochstrasser, Different dissociation pathways and observation of an excited deoxy state in picosecond photolysis of oxy- and carboxymyoglobin., Proceedings of the National Academy of Sciences, vol.78, issue.12, pp.7526-7529, 1981.
DOI : 10.1073/pnas.78.12.7526

M. Lim, T. Jackson, and P. Anfinrud, Binding of CO to myoglobin from a heme pocket docking site to form nearly linear Fe-C-O, Science, vol.14, issue.10, pp.962-966, 1995.
DOI : 10.1021/ar00064a002

J. W. Petrich, C. Poyart, and J. L. Martin, Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme, Biochemistry, vol.27, issue.11, pp.4049-4060, 1988.
DOI : 10.1021/bi00411a022

M. Schneebeck, L. Vigil, and M. Ondrias, Mode-selective energy localization during photoexcitation of deoxyhemoglobin and heme model complexes, Chemical Physics Letters, vol.215, issue.1-3, pp.251-256, 1993.
DOI : 10.1016/0009-2614(93)89296-T

S. Franzen, L. Kiger, C. Poyart, and J. Martin, Heme Photolysis Occurs by Ultrafast Excited State Metal-to-Ring Charge Transfer, Biophysical Journal, vol.80, issue.5, pp.2372-2385, 2001.
DOI : 10.1016/S0006-3495(01)76207-8

URL : https://hal.archives-ouvertes.fr/hal-00838171

C. Consani, G. Auböck, O. Bräm, F. Van-mourik, and M. Chergui, A cascade through spin states in the ultrafast haem relaxation of met-myoglobin, The Journal of Chemical Physics, vol.140, issue.2, p.25103, 2014.
DOI : 10.1073/pnas.0401844101

M. Levantino, Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser, Nature Communications, vol.28, 2015.
DOI : 10.1016/j.physe.2005.03.001

URL : https://hal.archives-ouvertes.fr/hal-01139805

P. Kukura, D. W. Mccamant, and R. A. Mathies, Femtosecond Stimulated Raman Spectroscopy, Annual Review of Physical Chemistry, vol.58, issue.1, pp.461-488, 2007.
DOI : 10.1146/annurev.physchem.58.032806.104456

P. M. Champion, CHEMISTRY: Following the Flow of Energy in Biomolecules, Science, vol.310, issue.5750, pp.980-982, 2005.
DOI : 10.1126/science.1120280

S. Mukamel and J. D. Biggs, Communication: Comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals, The Journal of Chemical Physics, vol.134, issue.16, p.161101, 2011.
DOI : 10.1364/OE.18.002695

G. Fumero, G. Batignani, K. E. Dorfman, S. Mukamel, and T. Scopigno, On the Resolution Limit of Femtosecond Stimulated Raman Spectroscopy: Modelling Fifth-Order Signals with Overlapping Pulses, ChemPhysChem, vol.40, issue.16, pp.3438-3443, 2015.
DOI : 10.1103/PhysRevA.40.5063

D. E. Sagnella, J. E. Straub, T. A. Jackson, M. Lim, and P. A. Anfinrud, Vibrational population relaxation of carbon monoxide in the heme pocket of photolyzed carbonmonoxy myoglobin: Comparison of time-resolved mid-IR absorbance experiments and molecular dynamics simulations, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.14324-14329, 1999.
DOI : 10.1021/jp9608483

G. Batignani, Electronic resonances in broadband stimulated Raman spectroscopy, Scientific Reports, vol.15, issue.1, p.18445, 2016.
DOI : 10.1364/OE.15.008884

URL : http://www.nature.com/articles/srep18445.pdf

B. R. Stallard, P. M. Champion, P. R. Callis, and A. C. Albrecht, Advances in calculating Raman excitation profiles by means of the transform theory, The Journal of Chemical Physics, vol.17, issue.2, pp.712-722, 1983.
DOI : 10.1107/S0021889868004942

W. Siebrand, Radiationless Transitions in Polyatomic Molecules. II. Triplet???Ground???State Transitions in Aromatic Hydrocarbons, The Journal of Chemical Physics, vol.63, issue.7, pp.2411-2422, 1967.
DOI : 10.1063/1.1840901

R. Englman and J. Jortner, The energy gap law for radiationless transitions in large molecules, Molecular Physics, vol.12, issue.2, pp.145-164, 1970.
DOI : 10.1016/0022-2852(64)90114-6

U. Harbola, S. Umapathy, and S. Mukamel, Loss and gain signals in broadband stimulated-Raman spectra: Theoretical analysis, Physical Review A, vol.88, issue.1, p.11801, 2013.
DOI : 10.1103/PhysRevA.77.022110

J. J. Loparo, C. M. Cheatum, M. R. Ondrias, and M. Simpson, Transient Raman observations of heme vibrational dynamics in five-coordinate iron porphyrins, Chemical Physics, vol.286, issue.2-3, pp.353-374, 2003.
DOI : 10.1016/S0301-0104(02)00924-2

D. M. Leitner, Frequency-resolved communication maps for proteins and other nanoscale materials, The Journal of Chemical Physics, vol.281, issue.19, p.195101, 2009.
DOI : 10.1103/PhysRevLett.88.138101

M. Yoshizawa, Y. Hattori, and T. Kobayashi, Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene, Physical Review B, vol.60, issue.18, pp.13259-13262, 1994.
DOI : 10.1016/0009-2614(79)80022-6

D. W. Mccamant, P. Kukura, S. Yoon, and R. A. Mathies, Femtosecond broadband stimulated Raman spectroscopy: Apparatus and methods, Review of Scientific Instruments, vol.226, issue.11, pp.4971-4980, 2004.
DOI : 10.1021/jp001236s

P. Kukura, D. W. Mccamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman, Science, vol.310, issue.5750, pp.1006-1009, 2005.
DOI : 10.1126/science.1118379

D. R. Dietze and R. A. Mathies, Femtosecond Stimulated Raman Spectroscopy, ChemPhysChem, vol.5, issue.9, pp.1224-1251, 2016.
DOI : 10.1038/ncomms5288

G. Batignani, Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet, Nature Photonics, vol.9, issue.8, pp.506-510, 2015.
DOI : 10.1063/1.1654326

E. Pontecorvo, Femtosecond stimulated Raman spectrometer in the 320-520nm range, Optics Express, vol.19, issue.2, pp.1107-1112, 2011.
DOI : 10.1364/OE.19.001107

E. Pontecorvo, C. Ferrante, C. G. Elles, and T. Scopigno, Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330-750 nm, Optics Express, vol.21, issue.6, pp.6866-6872, 2013.
DOI : 10.1364/OE.21.006866

A. Weigel and N. Ernsting, Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy, The Journal of Physical Chemistry B, vol.114, issue.23, pp.7879-7893, 2010.
DOI : 10.1021/jp100181z

E. Pontecorvo, C. Ferrante, C. G. Elles, and T. Scopigno, Structural Rearrangement Accompanying the Ultrafast Electrocyclization Reaction of a Photochromic Molecular Switch, The Journal of Physical Chemistry B, vol.118, issue.24, pp.6915-6921, 2014.
DOI : 10.1021/jp5051047

S. Laimgruber, H. Schachenmayr, B. Schmidt, W. Zinth, and P. Gilch, A femtosecond stimulated raman spectrograph for the near ultraviolet, Applied Physics B, vol.74, issue.4, pp.557-564, 2006.
DOI : 10.1002/cber.190103402118

M. Kloz, R. Van-grondelle, and J. Kennis, Correction for the time dependent inner filter effect caused by transient absorption in femtosecond stimulated Raman experiment, Chemical Physics Letters, vol.544, pp.94-101, 2012.
DOI : 10.1016/j.cplett.2012.07.005

A. Weigel, Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation, The Journal of Physical Chemistry B, vol.115, issue.13, pp.3656-3680, 2011.
DOI : 10.1021/jp1117129

S. G. Kruglik, Picosecond primary structural transition of the heme is retarded after nitric oxide binding to heme proteins, Proceedings of the National Academy of Sciences, vol.282, issue.7, pp.13678-13683, 2010.
DOI : 10.1074/jbc.M604327200

URL : https://hal.archives-ouvertes.fr/hal-00807876