Effective Dynamic Properties of a Row of Elastic Inclusions: The Case of Scalar Shear Waves

Abstract : We present the homogenization of a periodic array of elastic inclusions embedded in an elastic matrix. We consider shear elastic waves with a typical wavelength 1/k much larger than the array spacing h and thickness e. Owing to the small parameter η = kh, with e/h = O(1), a matched asympto-tic expansion technique is applied to the wave equation in the time domain. The homogenized problem involves an equivalent interface associated to jump conditions of the Ventcels type. Up to the accuracy of the model in O(η2), different jump conditions are possible, which correspond to enlarged versions of the interface ; these jump conditions are parametrized by the thickness a of the homogenized interface. We inspect the influence of a (i) on the equation of energy conservation in the homogenized problem and (ii) on the error of the model for a simple scattering problem. We show that restoring the thickness of the real array, a = e, is the optimal configuration regarding both aspects.
Type de document :
Article dans une revue
Journal of Elasticity, Springer Verlag, 2017, 128 (2), pp.265-289. 〈10.1007/s10659-017-9627-4〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal-polytechnique.archives-ouvertes.fr/hal-01657090
Contributeur : Jean-Jacques Marigo <>
Soumis le : jeudi 7 décembre 2017 - 14:22:59
Dernière modification le : vendredi 31 août 2018 - 09:25:43
Document(s) archivé(s) le : jeudi 8 mars 2018 - 12:51:17

Fichier

Marigo_etal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Jean-Jacques Marigo, Agnes Maurel, Kim Pham, Amine Sbitti. Effective Dynamic Properties of a Row of Elastic Inclusions: The Case of Scalar Shear Waves. Journal of Elasticity, Springer Verlag, 2017, 128 (2), pp.265-289. 〈10.1007/s10659-017-9627-4〉. 〈hal-01657090〉

Partager

Métriques

Consultations de la notice

291

Téléchargements de fichiers

46