W. R. Zipfel, R. M. Williams, and W. W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nature Biotechnology, vol.21, issue.11, pp.1368-137610, 2003.
DOI : 10.1038/nbt899

W. R. Zipfel, Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation, Proceedings of the National Academy of Sciences, vol.99, issue.17, pp.7075-708010, 2003.
DOI : 10.1073/pnas.172368799

URL : http://www.pnas.org/content/100/12/7075.full.pdf

P. J. Campagnola and L. , Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms, Nature Biotechnology, vol.21, issue.11, pp.1356-136010, 2003.
DOI : 10.1038/nbt894

D. Débarre, Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy, Nature Methods, vol.61, issue.1, pp.47-5310, 2006.
DOI : 10.1038/nmeth813

A. A. Heikal, Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies, Biomarkers in Medicine, vol.283, issue.2, pp.241-263, 2010.
DOI : 10.1074/jbc.M803416200

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905054/pdf

B. Chance, F. Jobsis, B. Schoener, and P. Cohen, Intracellular Oxidation-Reduction States in Vivo, Science, vol.137, issue.3531, pp.499-508499, 1962.
DOI : 10.1126/science.137.3531.660

K. A. Kasischke, H. D. Vishwasrao, P. J. Fisher, W. R. Zipfel, and W. W. Webb, Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic Glycolysis, Science, vol.305, issue.5680, pp.99-10310, 2004.
DOI : 10.1126/science.1096485

A. Uchugonova and K. Konig, Two-photon autofluorescence and second-harmonic imaging of adult stem cells, Journal of Biomedical Optics, vol.13, issue.5, pp.10-1117, 2008.
DOI : 10.1117/1.3002370

C. Stringari, Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue, Proceedings of the National Academy of Sciences, vol.77, issue.6, pp.13582-135871108161108, 2011.
DOI : 10.1089/scd.2009.1806.edi

K. P. Quinn, Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation, Scientific Reports, vol.104, issue.1, pp.10-1038, 2013.
DOI : 10.1002/bit.22390

URL : http://www.nature.com/articles/srep03432.pdf

N. Plotegher, NADH fluorescence lifetime is an endogenous reporter of ??-synuclein aggregation in live cells, The FASEB Journal, vol.29, issue.6, pp.2484-249410, 2015.
DOI : 10.1096/fj.14-260281

M. C. Skala, In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia, Proceedings of the National Academy of Sciences, vol.39, issue.34, p.708425104, 2007.
DOI : 10.1364/AO.39.006306

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, Fluorescence lifetime imaging of free and protein-bound NADH., Proceedings of the National Academy of Sciences, vol.89, issue.4, pp.1271-1275, 1992.
DOI : 10.1073/pnas.89.4.1271

URL : http://www.pnas.org/content/89/4/1271.full.pdf

W. Becker, Fluorescence lifetime imaging by time-correlated single-photon counting, Microscopy Research and Technique, vol.105, issue.1, pp.58-661, 2004.
DOI : 10.1083/jcb.105.1.41

D. K. Bird, Metabolic Mapping of MCF10A Human Breast Cells via Multiphoton Fluorescence Lifetime Imaging of the Coenzyme NADH, Cancer Research, vol.65, issue.19, pp.8766-8773, 2005.
DOI : 10.1158/0008-5472.CAN-04-3922

W. Becker, Fluorescence lifetime imaging - techniques and applications, Journal of Microscopy, vol.78, issue.24, pp.119-136, 2012.
DOI : 10.1021/ac0522759

C. Stringari, Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH. Sci Rep, pp.10-1038, 2012.

J. Bowles, Retinoid Signaling Determines Germ Cell Fate in Mice, Science, vol.312, issue.5773, pp.596-60010, 2006.
DOI : 10.1126/science.1125691

T. F. Schilling, Q. Nie, and A. Lander, Dynamics and precision in retinoic acid morphogen gradients, Current Opinion in Genetics & Development, vol.22, issue.6, pp.562-569, 2012.
DOI : 10.1016/j.gde.2012.11.012

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790664/pdf

J. Sosnik, Author response image 2. Mean-centered analysis of hoxb1a expression of a subset of cells for r3 and r5 from 3 randomly selected embryos for each indicated treatment., eLife, vol.8, pp.10-7554, 2016.
DOI : 10.7554/eLife.14034.016

T. B. Krasieva, Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo, J Biomed Opt, vol.18, 2013.

A. Varone, Endogenous Two-Photon Fluorescence Imaging Elucidates Metabolic Changes Related to Enhanced Glycolysis and Glutamine Consumption in Precancerous Epithelial Tissues, Cancer Research, vol.74, issue.11, pp.3067-3075, 2014.
DOI : 10.1158/0008-5472.CAN-13-2713

URL : http://cancerres.aacrjournals.org/content/canres/74/11/3067.full.pdf

F. Fereidouni, A. N. Bader, A. Colonna, and H. Gerritsen, human skin, Journal of Biophotonics, vol.15, issue.8, pp.589-596, 2014.
DOI : 10.1364/OE.15.004054

S. Ranjit, Imaging Fibrosis and Separating Collagens using Second Harmonic Generation and Phasor Approach to Fluorescence Lifetime Imaging, Scientific Reports, vol.17, issue.1, pp.10-1038, 2015.
DOI : 10.1117/1.JBO.17.9.096014

URL : http://www.nature.com/articles/srep13378.pdf

F. Fereidouni, A. N. Bader, and H. C. Gerritsen, Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images, Optics Express, vol.20, issue.12, pp.12729-12741012729, 2012.
DOI : 10.1364/OE.20.012729

Z. J. Nie, R. An, J. E. Hayward, T. J. Farrell, and Q. Fang, Hyperspectral fluorescence lifetime imaging for optical biopsy, Journal of Biomedical Optics, vol.18, issue.9, 2013.
DOI : 10.1117/1.JBO.18.9.096001

A. Ruck, C. Hauser, S. Mosch, and S. Kalinina, Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells, Journal of Biomedical Optics, vol.19, issue.9, 2014.
DOI : 10.1117/1.JBO.19.9.096005

F. Fereidouni, K. Reitsma, and H. C. Gerritsen, High speed multispectral fluorescence lifetime imaging, Optics Express, vol.21, issue.10, pp.11769-11782, 2013.
DOI : 10.1364/OE.21.011769

I. Georgakoudi and K. P. Quinn, Optical Imaging Using Endogenous Contrast to Assess Metabolic State, Annual Review of Biomedical Engineering, vol.14, issue.1, pp.351-367, 2012.
DOI : 10.1146/annurev-bioeng-071811-150108

T. Chang, Non-invasive monitoring of cell metabolism and lipid production in 3D engineered human adipose tissues using label-free multiphoton microscopy, Biomaterials, vol.34, issue.34, pp.8607-8616066, 2013.
DOI : 10.1016/j.biomaterials.2013.07.066

URL : https://hal.archives-ouvertes.fr/hal-00940437

J. Hou, Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption, Journal of Biomedical Optics, vol.21, issue.6, 2016.
DOI : 10.1117/1.JBO.21.6.060503

S. H. Huang, A. A. Heikal, and W. W. Webb, Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein, Biophysical Journal, vol.82, issue.5, pp.2811-282510, 2002.
DOI : 10.1016/S0006-3495(02)75621-X

P. Mahou, Multicolor two-photon tissue imaging by wavelength mixing, Nature Methods, vol.2011, issue.8, pp.815-8182098, 2012.
DOI : 10.1038/nprot.2009.130

URL : https://hal.archives-ouvertes.fr/hal-00324345

P. Mahou, J. Vermot, E. Beaurepaire, and W. Supatto, Multicolor two-photon light-sheet microscopy, Nature Methods, vol.11, issue.6, pp.600-6012963, 2014.
DOI : 10.1117/1.2061567

URL : https://hal.archives-ouvertes.fr/hal-01048680

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, The Phasor Approach to Fluorescence Lifetime Imaging Analysis, Biophysical Journal, vol.94, issue.2, pp.14-16, 2008.
DOI : 10.1529/biophysj.107.120154

URL : https://doi.org/10.1529/biophysj.107.120154

M. G. Vander-heiden, L. C. Cantley, and C. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation, Science, vol.26, issue.1, pp.1029-1033, 2009.
DOI : 10.1038/nrc2536

J. Smith, E. Ladi, M. Mayer-proschel, and M. Noble, Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell, Proceedings of the National Academy of Sciences, vol.118, issue.1, pp.10032-1003710, 2000.
DOI : 10.1016/0960-9822(93)90039-Q

R. J. Deberardinis, J. J. Lum, G. Hatzivassiliou, and C. Thompson, The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation, Cell Metabolism, vol.7, issue.1, pp.11-20, 2008.
DOI : 10.1016/j.cmet.2007.10.002

O. Cinquin, S. L. Crittenden, D. E. Morgan, and J. Kimble, Progression from a stem cell-like state to early differentiation in the C. elegans germ line, Proceedings of the National Academy of Sciences, vol.13, issue.17, pp.2048-205310, 2010.
DOI : 10.1101/gad.13.17.2258

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. Schilling, Stages of embryonic development of the zebrafish, Developmental Dynamics, vol.102, issue.3, pp.253-31010, 1995.
DOI : 10.1016/0168-9525(93)90039-K

N. Olivier, Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy, Science, vol.136, issue.12, pp.967-97110, 2010.
DOI : 10.1242/dev.034421

URL : https://hal.archives-ouvertes.fr/hal-00519834

J. Fernandez, M. Valladares, R. Fuentes, and A. Ubilla, Reorganization of cytoplasm in the zebrafish oocyte and egg during early steps of ooplasmic segregation, Developmental Dynamics, vol.246, issue.3, pp.656-67110, 2006.
DOI : 10.1111/j.1096-3642.1945.tb00854.x

R. Fuentes and J. Fernandez, Ooplasmic segregation in the zebrafish zygote and early embryo: Pattern of ooplasmic movements and transport pathways, Developmental Dynamics, vol.1, issue.8, pp.2172-218910, 2010.
DOI : 10.1002/dvdy.22349

V. Nucciotti, Probing myosin structural conformation in vivo by second-harmonic generation microscopy, Proceedings of the National Academy of Sciences, vol.107, issue.17, pp.7763-77680914782107, 2010.
DOI : 10.1038/347044a0

URL : http://www.pnas.org/content/107/17/7763.full.pdf

K. R. Konig and I. , High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution, Journal of Biomedical Optics, vol.8, issue.3, pp.432-43910, 2003.
DOI : 10.1117/1.1577349

A. J. Walsh, Optical Metabolic Imaging Identifies Glycolytic Levels, Subtypes, and Early-Treatment Response in Breast Cancer, Cancer Research, vol.73, issue.20, pp.6164-6174, 2013.
DOI : 10.1158/0008-5472.CAN-13-0527

URL : http://cancerres.aacrjournals.org/content/canres/73/20/6164.full.pdf

A. J. Walsh and M. C. Skala, Optical metabolic imaging quantifies heterogeneous cell populations, Biomedical Optics Express, vol.6, issue.2, pp.559-57310, 2015.
DOI : 10.1364/BOE.6.000559

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354590/pdf

A. J. Harvey, K. L. , and K. T. , REDOX regulation of early embryo development, Reproduction, vol.123, issue.4, pp.479-486, 2002.
DOI : 10.1530/rep.0.1230479

R. Dumollard, W. , Z. Carroll, J. Duchen, and M. R. , Regulation of redox metabolism in the mouse oocyte and embryo, Development, vol.134, issue.3, pp.455-465, 2007.
DOI : 10.1242/dev.02744