A. Athanassoulis, T. Paul, F. Pezzotti, and M. Pulvirenti, Strong semiclassical approximation of Wigner functions for the Hartree dynamics, Rendiconti Lincei - Matematica e Applicazioni, vol.22, pp.525-552, 2011.
DOI : 10.4171/RLM/613

URL : https://hal.archives-ouvertes.fr/hal-00851542

A. Athanassoulis, T. Paul, F. Pezzotti, and M. Pulvirenti, Semiclassical Propagation of Coherent States for the Hartree Equation, Annales Henri Poincar??, vol.53, issue.3, pp.12-1613, 2011.
DOI : 10.1103/RevModPhys.52.569

URL : https://hal.archives-ouvertes.fr/inria-00528993

C. Bardos, F. Golse, and N. Mauser, Weak coupling limit of the N -particle Schrödinger equation, Methods Appl. Anal, vol.7, pp.275-293, 2000.

C. Bardos, L. Erdös, F. Golse, N. Mauser, and H. Yau, Derivation of the Schr??dinger???Poisson equation from the quantum -body problem, Comptes Rendus Mathematique, vol.334, issue.6, pp.515-520, 2002.
DOI : 10.1016/S1631-073X(02)02253-7

N. Benedikter, . Jaksic, C. Porta, . Saffirio, and . Schlein, Mean???Field Evolution of Fermionic Systems, Communications in Mathematical Physics, vol.3, issue.4, pp.166-1345, 2017.
DOI : 10.1002/mma.1670030131

N. Benedikter, M. Porta, C. Saffirio, and B. , From the Hartree Dynamics to the Vlasov Equation, Archive for Rational Mechanics and Analysis, vol.3, issue.4, pp.273-334, 2016.
DOI : 10.1002/mma.1670030131

URL : http://arxiv.org/pdf/1502.04230

N. Benedikter, M. Porta, and B. Schlein, Effective Evolution Equations from Quantum Dynamics, 2016.
DOI : 10.1007/978-3-319-24898-1

A. Boulkhemair, L2 Estimates for Weyl Quantization, Journal of Functional Analysis, vol.165, issue.1, pp.173-204, 1999.
DOI : 10.1006/jfan.1999.3423

URL : https://doi.org/10.1006/jfan.1999.3423

A. Bouzouina and D. Robert, Uniform semiclassical estimates for the propagation of quantum observables, Duke Math, J, vol.111, pp.223-252, 2002.

W. Braun and K. , Hepp: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Commun. Math. Phys, pp.56-101, 1977.

L. Chen, J. Oon-lee, and B. , Rate of Convergence Towards Hartree Dynamics, Journal of Statistical Physics, vol.52, issue.3, pp.872-903, 2011.
DOI : 10.1103/RevModPhys.52.569

L. Erdös and H. Yau, Derivation of the nonlinear Schr??dinger equation from a many-body Coulomb system, Advances in Theoretical and Mathematical Physics, vol.5, issue.6, pp.1169-1205, 2001.
DOI : 10.4310/ATMP.2001.v5.n6.a6

J. Frölich, S. Graffi, and S. Schwartz, Mean-Field- and Classical Limit of Many-Body Schr??dinger Dynamics for Bosons, Communications in Mathematical Physics, vol.3, issue.3, pp.681-697, 2007.
DOI : 10.4171/RMI/143

J. Ginibre and G. , The classical field limit of scattering theory for non-relativistic many-boson systems. I, Communications In Mathematical Physics, vol.14, issue.1, pp.37-76, 1979.
DOI : 10.1007/BF01197745

F. Golse, C. Mouhot, and T. Paul, On the Mean Field and Classical Limits of Quantum Mechanics, Communications in Mathematical Physics, vol.3, issue.3, pp.165-205, 2016.
DOI : 10.1007/978-3-540-71050-9

URL : https://hal.archives-ouvertes.fr/hal-01119132

F. Golse, C. Mouhot, and V. Ricci, Empirical measures and Vlasov hierarchies, Kinetic and Related Models, vol.6, issue.4, pp.919-943, 2013.
DOI : 10.3934/krm.2013.6.919

URL : https://hal.archives-ouvertes.fr/hal-00856485

F. Golse and T. Paul, The Schr??dinger Equation in the Mean-Field and Semiclassical Regime, Archive for Rational Mechanics and Analysis, vol.3, issue.1, pp.57-94, 2017.
DOI : 10.1007/978-3-540-71050-9

F. Golse and T. Paul, Wave Packets and the Quadratic Monge-Kantorovich Distance in Quantum Mechanics
URL : https://hal.archives-ouvertes.fr/hal-01562203

F. Golse, T. Paul, and M. Pulvirenti, On the derivation of the Hartree equation in the mean-field limit: uniformity in the Planck constant
URL : https://hal.archives-ouvertes.fr/hal-01334365

S. Graffi, A. Martinez, and M. Pulvirenti, MEAN-FIELD APPROXIMATION OF QUANTUM SYSTEMS AND CLASSICAL LIMIT, Mathematical Models and Methods in Applied Sciences, vol.2, issue.01, pp.59-73, 2003.
DOI : 10.1090/S0002-9939-98-04164-1

M. Hauray and P. , Jabin: N -particle Approximation of the Vlasov Equations with Singular Potential, Arch. Rational Mech. Anal, vol.183, p.489524, 2007.

M. Hauray and P. Jabin, Particle approximation of Vlasov equations with singular forces: Propagation of chaos, Annales scientifiques de l'??cole normale sup??rieure, vol.48, issue.4, pp.891-940, 2015.
DOI : 10.24033/asens.2261

K. Hepp, The classical limit for quantum mechanical correlation functions, Communications in Mathematical Physics, vol.67, issue.4, 1974.
DOI : 10.1103/PhysRevA.6.2211

A. Knowles and P. , Mean-Field Dynamics: Singular Potentials and Rate of Convergence, Communications in Mathematical Physics, vol.53, issue.3, pp.101-138, 2010.
DOI : 10.4310/ATMP.2001.v5.n6.a6

URL : http://arxiv.org/pdf/0907.4313v1.pdf

D. Lazarovici, The Vlasov-Poisson Dynamics as the Mean Field Limit of Extended Charges, Communications in Mathematical Physics, vol.33, issue.2, pp.271-289, 2016.
DOI : 10.1002/cpa.3160330205

D. Lazarovici and P. , A Mean Field Limit for the Vlasov???Poisson System, Archive for Rational Mechanics and Analysis, vol.16, issue.8-9, pp.1201-1231, 2017.
DOI : 10.1007/BFb0085169

J. Loday, Cyclic homology, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01267296

S. Mischler, C. Mouhot, and B. , A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, Probability Theory and Related Fields, vol.94, issue.3???4, pp.1-59, 2015.
DOI : 10.1016/S1874-5792(02)80004-0

URL : https://hal.archives-ouvertes.fr/hal-00559132

H. Narnhofer and G. Sewell, Vlasov hydrodynamics of a quantum mechanical model, Communications in Mathematical Physics, vol.71, issue.1, pp.9-24, 1981.
DOI : 10.1007/BF01208282

H. Neunzert and J. Wick, Die Approximation der L??sung von Integro-Differentialgleichungen durch endliche Punktmengen, Lecture Notes in Mathematics, vol.395, pp.275-290, 1974.
DOI : 10.1007/BFb0060678

F. Pezzoti and . Pulvirenti, Mean-Field Limit and Semiclassical Expansion of a Quantum Particle System, Annales Henri Poincar??, vol.10, issue.1, pp.145-187, 2009.
DOI : 10.1007/s00023-009-0404-1

I. Rodnianski and B. , Quantum Fluctuations and Rate of Convergence Towards Mean Field Dynamics, Communications in Mathematical Physics, vol.52, issue.3, pp.31-61, 2009.
DOI : 10.4310/ATMP.2001.v5.n6.a6

URL : http://arxiv.org/pdf/0711.3087

H. Spohn, Kinetic equations from Hamiltonian dynamics, Rev. Mod. Phys, vol.52, pp.600-640, 1980.
DOI : 10.1103/revmodphys.52.569