C. Andrieu, J. Ridgway, and N. Whiteley, Sampling normalizing constants in high dimensions using inhomogeneous diffusions. ArXiv e-prints, 2016.

D. Ardia, N. Batrk, L. Hoogerheide, and H. K. Van-dijk, A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood, Computational Statistics & Data Analysis, vol.56, issue.11, pp.3398-3414, 2012.
DOI : 10.1016/j.csda.2010.09.001

R. Balian, From microphysics to macrophysics: methods and applications of statistical physics, 2007.
DOI : 10.1007/978-3-540-45475-5

G. Behrens, N. Friel, and M. Hurn, Tuning tempered transitions, Statistics and Computing, vol.59, issue.4, pp.65-78, 2012.
DOI : 10.1007/978-1-4757-3071-5

URL : http://arxiv.org/pdf/1010.0842

A. Beskos, D. O. Crisan, A. Jasra, and N. Whiteley, Error Bounds and Normalising Constants for Sequential Monte Carlo Samplers in High Dimensions, Advances in Applied Probability, vol.16, issue.01, pp.279-306, 2014.
DOI : 10.1007/s00440-012-0410-y

S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A nonasymptotic theory of independence, 2013.
DOI : 10.1093/acprof:oso/9780199535255.001.0001

URL : https://hal.archives-ouvertes.fr/hal-00794821

S. Brazitikos, A. Giannopoulos, P. Valettas, and B. Vritsiou, Geometry of isotropic convex bodies, 2014.
DOI : 10.1090/surv/196

M. Chen, Q. Shao, and J. Ibrahim, Monte Carlo Methods in Bayesian Computation, 2000.
DOI : 10.1007/978-1-4612-1276-8

B. Cousins and S. Vempala, Bypassing KLS, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC '15, pp.539-548, 2015.
DOI : 10.1145/12130.12176

A. S. Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave densities, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.91, issue.3, p.2016
DOI : 10.1016/j.spl.2014.04.002

P. , D. Moral, A. Jasra, K. Law, and Y. Zhou, Multilevel Sequential Monte Carlo Samplers for Normalizing Constants ArXiv e-prints, 2016.
DOI : 10.1145/3092841

A. Durmus and E. Moulines, Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm, 2015.
DOI : 10.1214/16-aap1238

URL : https://hal.archives-ouvertes.fr/hal-01176132

A. Durmus and E. Moulines, High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304430

R. Dutta and J. K. Ghosh, Bayes Model Selection with Path Sampling: Factor Models and Other Examples, Statistical Science, vol.28, issue.1, pp.95-115, 2013.
DOI : 10.1214/12-STS403

URL : http://doi.org/10.1214/12-sts403

M. Dyer and A. Frieze, Computing the volume of convex bodies: a case where randomness provably helps, Probabilistic combinatorics and its applications, pp.123-170, 1991.
DOI : 10.1090/psapm/044/1141926

D. L. Ermak, A computer simulation of charged particles in solution, p.40

L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, 2015.

N. Friel and J. Wyse, Estimating the evidence - a review, Statistica Neerlandica, vol.6, issue.3, pp.288-308, 2012.
DOI : 10.1214/11-BA620

N. Friel, M. Hurn, and J. Wyse, Improving power posterior estimation of statistical evidence, Statistics and Computing, vol.60, issue.2, pp.709-723, 2014.
DOI : 10.1093/sysbio/syq085

URL : http://arxiv.org/pdf/1209.3198

A. Gelman and X. Meng, Simulating normalizing constants: from importance sampling to bridge sampling to path sampling, Statistical Science, vol.13, issue.2, pp.163-185, 1998.
DOI : 10.1214/ss/1028905934

URL : http://www.cis.upenn.edu/~taskar/courses/cis700-sp08/papers/gelman-meng.pdf

M. Huber, Approximation algorithms for the normalizing constant of Gibbs distributions, The Annals of Applied Probability, vol.25, issue.2, pp.974-98514, 2015.
DOI : 10.1214/14-AAP1015

C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach, Physical Review E, vol.21, issue.5, p.5018, 1997.
DOI : 10.1063/1.1699114

A. Jasra, K. Kamatani, P. P. Osei, and Y. Zhou, Multilevel particle filters: normalizing constant estimation, Statistics and Computing, vol.24, pp.1-14, 2016.
DOI : 10.1007/978-3-662-12616-5

M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Random generation of combinatorial structures from a uniform distribution, Theoretical Computer Science, vol.43, pp.169-188, 1986.
DOI : 10.1016/0304-3975(86)90174-X

A. Joulin and Y. Ollivier, Curvature, concentration and error estimates for Markov chain Monte Carlo, The Annals of Probability, vol.38, issue.6, pp.2418-244210
DOI : 10.1214/10-AOP541

URL : http://doi.org/10.1214/10-aop541

K. H. Knuth, M. Habeck, N. K. Malakar, A. M. Mubeen, and B. Placek, Bayesian evidence and model selection, S1051200415001980. Special Issue in Honour of William J. (Bill) Fitzgerald, pp.50-67, 2015.
DOI : 10.1016/j.dsp.2015.06.012

T. Lelì-evre, G. Stoltz, and M. Rousset, Free energy computations: A mathematical perspective, World Scientific, 2010.

J. Marin and C. P. Robert, Importance sampling methods for bayesian discrimination between embedded models, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00424475

S. P. Meyn and R. L. Tweedie, Stability of markovian processes iii: Fosterlyapunov criteria for continuous-time processes, Advances in Applied Probability, pp.518-548, 1993.

R. M. Neal, Annealed importance sampling, Statistics and Computing, vol.11, issue.2, pp.125-139, 2001.
DOI : 10.1023/A:1008923215028

Y. Nesterov, Introductory lectures on convex optimization: A basic course, Brosse, A.Durmus, ´ E.Moulines/Normalizing constants of log-concave densities 41
DOI : 10.1007/978-1-4419-8853-9

W. Niemiro and P. Pokarowski, Fixed Precision MCMC Estimation by Median of Products of Averages, Journal of Applied Probability, vol.1, issue.02, pp.309-329, 2009.
DOI : 10.1016/0890-5401(89)90067-9

C. J. Oates, T. Papamarkou, and M. Girolami, The Controlled Thermodynamic Integral for Bayesian Model Evidence Evaluation, Journal of the American Statistical Association, vol.56, issue.514, pp.634-645, 2016.
DOI : 10.1093/bioinformatics/btm607

G. Parisi, Correlation functions and computer simulations, Nuclear Physics B, vol.180, issue.3, pp.378-384, 1981.
DOI : 10.1016/0550-3213(81)90056-0

M. Pereyra, Maximum-a-posteriori estimation with bayesian confidence regions. arXiv preprint, 2016.
DOI : 10.1137/16m1071249

URL : http://arxiv.org/abs/1602.08590

C. Robert, The Bayesian choice: from decision-theoretic foundations to computational implementation, 2007.
DOI : 10.1007/978-1-4757-4314-2

G. O. Roberts and R. L. Tweedie, Exponential Convergence of Langevin Distributions and Their Discrete Approximations, Bernoulli, vol.2, issue.4, pp.341-363, 1996.
DOI : 10.2307/3318418

J. P. Valleau and D. N. Card, Monte Carlo Estimation of the Free Energy by Multistage Sampling, The Journal of Chemical Physics, vol.4, issue.12, pp.5457-5462, 1972.
DOI : 10.1351/pac197022030303

C. Villani, Optimal transport: old and new, 2008.
DOI : 10.1007/978-3-540-71050-9

E. J. Williams and E. Williams, Regression analysis, 1959.

J. Wyse, Estimating the statistical evidence -a review. https://sites. google.com/site/jsnwyse/code, 2011. URL https

Y. Zhou, A. M. Johansen, and J. A. Aston, Toward Automatic Model Comparison: An Adaptive Sequential Monte Carlo Approach, Journal of Computational and Graphical Statistics, vol.56, issue.3, p.2015
DOI : 10.1080/02664763.2013.772569

URL : http://www.tandfonline.com/doi/pdf/10.1080/10618600.2015.1060885?needAccess=true